Nuclear Physics Opportunities at European Small-Scale Facilities
Abstract
:1. Introduction
2. Small-Scale Facilities
2.1. Cologne Accelerator Laboratory, Institute for Nuclear Physics (IKP), Cologne, Germany
2.2. Heavy Ion Laboratory (HIL), Warsaw, Poland
2.3. IJClab (Laboratory of the Physics of the Two Infinities Irène Joliot-Curie), Orsay, France
2.4. Rudjer Bošković Institute Accelerator Facility, Zagreb, Croatia
2.5. Tandetron Laboratory in Piešt’any, Institute of Physics, Slovak Academy of Sciences
2.6. The Oslo Cyclotron Laboratory (OCL), University of Oslo, Norway
2.7. The Superconducting Darmstadt Linear Electron Accelerator (S-DALINAC), Institut für Kernphysik, (IKP), Darmsatdt, Germany
2.8. The INFN Laboratori Nazionali del Sud, (LNS), Italy
2.9. The Jyväskylä Accelerator Laboratory, University of Jyväskylä, Finland
2.10. Dynamitron-Tandem Laboratory, RUBION (Ruhr-Universität Bochum Ionenstrahlen), Ruhr-Universität Bochum, Germany
2.11. Frankfurt Van de Graaff Accelerator, University of Frankfurt, Germany
2.12. Ion Beam Center (IBC), Helmholtz Zentrum Dresden Rossendorf (HZDR), Germany
2.13. Felsenkeller Underground Accelerator Laboratory, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany
2.14. The Atomki Accelerator Center
2.15. Centre of Accelerators and Nuclear Analytical Methods Research Infrastructure (CANAM RI), Czech Republic
2.16. Bronowice Cyclotron Center (CCB) of the Institute of Nuclear Physics PAN, Krakow, Poland
2.17. The Centro Nacional de Aceleradores (CNA), University of Seville, Spain
2.18. The Laboratory of Accelerators and Radiation Technologies (LATR) of Instituto Superior Técnico (IST), Portugal
2.19. The Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering (IFIN-HH) Tandem Accelerator Complex, Romania
2.20. Laboratory for Underground Nuclear Astrophysics (LUNA), Gran Sasso National Laboratories (GSNL), Italy
2.21. Centre of Micro-Analysis of Materials (CMAM) at the Autonomous University of Madrid, Spain
2.22. The Tandem Accelerator Laboratory (TAL), Institute of Nuclear and Particle Physics (INPP) of the National Centre for Scientific Research “Demokritos” (NCSRD), Greece
2.23. Microanalytical Centre, Jožef Stefan Institute (MIC, JSI), Slovenia
2.24. The Center for Isotopic Research on Cultural and Environmental Heritage (CIRCE), Italy
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Available online: https://www.esfri.eu/esfri-roadmap (accessed on 15 September 2023).
- NuPECC. The Nuclear Physics European Collaboration Committee (NuPECC) Long Range Plan. 2017. Available online: https://www.esf.org/fileadmin/user_upload/esf/Nupecc-LRP2017.pdf (accessed on 15 September 2023).
- Available online: https://www.iaea.org/sites/default/files/23/01/cn-301volume-3-full-papers.pdf (accessed on 15 September 2023).
- Available online: https://isotopenphysik.univie.ac.at/en/vera/ (accessed on 15 September 2023).
- Available online: https://uknibc.co.uk/SIBC/ (accessed on 15 September 2023).
- Available online: https://www.tandemlab.uu.se/?languageId=1 (accessed on 15 September 2023).
- Available online: https://www.ikp.uni-koeln.de/en/institute/facilities/accelerators (accessed on 15 September 2023).
- Available online: https://www.nupecc.org/ssf/table_ssf_lrp2017.pdf (accessed on 15 September 2023).
- Netterdon, L.; Derya, V.; Endres, J.; Fransen, C.; Hennig, A.; Mayer, J.; Müller-Gatermann, C.; Sauerwein, A.; Scholz, P.; Spieker, M.; et al. The γ-ray spectrometer HORUS and its applications for nuclear astrophysics. Nucl. Instrum. Methods Phys. Res. A 2014, 754, 94. [Google Scholar] [CrossRef]
- Hillebrandt, W.; Kromer, M.; Röpke, F.K.; Ruiter, A.J. Towards an understanding of Type Ia supernovae from a synthesis of theory and observations. Front. Phys. 2013, 8, 116. [Google Scholar] [CrossRef]
- Gyürky, G.; Fülöp, Z.; Käppeler, F.; Kiss, G.G.; Wallner, A. The activation method for cross section measurements in nuclear astrophysics. Eur. Phys. J. A 2019, 55, 41. [Google Scholar] [CrossRef]
- Spyrou, A.; Becker, H.-W.; Lagoyannis, A.; Harissopulos, S.; Rolfs, C. Cross-section measurements of capture reactions relevant to the p process using a 4π γ-summing method. Phys. Rev. C 2007, 76, 015802. [Google Scholar] [CrossRef]
- Galanopoulos, S.; Demetriou, P.; Kokkoris, M.; Harissopulos, S.; Kunz, R.; Fey, M.; Hammer, J.M.; Gyürky, G.; Fülöp, Z.; Somorjai, E.; et al. The 88Sr(p,γ)89Y reaction at astrophysically relevant energies. Phys. Rev. C 2003, 67, 015801. [Google Scholar] [CrossRef]
- Pickstone, S.G.; Weinert, M.; Färber, M.; Heim, F.; Hoemann, E.; Mayer, J.; Müscher, M.; Prill, S.; Scholz, P.; Spieker, M.; et al. Combining γ-ray and particle spectroscopy with SONIC@HORUS. Nucl. Instrum. Methods Phys. Res. A 2017, 875, 104. [Google Scholar] [CrossRef]
- Stokstad, R.G.; Fraser, I.A.; Greenberg, J.S.; Sie, S.H.; Bromley, D.A. Doppler shift attenuation studies in heavy nuclei. Nucl. Phys. A 1970, 156, 145. [Google Scholar] [CrossRef]
- Available online: https://www.slcj.uw.edu.pl/en/heavy-ion-laboratory-hil (accessed on 15 September 2023).
- Available online: https://www.slcj.uw.edu.pl/en/the-warsaw-igisol (accessed on 15 September 2023).
- Available online: https://www.slcj.uw.edu.pl/en/coulomb-excitation-at-the-warsaw-cyclotron (accessed on 15 September 2023).
- Available online: https://inis.iaea.org/collection/NCLCollectionStore/_Public/38/068/38068159.pdf (accessed on 15 September 2023).
- Mierzejewski, J.; Srebrny, J.; Mierzejewski, H.; Andrzejewski, J.; Czarnacki, W.; Droste, C.; Grodner, E.; Jakubowski, A.; Kisieliński, M.; Komorowska, M.; et al. EAGLE—The central European Array for Gamma Levels Evaluation at the Heavy Ion Laboratory of the University of Warsaw. Nucl. Instrum. Methods Phys. Res. A 2011, 659, 84. [Google Scholar] [CrossRef]
- Petkov, P.; Tonev, D.; Gableske, J.; Dewald, A.; Klemme, T.; von Brentano, P. On the line-shape and lifetime determination in recoil distance Doppler-shift measurements. Nucl. Instrum. Methods Phys. Res. A 1999, 431, 208. [Google Scholar] [CrossRef]
- Perkowski, J.; Andrzejewski, J.; Janiak, Ł.; Samorajczyk, J.; Abraham, T.; Droste, C.; Grodner, E.; Hadyńska-Klęk, K.; Kisieliński, M.; Komorowska, M.; et al. University of Lodz an electron spectrometer—A new conversion-electron spectrometer for “in-beam” measurements. Rev. Sci. Inst. 2014, 85, 043303. [Google Scholar] [CrossRef]
- Morek, T.; Srebrny, J.; Droste, C.; Kowalczyk, M.; Rząca-Urban, T.; Starosta, K.; Urban, W.; Kaczarowski, R.; Ruchowska, E.; Kisieliński, M.; et al. Investigation of the Kπ = 8− isomer in 132Ce. Phys. Rev. C 2001, 63, 034302. [Google Scholar] [CrossRef]
- Wrzosek-Lipska, K.; Próchniak, L.; Zielińska, M.; Srebrny, J.; Hadyńska-Klęk, K.; Iwanicki, J.; Kisieliński, M.; Kowalczyk, M.; Napiorkowski, P.J.; Piętak, D.; et al. Electromagnetic properties of 100Mo: Experimental results and theoretical description of quadrupole degrees of freedom. Phys. Rev. C 2012, 86, 064305. [Google Scholar] [CrossRef]
- Grodner, E.; Srebrny, J.; Pasternak, A.A.; Zalewska, I.; Morek, T.; Droste, C.; Mierzejewski, J.; Kowalczyk, M.; Kownacki, J.; Kisieliński, M.; et al. 128Cs as the Best Example Revealing Chiral Symmetry Breaking. Phys. Rev. Lett. 2006, 97, 172501. [Google Scholar] [CrossRef] [PubMed]
- Grodner, E.; Sankowska, I.; Morek, T.; Rohoziński, S.G.; Droste, C.; Srebrny, J.; Pasternak, A.A.; Kisieliński, M.; Kowalczyk, M.; Kownacki, J.; et al. Partner bands of 126Cs—first observation of chiral electromagnetic selection rules. Phys. Lett. B 2011, 703, 46. [Google Scholar] [CrossRef]
- Grodner, E.; Srebrny, J.; Droste, C.; Próchniak, L.; Rohoziński, S.G.; Kowalczyk, M.; Ionescu-Bujor, M.; Ur, C.A.; Starosta, K.; Ahn, T.; et al. First Measurement of the g Factor in the Chiral Band: The Case of the 128Cs Isomeric State. Phys. Rev. Lett. 2018, 120, 022502. [Google Scholar] [CrossRef] [PubMed]
- Grodner, E.; Kowalczyk, M.; Kisieliński, M.; Srebrny, J.; Próchniak, L.; Droste, C.; Rohoziński, S.G.; Chen, Q.B.; Ionescu-Bujor, M.; Ur, C.A.; et al. Examination of nuclear chirality with a magnetic moment measurement of the I = 9 isomeric state in 128Cs. Phys. Rev. C 2022, 106, 014318. [Google Scholar] [CrossRef]
- Stocchi, A.; Ibrahim, F.; Descotes-Genon, S. IJCLab a New European Laboratory. Nucl. Phys. News 2022, 32, 4. [Google Scholar] [CrossRef]
- Wilson, J.N.; Lebois, M.; Halipre, P.; Oberstedt, S.; Oberstedt, A. The LICORNE neutron source and measurements of prompt γ-rays emitted in fission. Phys. Procedia 2014, 59, 31. [Google Scholar] [CrossRef]
- Available online: https://alto.ijclab.in2p3.fr/en/instrumentation-en/bedo/ (accessed on 15 September 2023).
- Lebois, M.; Jovančević, N.; Wilson, J.N.; Thisse, D. The ν-ball Campaign at ALTO. Acta Phys. Pol. B 2019, 50, 3. [Google Scholar] [CrossRef]
- Wilson, J.N.; Thisse, D.; Lebois, M.; Jovančević, N.; Gjestvang, D.; Canavan, R.; Rudigier, M.; Étasse, D.; Gerst, R.-B.; Gaudefroy, L.; et al. Angular momentum generation in nuclear fission. Nature 2021, 590, 566. [Google Scholar] [CrossRef]
- Wilson, J. Report for the Conseil Scientifique of the IN2P3. 2019. Available online: https://www.in2p3.cnrs.fr/sites/institut_in2p3/files/page/2019-07/5-Doc-WILSON.pdf (accessed on 15 September 2023).
- Available online: https://andromede.in2p3.fr/?lang=en (accessed on 15 September 2023).
- Heine, M.; Courtin, S.; Fruet, G.; Jenkins, D.G.; Montanari, D.; Adsley, P.; Beck, C.; Della Negra, S.; Dené, P.; Haas, F.; et al. Sub-barrier fusion cross section measurements with STELLA. EPJ Web Conf. 2017, 165, 01029. [Google Scholar] [CrossRef]
- Rudigier, M.; Podolyák, Z.; Regan, P.H.; Bruce, A.M.; Lalkovski, S.; Canavan, R.L.; Gamba, E.R.; Roberts, O.; Burrows, I.; Cullen, D.M.; et al. FATIMA—FAst TIMing array for DESPEC at FAIR. Nucl. Instrum. Methods Phys. Res. A 2020, 969, 163967. [Google Scholar] [CrossRef]
- Fruet, G.; Courtin, S.; Heine, M.; Jenkins, D.G.; Adsley, P.; Brown, A.; Canavan, R.; Catford, W.N.; Charon, E.; Curien, D.; et al. Advances in the direct study of carbon burning in massive stars. Phys. Rev. Lett. 2020, 124, 192701. [Google Scholar] [CrossRef]
- Radović Bogdanović, I. Ruđer Bošković Institute Accelerator Facility. Nucl. Phys. News 2020, 30, 4. [Google Scholar] [CrossRef]
- Tumino, A.; Bertulani, C.; La Cognata, M.; Lamia, L.; Pizzone, R.G.; Romano, S.; Typel, S. The Trojan Horse Method: A nuclear physics tool for astrophysics. Annu. Rev. Nucl. Part. Sci. 2021, 71, 345–376. [Google Scholar] [CrossRef]
- Soić, N.; Blagus, S.; Bogovac, M.; Fazinić, S.; Lattuada, M.; Milin, M.; Miljanić, D.; Rendić, D.; Spitaleri, C.; Tadić, T.; et al. 6He + α clustering in 10Be. Europhys. Lett. 1996, 34, 7. [Google Scholar] [CrossRef]
- Freer, M.; Ashwood, N.I.; Curtis, N.; Di Pietro, A.; Figuera, P.; Fisichella, M.; Grassi, L.; Jelavić Malenica, D.; Kokalova, T.; Koncul, M.; et al. Analysis of states in 13C populated in 9Be + 4He resonant scattering. Phys. Rev. V 2011, 84, 034317. [Google Scholar]
- Venhart, M.; Herzáň, A. Department of Nuclear Physics, Institute of Physics, Slovak Academy of Sciences. Nucl. Phys. News 2023, 33, 6. [Google Scholar] [CrossRef]
- Görgen, A.; Guttormsen, M.; Larsen, A.C.; Siem, S.; Adli, E.; Edin, N.F.J.; Gjersdal, H.; Henriksen, G.; Malinen, E.; Modamio, V.; et al. The Oslo cyclotron laboratory. Eur. Phys. J. Plus 2021, 136, 181. [Google Scholar] [CrossRef]
- Zeiser, F.; Tveten, G.M.; Bello Garrote, F.L.; Guttormsen, M.; Larsen, A.C.; Ingeberg, V.W.; Görgen, A.; Siem, S. The γ-ray energy response of the Oslo Scintillator Array OSCAR. Nucl. Instrum. Methods Phys. Res. A 2021, 985, 164678. [Google Scholar] [CrossRef]
- Guttormsen, M.; Bürger, A.; Hansen, T.E.; Lietaer, N. The SiRi particle-telescope system. Nucl. Instrum. Methods Phys. Res. A 2011, 648, 168. [Google Scholar] [CrossRef]
- Tornyi, T.G.; Görgen, A.; Guttormsen, M.; Larsen, A.C.; Siem, S.; Krasznahorkay, A.; Csige, L. A new fission-fragment detector to complement the CACTUS-SiRi setup at the Oslo Cyclotron Laboratory. Nucl. Instrum. Methods Phys. Res. A 2014, 738, 6. [Google Scholar] [CrossRef]
- Schiller, A.; Bergholt, L.; Guttormsen, M.; Melby, E.; Rekstad, J.; Siem, S. Extraction of level density and γ strength function from primary γ spectra. Nucl. Instrum. Methods Phys. Res. A 2000, 447, 498. [Google Scholar] [CrossRef]
- Guttormsen, M.; Jurado, B.; Wilson, J.N.; Aiche, M.; Bernstein, L.A.; Ducasse, Q.; Giacoppo, F.; Görgen, A.; Gunsing, F.; Hagen, T.W.; et al. Constant-temperature level densities in the quasicontinuum of Th and U isotopes. Phys. Rev. C 2013, 88, 024307. [Google Scholar] [CrossRef]
- Goriely, S.; Dimitriou, P.; Wiedeking, M.; Belgya, T.; Firestone, R.; Kopecky, J.; Krtička, M.; Plujko, V.; Schwengner, R.; Siem, S.; et al. Reference database for photon strength functions. Eur. Phys. J. A 2019, 55, 172. [Google Scholar] [CrossRef]
- Thielemann, F.-K. From the slow to the rapid neutron capture process. Eur. Phys. J. A. 2023, 59, 12. [Google Scholar] [CrossRef]
- Choplin, A.; Siess, L.; Goriely, S. The intermediate neutron capture process. Astron. Astrophys. 2022, 667, A155. [Google Scholar] [CrossRef]
- Hoyle, F. On Nuclear Reactions Occuring in Very Hot STARS. I. The Synthesis of Elements from Carbon to Nickel. Astrophys. J. Suppl. Ser. 1954, 1, 12. [Google Scholar] [CrossRef]
- Kibédi, T.; Alshahrani, B.; Stuchbery, A.E.; Larsen, A.C.; Görgen, A.; Siem, S.; Guttormsen, M.; Giacoppo, F.; Morales, A.I.; Sahin, E.; et al. Radiative Width of the Hoyle State from γ-Ray Spectroscopy. Phys. Rev. Lett. 2020, 125, 182701. [Google Scholar] [CrossRef]
- Pietralla, N. The Institute of Nuclear Physics at the TU Darmstadt. Nucl. Phys. News 2018, 28, 4. [Google Scholar] [CrossRef]
- Sonnabend, K.; Savran, D.; Beller, J.; Büssing, M.A.; Constantinescu, A.; Elvers, M.; Endres, J.; Fritzsche, M.; Glorius, J.; Hasper, J.; et al. The Darmstadt High-Intensity Photon Setup (DHIPS) at the S-DALINAC. Nucl. Instrum. Methods Phys. Res. A 2011, 640, 6. [Google Scholar] [CrossRef]
- Ryezayeva, N.; Arenhövel, H.; Burda, O.; Byelikov, A.; Chernykh, M.; Enders, J.; Griesshammer, H.W.; Kalmykov, Y.; von Neumann-Cosel, P.; Özel, B.; et al. Measurement of the Reaction 2H(e,e′) at 180° Close to the Deuteron Breakup Threshold. Phys. Rev. Lett. 2008, 100, 172501. [Google Scholar] [CrossRef] [PubMed]
- Chernykh, M.; Feldmeier, H.; Neff, T.; von Neumann-Cosel, P.; Richter, A. Pair Decay Width of the Hoyle State and its Role for Stellar Carbon Production. Phys. Rev. Lett. 2010, 105, 022501. [Google Scholar] [CrossRef] [PubMed]
- Kremer, C.; Aslanidou, S.; Bassauer, S.; Hilcker, M.; Krugmann, A.; von Neumann-Cosel, P.; Otsuka, T.; Pietralla, N.; Ponomarev, V.Y.; Shimizu, N.; et al. First Measurement of Collectivity of Coexisting Shapes Based on Type II Shell Evolution: The Case of 96Zr. Phys. Rev. Lett. 2016, 117, 172503. [Google Scholar] [CrossRef] [PubMed]
- Von Neumann-Cosel, P.; Richter, A.; Schrieder, G.; Shevchenko, A.; Stiller, A.; Arenhövel, H. Deuteron Breakup in the 2H(e,e′p) Reaction at Low Momentum Transfer and Close to Threshold. Phys. Rev. Lett. 2002, 88, 202304. [Google Scholar] [CrossRef] [PubMed]
- Walz, C.; Scheit, H.; Pietralla, N.; Aumann, T.; Lefol, R.; Ponomarev, V.Y. Observation of the competitive double-gamma nuclear decay. Nature 2015, 526, 406. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.lns.infn.it/en/ (accessed on 15 September 2023).
- Lattuada, M. The INFN Laboratori Nazionali del Sud. Nucl. Phys. News 2012, 22, 5. [Google Scholar] [CrossRef]
- Pagano, A.; Alderighi, M.; Amorini, F.; Anzalone, A.; Arena, L.; Auditore, L.; Baran, L.; Bartolucci, M.; Berceanu, I.; Blicharska, J.; et al. Fragmentation studies with the CHIMERA detector at LNS in Catania: Recent progress. Nucl. Phys. A 2004, 734, 504–511. [Google Scholar] [CrossRef]
- Pagano, E.V.; Acosta, L.; Auditore, L.; Boiano, C.; Cardella, G.; Castoldi, A.; D’Andrea, M.; Dell’aquila, D.; De Filippo, E.; De Luca, S.; et al. Status and perspective of FARCOS: A new correlator array for nuclear reaction studies. EPJ Web Conf. 2016, 117, 10008. [Google Scholar] [CrossRef]
- Dell’Aquila, D.; Acosta, L.; Amorini, F.; Andolina, R.; Auditore, L.; Berceanu, I.; Cardella, G.; Chatterjiee, M.B.; De Filippo, E.; Francalanza, L.; et al. Study of cluster structures in 10Be and 16C neutron-rich nuclei via break-up reactions. EPJ Web Conf. 2016, 117, 06011. [Google Scholar] [CrossRef]
- Martorana, N.S.; Cardella, G.; Lanza, E.G.; Acosta, L.; Andres, M.V.; Auditore, L.; Catara, F.; De Filippo, E.; Favela, F.; Gnoffo, B.; et al. On the nature of the Pygmy Dipole Resonance in 68Ni. Il Nuovo C 2018, 41 C, 199. [Google Scholar]
- Cappuzzello, F.; Agodi, C.; Carbone, D.; Cavallaro, M. The MAGNEX spectrometer: Results and perspectives. Eur. Phys. J. A 2016, 52, 167. [Google Scholar] [CrossRef]
- Lamia, L.; Spitaleri, C.; Tognelli, E.; Degl’Innocenti, S.; Pizzone, R.G.; Prada Moroni, P.G. Astrophysical impact of the updated 9Be (p,α) 6Li and 10B (p,α) 7Be reaction rates as deduced by THM. Astrophys. J. 2015, 811, 99. [Google Scholar] [CrossRef]
- Romano, S.; Lamia, L.; Spitaleri, C.; Li, C.; Cherubini, S.; Gulino, M.; La Cognata, M.; Pizzone, R.G.; Tumino, A. Study of the 9Be(p,α)6Li reaction via the Trojan Horse Method. Eur. Phys. J. A 2006, 27, 221. [Google Scholar] [CrossRef]
- Spitaleri, C.; Lamia, L.; Puglia, S.M.R.; Romano, S.; La Cognata, M.; Crucillà, V.; Pizzone, R.G.; Rapisarda, G.G.; Sergi, M.L.; Del Santo, M.G.; et al. Measurement of the 10 keV resonance in the 10B(p,α0)7Be reaction via the Trojan Horse method. Phys. Rev. C 2014, 90, 035801. [Google Scholar] [CrossRef]
- Simonucci, S.; Taioli, S.; Palmerini, S.; Busso, M. Theoretical estimates of stellar e- captures. I. The half-life of 7Be in evolved stars. Astrophys. J. 2013, 764, 118. [Google Scholar] [CrossRef]
- Lamia, L.; Spitaleri, C.; Burjan, V.; Carlin, N.; Cherubini, S.; Crucillà, V.; Munhoz, M.G.; Santo, M.G.D.; Gulino, M.; Hons, Z.; et al. New measurement of the 11B(p,α0) 8Be bare-nucleus S (E) factor via the Trojan horse method. J. Phys. G Nucl. Part. Phys. 2012, 39, 015106. [Google Scholar] [CrossRef]
- La Cognata, M.; Palmerini, S.; Adsley, P.; Hammache, F.; Di Pietro, A.; Figuera, P.; Alba, R.; Cherubini, S.; Dell’Agli, F.; Guardo, G.L.; et al. Exploring the astrophysical energy range of the 27Al(p,α)24Mg reaction: A new recommended reaction rate. Phys. Lett. B 2022, 826, 136917. [Google Scholar] [CrossRef]
- Spartà, R.; Lamia, L.; La Cognata, M.; Spitaleri, C.; Rapisarda, G.G.; Guardo, G.L.; Cherubini, S.; D’Agata, G.; Di Pietro, A.; Figuera, P.; et al. 10B(n,α0) 7Li and 10B(n,α1) 7Li reactions measured via Trojan Horse Method. Eur. Phys. J. A 2021, 170, 57. [Google Scholar]
- Guardo, G.L.; Petruse, T.; Lattuada, D.; La Cognata, M.; Balabanski, D.L.; Açıksöz, E.; Acosta, L.; Capponi, L.; Carbone, D.; Cherubini, S.; et al. Direct measurement of the 19F(p,α0)16O reaction at Ecm = 0.4–0.9 MeV using the LHASA detector array. Eur. Phys. J. A 2023, 59, 65. [Google Scholar] [CrossRef]
- Available online: http://www.micronsemiconductor.co.uk/silicon-detector-catalogue/ (accessed on 15 September 2023).
- Martorana, N.S.; Cardella, G.; Guazzoni, C.; Pagano, E.V.; Russo, A.D.; Russotto, P.; Acosta, L.; Amato, A.; Calabretta, L.; Caruso, A.; et al. Radioactive ion beam opportunities at the new FRAISE facility of INFN-LNS. Front. Phys. 2022, 10, 1058419. [Google Scholar] [CrossRef]
- Moore, I.D.; Eronen, T.; Gorelov, D.; Hakala, J.; Jokinen, A.; Kankainen, A.; Kolhinen, V.S.; Koponen, J.; Penttilä, H.; Pohjalainen, I.; et al. Towards commissioning the new IGISOL-4 facility. Nucl. Instrum. Methods Phys. Res. B 2013, 317, 208. [Google Scholar] [CrossRef]
- Sarén, J.; Uusitalo, J.; Leino, M.; Greenlees, P.T.; Jakobsson, U.; Jones, P.; Julin, R.; Juutinen, S.; Ketelhut, S.; Nyman, M.; et al. The new vacuum-mode recoil separator MARA at JYFL. Nucl. Instrum. Methods Phys. Res. B 2008, 266, 4196. [Google Scholar] [CrossRef]
- Leino, M.; Äystö, J.; Enqvist, T.; Heikkinen, P.; Jokinen, A.; Nurmia, M.; Ostrowski, A.; Trzaska, W.H.; Uusitalo, J.; Eskola, K.; et al. Gas-filled recoil separator for studies of heavy elements. Nucl. Instrum. Methods Phys. Res. B 1995, 99, 653. [Google Scholar] [CrossRef]
- Kankainen, A.; Eronen, T.; Nesterenko, D.; de Roubin, A.; Vilén, M. Recent experiments at the JYFLTRAP Penning trap. Hyperfine Interact 2020, 241, 43. [Google Scholar] [CrossRef]
- Sullivan, C.; O’Connor, E.; Zegers, R.G.T.; Grubb, T.; Austin, S.M. The Sensitivity of Core-Collapse Supernovae to Nuclear Electron Capture. Astrophys. J. 2016, 44, 816. [Google Scholar] [CrossRef]
- Giraud, S.; Canete, L.; Bastin, B.; Kankainen, A.; Fantina, A.F.; Gulminelli, F.; Ascher, P.; Eronen, T.; Girard-Alcindor, V.; Jokinen, A.; et al. Mass measurements towards doubly magic 78Ni: Hydrodynamics versus nuclear mass contribution in core-collapse supernovae. Phys. Lett. B 2022, 833, 137309. [Google Scholar] [CrossRef]
- Mumpower, M.R.; Surman, R.; Fang, D.-L.; Beard, M.; Möller, P.; Kawano, T.; Aprahamian, A. Impact of individual nuclear masses on -process abundances. Phys. Rev. C 2015, 92, 035807. [Google Scholar] [CrossRef]
- Nesterenko, D.A.; Kankainen, A.; Canete, L.; Jokinen, A.; Moore, I.D.; Penttilä, H.; Rinta-Antila, S.; de Roubin, A.; Vilen, M. Phase-Imaging Ion-Cyclotron-Resonance technique at the JYFLTRAP double Penning trap mass spectrometer. Eur. Phys. J. A 2018, 54, 154. [Google Scholar] [CrossRef]
- Vilen, M.; Kelly, J.M.; Kankainen, A.; Brodeur, M.; Aprahamian, A.; Canete, L.; Eronen, T.; Jokinen, A.; Kuta, T.; Moore, I.D.; et al. Precision Mass Measurements on Neutron-Rich Rare-Earth Isotopes at JYFLTRAP: Reduced Neutron Pairing and Implications for -Process Calculations. Phys. Rev. Lett. 2018, 120, 262701. [Google Scholar] [CrossRef]
- Vilen, M.; Kelly, J.M.; Kankainen, A.; Brodeur, M.; Aprahamian, A.; Canete, L.; de Groote, R.P.; de Roubin, A.; Eronen, T.; Jokinen, A.; et al. Exploring the mass surface near the rare-earth abundance peak via precision mass measurements at JYFLTRAP. Phys. Rev. C 2020, 101, 034312. [Google Scholar] [CrossRef]
- Goriely, S. Nuclear properties for nuclear astrophysics studies. Eur. Phys. J. A 2023, 59, 16. [Google Scholar] [CrossRef]
- Huikari, J.; Dendooven, P.; Jokinen, A.; Nieminen, A.; Penttilä, H.; Peräjärvi, K.; Popov, A.; Rinta-Antila, S.; Äystö, J. Production of neutron deficient rare isotope beams at IGISOL; on-line and off-line studies. Nucl. Instrum. Methods Phys. Res. B 2004, 222, 632. [Google Scholar] [CrossRef]
- Vilén, M.; Kankainen, A.; Bączyk, P.; Canete, L.; Dobaczewski, J.; Eronen, T.; Geldhof, S.; Jokinen, A.; Konieczka, M.; Kostensalo, J.; et al. High-precision mass measurements and production of neutron-deficient isotopes using heavy-ion beams at IGISOL. Phys. Rev. C 2019, 100, 054333. [Google Scholar] [CrossRef]
- Penttilä, H.; Elomaa, V.-V.; Eronen, T.; Hakala, J.; Jokinen, A.; Kankainen, A.; Moore, I.D.; Rahaman, S.; Rinta-Antila, S.; Rissanen, J.; et al. Fission yield studies at the IGISOL facility. Eur. Phys. J. A 2012, 48, 43. [Google Scholar] [CrossRef]
- Rakopoulos, V.; Lantz, M.; Solders, A.; Al-Adili, A.; Mattera, A.; Canete, L.; Eronen, T.; Gorelov, D.; Jokinen, A.; Kankainen, A.; et al. First isomeric yield ratio measurements by direct ion counting and implications for the angular momentum of the primary fission fragments. Phys. Rev. C 2018, 98, 024612. [Google Scholar] [CrossRef]
- Pakarinen, J.; Ojala, J.; Ruotsalainen, P.; Tann, H.; Badran, H.; Calverley, T.; Hilton, J.; Grahn, T.; Greenlees, P.T.; Hytönen, M.; et al. The JUROGAM 3 spectrometer. Eur. Phys. J. A 2020, 56, 149. [Google Scholar] [CrossRef]
- Available online: http://gammapool.lnl.infn.it/ (accessed on 15 September 2023).
- Henderson, J.; Ruotsalainen, P.; Jenkins, D.G.; Scholey, C.; Auranen, K.; Davies, P.J.; Grahn, T.; Greenlees, P.T.; Henry, T.W.; Herzáň, A.; et al. Enhancing the sensitivity of recoil-beta tagging. J. Instrum. 2013, 8, 04025. [Google Scholar] [CrossRef]
- Pakarinen, J.; Papadakis, P.M.; Sorri, J.; Herzberg, R.-D.; Greenlees, P.T.; Butler, P.A.; Coleman-Smith, P.J.; Cox, D.M.; Cresswell, J.R.; Jones, P.; et al. The SAGE spectrometer. Eur. Phys. J. A 2014, 50, 53. [Google Scholar] [CrossRef]
- Taylor, M.J.; Cullen, D.M.; Smith, A.J.; McFarlane, A.; Twist, V.; Alharshan, G.A.; Procter, M.G.; Braunroth, T.; Dewald, A.; Ellinger, E.; et al. A new differentially pumped plunger device to measure excited-state lifetimes in proton emitting nuclei. Nucl. Instrum. Methods Phys. Res. A 2013, 707, 143. [Google Scholar] [CrossRef]
- Page, R.D.; Andreyev, A.N.; Appelbe, D.E.; Butler, P.A.; Freeman, S.J.; Greenlees, P.T.; Herzberg, R.-D.; Jenkins, D.G.; Jones, G.D.; Jones, P.; et al. The GREAT spectrometer. Nucl. Instrum. Methods Phys. Res. B 2003, 204, 634. [Google Scholar] [CrossRef]
- Hilton, J.; Uusitalo, J.; Saren, J.; Page, R.D.; Joss, D.T.; AlAqeel, M.A.M.; Badran, H.; Briscoe, A.D.; Calverley, T.; Cox, D.M.; et al. α-spectroscopy studies of the new nuclides 165Pt and 170Hg. Phys. Rev. C 2019, 100, 014305. [Google Scholar] [CrossRef]
- Briscoe, A. The Discovery of the Alpha Emitter 160Os, the Beta Emitter 156W and an Electromagnetic Decay Branch from the 25/2− Spin Gap Isomer in 155Lu. Ph.D. Thesis, University of London, London, UK, 2021. [Google Scholar]
- Auranen, K.; Siwach, P.; Arumugam, P.; Briscoe, A.D.; Ferreira, L.S.; Grahn, T.; Greenlees, P.T.; Herzáň, A.; Illana, A.; Joss, D.T.; et al. Probing triaxiality beyond the proton drip line: Spectroscopy of 147Tm. Phys. Rev. C 2023, 108, 011303. [Google Scholar] [CrossRef]
- Kokkonen, H.; Auranen, K.; Uusitalo, J.; Eeckhaudt, S.; Grahn, T.; Greenlees, P.T.; Jones, P.; Julin, R.; Juutinen, S.; Leino, M.; et al. Properties of the new α-decaying isotope 190At. Phys. Rev. C 2023, 107, 064312. [Google Scholar] [CrossRef]
- Zhang, W.; Cederwall, B.; Doncel, M.; Aktas, Ö.; Ertoprak, A.; Qi, C.; Grahn, T.; Nara Singh, B.S.; Cullen, D.M.; Hodge, D.; et al. Decay spectroscopy of 171,172Os and 171,172,174Ir. Phys. Rev. C 2023, 107, 014308. [Google Scholar] [CrossRef]
- Auranen, K.; Briscoe, A.D.; Ferreira, L.S.; Grahn, T.; Greenlees, P.T.; Herzáň, A.; Illana, A.; Joss, D.T.; Joukainen, H.; Julin, R.; et al. Nanosecond-Scale Proton Emission from Strongly Oblate-Deformed 149Lu. Phys. Rev. Lett. 2022, 128, 112501. [Google Scholar] [CrossRef] [PubMed]
- Parr, E.; Smith, J.F.; Greenlees, P.T.; Butler, P.A.; Auranen, K.; Chapman, R.; Cox, D.M.; Cullen, D.M.; Gaffney, L.P.; Grahn, T.; et al. Single-particle states and parity doublets in odd-Z 221Ac and 225Pa from α-decay spectroscopy. Phys. Rev. C 2022, 105, 034303. [Google Scholar] [CrossRef]
- Guadilla, V.; Algora, A.; Tain, J.L.; Agramunt, J.; Aysto, J.; Briz, J.A.; Cucoanes, A.; Eronen, T.; Estienne, M.; Fallot, M.; et al. Results of DTAS Campaign at IGISOL: Overview. Acta Phys. Pol. 2023, 4 (Suppl. S16), 31. [Google Scholar] [CrossRef]
- Available online: https://www.rubion.rub.de/en/ (accessed on 15 September 2023).
- Peoviti, M.; Patronis, N.; Axiotis, M.; Foteinou, V.; Rogalla, D.; Maragkos, F.; Harissopulos, S. First results from the 63Cu(α,γ)67Ga reaction study for nuclear astrophysics purposes. HNPS Adv. Nucl. Phys. 2023, 29, 27. [Google Scholar] [CrossRef]
- Available online: https://exp-astro.de/index.php?id=researchNeutron&lang=en (accessed on 15 September 2023).
- Available online: https://exp-astro.de/index.php?id=expFRANZ&lang=en (accessed on 15 September 2023).
- Available online: https://www.hzdr.de/db/Cms?pNid=306 (accessed on 15 September 2023).
- Iliadis, C. Nuclear Physics of Stars; Wiley-VCH Verlag: Weinheim, Germany, 2007. [Google Scholar]
- Diehl, R.; Hartmann, D.H.; Prantzos, N. Astronomy with Radioactivities; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Schmidt, K.; Akhmadaliev, S.; Anders, M.; Bemmerer, D.; Caciolli, A.; Dietz, M.; Elekes, Z.; Junghans, A.R.; Menzel, M.-L.; Schwengner, R.; et al. Strength of the Ep = 1.842 MeV resonance in the 40Ca(p,γ)41Sc reaction reexamined. Phys. Rev. C 2014, 89, 045802. [Google Scholar] [CrossRef]
- Cameron, J.A.; Singh, B. Evaluation and compilation of nuclear structure and decay data for the U.S. Nuclear Data Program. Nucl. Data Sheets 2001, 94, 429. [Google Scholar] [CrossRef]
- Endt, P.M. Energy levels of A = 21–44 nuclei (VII). Nucl. Phys. A 1990, 521, 1. [Google Scholar] [CrossRef]
- Reinhardt, T.P.; Akhmadaliev, S.; Bemmerer, D.; Stöckel, K.; Wagner, L. Absolute hydrogen depth profiling using the resonant 1H(15N,αγ)12C nuclear reaction. Nucl. Instrum. Methods Phys. Res. B 2016, 381, 58. [Google Scholar] [CrossRef]
- Wilde, M.; Fukutani, K. Models in Catalysis. Surf. Sci. Rep. 2014, 69, 196. [Google Scholar] [CrossRef]
- Wang, Y.; Nastasi, M. (Eds.) Handbook of Modern Ion Beam Materials Analysis, 2nd ed.; Materials Research Society: Warendale, PA, USA, 2009. [Google Scholar]
- Wiescher, M.; Görres, J.; Uberseder, E.; Imbriani, G.; Pignatari, M. The cold and hot CNO cycles. Annu. Rev. Nucl. Part. Sci. 2010, 60, 381. [Google Scholar] [CrossRef]
- Wagner, L.; Akhmadaliev, S.; Anders, M.; Bemmerer, D.; Caciolli, A.; Gohl, S.; Grieger, M.; Junghans, A.; Marta, M.; Munnik, F.; et al. Astrophysical S factor of the 14N(p,γ)15O reaction at 0.4–1.3 MeV. Phys. Rev. C 2018, 97, 015801. [Google Scholar] [CrossRef]
- Available online: https://www.chetec-infra.eu/ta/tna-labs/felsenkeller/ (accessed on 15 September 2023).
- Szücs, T.; Bemmerer, D.; Degering, D.; Domula, A.; Grieger, M.; Ludwig, F.; Schmidt, K.; Steckling, J.; Turkat, S.; Zuber, K. Background in γ-ray detectors and carbon beam tests in the Felsenkeller shallow-underground accelerator laboratory. Eur. Phys. J. A 2019, 55, 174. [Google Scholar] [CrossRef]
- Aliotta, M.; Boeltzig, A.; Depalo, R.; Gyürky, G. Exploring Stars in Underground Laboratories: Challenges and Solutions. Annu. Rev. Nucl. Part. Sci. 2022, 72, 177. [Google Scholar] [CrossRef]
- Vajda, I.; Fülöp, Z.; Biri, S. The Atomki accelerator center. AIP Conf. Proc. 2017, 1852, 060002. [Google Scholar]
- Kiss, G.G.; Mohr, P.; Fülöp, Z.; Gyürky, G.; Elekes, Z.; Farkas, J.; Somorjai, E.; Galaviz, D.; Güray, R.T.; Özkan, N.; et al. Investigating the variation of elastic alpha scattering cross sections in the A ≈ 100 region. J. Phys. Conf. Ser. 2012, 337, 012029. [Google Scholar] [CrossRef]
- Halász, Z.; Somorjai, E.; Gyürky, G.; Elekes, Z.; Fülöp, Z.; Szücs, T.; Kiss, G.G.; Szegedi, N.T.; Rauscher, T.; Görres, J.; et al. Experimental study of the astrophysical γ-process reaction 124Xe(α,γ)128Ba. Phys. Rev. C 2016, 94, 045801. [Google Scholar] [CrossRef]
- Kiss, G.G.; Mohr, P.; Fülöp, Z.; Rauscher, T.; Gyürky, G.; Szücs, T.; Halász, Z.; Somorjai, E.; Ornelas, A.; Yalçın, C.; et al. High precision 113In(α,α)113In elastic scattering at energies near the Coulomb barrier for the astrophysical γ process. Phys. Rev. C 2013, 88, 045804. [Google Scholar] [CrossRef]
- Szücs, T.; Mohr, P.; Gyürky, G.; Halász, Z.; Huszánk, R.; Kiss, G.G.; Szegedi, T.N.; Török, Z.; Fülöp, Z. Cross section of α-induced reactions on 197Au at sub-Coulomb energies. Phys. Rev. C 2019, 100, 065803. [Google Scholar] [CrossRef]
- Szegedi, T.N.; Kiss, G.G.; Gyürky, G.; Mohr, P. Activation cross section measurement of the 100Mo(α,n)103Ru reaction for optical potential studies. J. Phys. Conf. Ser. 2020, 1668, 012041. [Google Scholar] [CrossRef]
- Gyürky, G.; Mohr, P.; Angyal, A.; Halász, Z.; Kiss, G.G.; Mátyus, Z.; Szegedi, T.N.; Szücs, T.; Fülöp, Z. Cross section measurement of the 144Sm(α,n)147Gd reaction for studying the α-nucleus optical potential at astrophysical energies. Phys. Rev. C 2023, 107, 025803. [Google Scholar] [CrossRef]
- Bordeanu, C.; Gyürky, G.; Halász, Z.; Szücs, T.; Kiss, G.G.; Elekes, Z.; Farkas, J.; Fülöp, Z.; Somorjai, E. Activation measurement of the 3He(α,γ)7Be reaction cross section at high energies. Nucl. Phys. A 2013, 908, 1. [Google Scholar] [CrossRef]
- Gyürky, G.; Halász, Z.; Kiss, G.G.; Szücs, T.; Huszánk, R.; Török, Z.; Fülöp, Z.; Rauscher, T.; Travaglio, C. Measurement of the 91Zr(p,γ)92mNb cross section motivated by type Ia supernova nucleosynthesis. J. Phys. G Nucl. Part. Phys. 2021, 48, 105202. [Google Scholar] [CrossRef]
- Gyürky, G.; Csedreki, L.; Szücs, T.; Kiss, G.G.; Halász, Z.; Fülöp, Z. Cross section measurement of the 12C(p,γ)13N reaction with activation in a wide energy range. Eur. Phys. J. A 2023, 59, 59. [Google Scholar] [CrossRef]
- Gyürky, G.; Halász, Z.; Kiss, G.G.; Szücs, T.; Fülöp, Z. Activation cross section measurement of the 14N(p,γ)15O astrophysical key reaction. Phys. Rev. C 2022, 105, 022801. [Google Scholar] [CrossRef]
- Krasznahorkay, A.J.; Csatlós, M.; Csige, L.; Gácsi, Z.; Gulyás, J.; Hunyadi, M.; Kuti, I.; Nyakó, B.M.; Stuhl, L.; Timár, J.; et al. Observation of Anomalous Internal Pair Creation in 8Be: A Possible Indication of a Light, Neutral Boson. Phys. Rev. Lett. 2016, 116, 042501. [Google Scholar] [CrossRef]
- Firak, D.S.; Krasznahorkay, A.J.; Csatlós, M.; Csige, L.; Gulyás, J.; Koszta, M.; Szihalmi, B.; Timár, J.; Nagy, Á.; Sas, N.J.; et al. Confirmation of the existence of the X17 particle. EPJ Web Conf. 2020, 232, 04005. [Google Scholar] [CrossRef]
- Krasznahorkay, A.J.; Csatlós, M.; Csige, L.; Gulyás, J.; Krasznahorkay, A.; Nyakó, B.M.; Rajta, I.; Timár, J.; Vajda, I.; Sas, N.J. New anomaly observed in 4He supports the existence of the hypothetical X17 particle. Phys. Rev. C 2021, 104, 044003. [Google Scholar] [CrossRef]
- Krasznahorkay, A.J.; Krasznahorkay, A.; Begala, M.; Csatlós, M.; Csige, L.; Gulyás, J.; Krakó, A.; Timár, J.; Rajta, I.; Vajda, I.; et al. New anomaly observed in 12C supports the existence and the vector character of the hypothetical X17 boson. Phys. Rev. C 2022, 106, 061601. [Google Scholar] [CrossRef]
- Bastin, B.; Kiener, J.; Deloncle, I.; Coc, A.; Pospelov, M.; Mrazek, J.; Lamia, L.; Ackermann, D.; Adsley, P.; Bacri, C.-O.; et al. Investigation of a light Dark Boson existence: The New JEDI project. EPJ Web Conf. 2023, 275, 01012. [Google Scholar] [CrossRef]
- Macková, A.; Malinský, P.; Cutroneo, M.; Havránek, V.; Voseček, V.; Flaks, J.; Semián, V.; Vonka, L.; Zach, V.; Bém, P.; et al. Small accelerators and their applications in the CANAM research infrastructure at the NPI CAS. Eur. Phys. J. Plus 2021, 136, 558. [Google Scholar] [CrossRef]
- Tumino, A.; Spartà, R.; Spitaleri, C.; Mukhamedzhanov, A.M.; Typel, S.; Pizzone, R.G.; Tognelli, E.; Degl’Innocenti, S.; Burjan, V.; Kroha, V. New determination of the 2H(d, p)3H and 2H(d,n)3He reaction rates at astrophysical energies. Astrophys. J. 2014, 785, 96. [Google Scholar] [CrossRef]
- Burjan, V.; Hons, Z.; Kroha, V.; Mrázek, J.; Piskoř, Š.; Mukhamedzhanov, A.M.; Trache, L.; Tribble, R.E.; La Cognata, M.; Lamia, L.; et al. The determination of the astrophysical S-factor of the direct 18O(p,γ)19F capture by the ANC method. Eur. Phys. J. A 2019, 55, 114. [Google Scholar] [CrossRef]
- D’Agata, G.; Kilic, A.I.; Burjan, V.; Mrazek, J.; Glagolev, V.; Kroha, V.; Guardo, G.L.; La Cognata, M.; Lamia, L.; Palmerini, S.; et al. 26Si(p,γ)27P direct proton capture by means of the asymptotic normalization coefficients method for mirror nuclei. Phys. Rev. C 2021, 103, 015806. [Google Scholar] [CrossRef]
- Available online: https://ccb.ifj.edu.pl/en.home.html (accessed on 15 September 2023).
- Ciepał, I.; Kuboś, J.; Bodek, K.; Kalantar-Nayestanaki, N.; Khatri, G.; Kistryn, S.; Kłos, B.; Kozela, A.; Kulessa, P.; Łobejko, A.; et al. Investigation of the cross section for dd elastic scattering and dd → n3He reactions at 160 MeV. Phys. Rev. C 2019, 99, 014620. [Google Scholar] [CrossRef]
- Maj, A.; Gaardhøje, J.J.; Ataç, A.; Mitarai, S.; Nyberg, J.; Virtanen, A.; Bracco, A.; Camera, F.; Million, B.; Pignanelli, M. Angular distribution of photons from the delay of the GDR in hot and rotating light Yb nuclei from exclusive experiments. Nucl. Phys. A 1994, 571, 185. [Google Scholar] [CrossRef]
- Łukasik, J.; Pawłowski, P.; Budzanowski, A.; Czech, B.; Skwirczyńska, I.; Brzychczyk, J.; Adamczyk, M.; Kupny, S.; Lasko, P.; Sosin, Z.; et al. KRATTA, a versatile triple telescope array for charged reaction products. Nucl. Instrum. Methods Phys. Res. A 2013, 709, 120. [Google Scholar] [CrossRef]
- Maj, A.; Rusek, K.; Bednarczyk, P.; Dudek, J.; Fornal, B.; Kicińska-Habior, M.; Kistryn, S.; Lewitowicz, M.; Matulewicz, T.; Nazarewicz, W.; et al. White Book on the Future of Low-Energy Nuclear Physics in Poland and the Development of the National Research Infrastructure. 2020. Available online: http://rifj.ifj.edu.pl/handle/item/323 (accessed on 15 September 2023).
- Gómez-Camacho, J.; García López, J.; Guerrero, C.; López Gutiérrez, J.M.; García-Tenorio, R.; Santos-Arévalo, F.J.; Chamizo, E.; Ferrer, F.J.; Jiménez-Ramos, M.C.; Balcerzyk, M.; et al. Research facilities and highlights at the Centro Nacional de Aceleradores (CNA). Eur. Phys. J. Plus 2021, 136, 273. [Google Scholar] [CrossRef]
- Garzón-Camacho, A.; Fernández, B.; Alvarez, M.A.G.; Ceballos, J.; de la Rosa, J.M. A fast readout electronic system for accurate spatial detection in ion beam tracking for the next generation of particle accelerators. IEEE Trans. Instrum. Meas. 2015, 64, 318. [Google Scholar] [CrossRef]
- Available online: https://cna.us.es/index.php/en/facilities/financed-feder-funds/equipments/78-neutron-line (accessed on 15 September 2023).
- Alves, E.; Lorenz, K.; Catarino, N.; Peres, M.; Dias, M.; Mateus, R.; Alves, L.C.; Corregidor, V.; Barradas, N.P.; Fonseca, M.; et al. An insider view of the Portuguese ion beam laboratory. Eur. Phys. J. Plus 2021, 136, 684. [Google Scholar] [CrossRef]
- Bucurescu, D.; Căta-Danil, I.; Ciocan, G.; Costache, C.; Deleanu, D.; Dima, R.; Filipescu, D.; Florea, N.; Ghiţă, D.G.; Glodariu, T.; et al. The ROSPHERE γ-ray spectroscopy array. Nucl. Instrum. Methods Phys. Res. A 2016, 837, 1. [Google Scholar] [CrossRef]
- Available online: https://www.nipne.ro/ (accessed on 15 September 2023).
- Mason, P.J.R.; Alharbi, T.; Regan, P.H.; Mărginean, N.; Podolyàk, Z.; Simpson, E.C.; Alkhomashi, N.; Bender, P.C.; Bowry, M.; Bostan, M.; et al. Half-life of the Iπ = 4− intruder state in 34P: M2 transition strengths approaching the island of inversion. Phys. Rev. C 2012, 85, 064303. [Google Scholar] [CrossRef]
- Alharbi, T.; Mason, P.J.R.; Regan, P.H.; Podolyák, Z.; Mărginean, N.; Nakhostin, M.; Bowry, M.; Bucurescu, D.; Căta-Danil, G.; Căta-Danil, I.; et al. Gamma-ray fast-timing coincidence measurements from the 18O + 18O fusion–evaporation reaction using a mixed LaBr3-HPGe array. Appl. Radiat. Isot. 2012, 70, 1337. [Google Scholar] [CrossRef] [PubMed]
- Niţă, C.R.; Bucurescu, D.; Mărginean, N.; Avrigeanu, M.; Bocchi, G.; Bottoni, S.; Bracco, A.; Bruce, A.M.; Căta-Danil, G.; Coló, G.; et al. Fast-timing lifetime measurements of excited states in 67Cu. Phys. Rev. C 2014, 89, 064314. [Google Scholar] [CrossRef]
- Bocchi, G.; Leoni, S.; Bottoni, S.; Benzoni, G.; Bracco, A.; Bortignon, P.F.; Colò, G.; Belvito, B.; Niţă, C.R.; Marginean, N.; et al. Probing particle-phonon-coupled states in the neutron-rich nucleus 65Cu by lifetime measurements with fast-timing techniques. Phys. Rev. C 2014, 89, 054302. [Google Scholar] [CrossRef]
- Alharbi, T.; Regan, P.H.; Mărginean, N.; Podolyák, Z.; Roberts, O.J.; Bruce, A.M.; Alkhomashi, N.; Britton, R.; Bucurescu, D.; Deleanu, D.; et al. Lifetime of the yrast Iπ = 5− state and E1 hindrance in the transitional nucleus 136Ce. Phys. Rev. C 2015, 91, 027302. [Google Scholar] [CrossRef]
- Deleanu, D.; Balabanski, D.L.; Venkova, T.; Bucurescu, D.; Mărginean, N.; Ganioğlu, E.; Căta-Danil, G.; Atanasova, L.; Căta-Danil, I.; Detistov, P.; et al. Excited states in 129I. Phys. Rev. C 2013, 87, 014329. [Google Scholar] [CrossRef]
- Mason, P.J.R.; Podolyák, Z.; Mărginean, N.; Regan, P.H.; Stevenson, P.D.; Werner, V.; Alexander, T.; Algora, A.; Alharbi, T.; Bowry, M.; et al. Half-life of the yrast 2+ state in 188W: Evolution of deformation and collectivity in neutron-rich tungsten isotopes. Phys. Rev. C 2013, 88, 044301. [Google Scholar] [CrossRef]
- Thibault, C.; Klapisch, R.; Rigaud, C.; Poskanzer, A.M.; Prieels, R.; Lessard, L.; Reisdorf, W. Direct measurement of the masses of 11Li and 26−32Na with an on-line mass spectrometer. Phys. Rev. C 1975, 12, 644. [Google Scholar] [CrossRef]
- Wildenthal, B.H.; Chung, W. Collapse of the conventional shell-model ordering in the very-neutron-rich isotopes of Na and Mg. Phys. Rev. C 1980, 22, 2260. [Google Scholar] [CrossRef]
- Warburton, E.K.; Becker, J.A.; Brown, B.A. Mass systematics for A = 29–44 nuclei: The deformed A∼32 region. Phys. Rev. C 1990, 41, 1447. [Google Scholar] [CrossRef] [PubMed]
- Orr, N.A.; Mittig, W.; Fifield, L.K.; Lewitowicz, M.; Plagnol, E.; Schutz, Y.; Wen Long, Z.; Bianchi, L.; Gillibert, A.; Belozyorov, A.V.; et al. New mass measurements of neutron-rich nuclei near N = 20. Phys. Lett. B 1991, 258, 29. [Google Scholar] [CrossRef]
- Recchia, F.; Lenzi, S.M.; Lunardi, S.; Farnea, E.; Gadea, A.; Mărginean, N.; Napoli, D.R.; Nowacki, F.; Poves, A.; Valiente-Dobón, J.J.; et al. Spectroscopy of odd-mass cobalt isotopes toward the N = 40 subshell closure and shell-model description of spherical and deformed states. Phys. Rev. C 2012, 85, 064305. [Google Scholar] [CrossRef]
- Oros-Peusquens, A.M.; Mantica, P.F. Particle-core coupling around 68Ni: A study of the subshell closure at N = 40. Nucl. Phys. A 2000, 669, 81. [Google Scholar] [CrossRef]
- Leoni, S.; Fornal, B.; Mărginean, N.; Sferrazza, M.; Tsunoda, Y.; Otsuka, T.; Bocchi, G.; Crespi, F.C.L.; Bracco, A.; Aydin, S.; et al. Multifaceted Quadruplet of Low-Lying Spin-Zero States in 66Ni: Emergence of Shape Isomerism in Light Nuclei. Phys. Rev. Lett. 2017, 118, 162502. [Google Scholar] [CrossRef]
- Margineanu, R.; Simion, C.; Bercea, S.; Duliu, O.G.; Gheorghiu, D.; Stochioiu, A.; Matei, M. The Slanic-Prahova (ROMANIA) underground low-background radiation laboratory. Appl. Radiat. Isot. 2008, 66, 1501. [Google Scholar] [CrossRef]
- Trache, L. Nuclear astrophysics studies at NIPNE. EPJ Web Conf. 2020, 227, 01016. [Google Scholar] [CrossRef]
- Tudor, D.; Chilug, A.I.; Stefanescu, I.C.; Spiridon, A.; Straticiuc, M.; Burducea, I.; Trache, L.; Margineanu, R. Experimental study of the α+ 64Zn reaction in the Gamow region. AIP Conf. Proc. 2019, 2076, 060010. [Google Scholar]
- Zhang, N.T.; Wang, X.Y.; Tudor, D.; Bucher, B.; Burducea, I.; Chen, H.; Chen, Z.J.; Chesneanu, D.; Chilug, A.I.; Gasques, L.R.; et al. Corrigendum to “Constraining the 12C+ 12C astrophysical S-factors with the 12C+ 13C measurements at very low energies”. Phys. Lett. B 2020, 803, 135278. [Google Scholar] [CrossRef]
- Zhang, N.T.; Wang, X.Y.; Tudor, D.; Bucher, B.; Burducea, I.; Chen, H.; Chen, Z.J.; Chesneanu, D.; Chilug, A.I.; Gasques, L.R.; et al. Constraining the 12C+ 12C astrophysical S-factors with the 12C+13C measurements at very low energies. Phys. Lett. B 2020, 801, 135170. [Google Scholar] [CrossRef]
- Mossa, V.; Stöckel, K.; Cavanna, F.; Ferraro, F.; Aliotta, M.; Barile, F.; Bemmerer, D.; Best, A.; Boeltzig, A.; Broggini, C.; et al. The baryon density of the Universe from an improved rate of deuterium burning. Nature 2020, 587, 210. [Google Scholar] [CrossRef] [PubMed]
- Misiaszek, M.; Pelczar, K.; Wójcik, M.; Zuzel, G.; Laubenstein, M. Optimization of low-background alpha spectrometers for analysis of thick samples. Appl. Radiat. Isot. 2013, 81, 146. [Google Scholar] [CrossRef] [PubMed]
- Bruno, C.G.; Scott, D.A.; Aliotta, M.; Formicola, A.; Best, A.; Boeltzig, A.; Bemmerer, D.; Broggini, C.; Caciolli, A.; Cavanna, F.; et al. Improved Direct Measurement of the 64.5 keV Resonance Strength in the 17O(p,α)14N Reaction at LUNA. Phys. Rev. Lett. 2016, 117, 142502. [Google Scholar] [CrossRef] [PubMed]
- Bruno, C.G.; Aliotta, M.; Descouvemont, P.; Best, A.; Davinson, T.; Bemmerer, D.; Boeltzig, A.; Broggini, C.; Caciolli, A.; Cavanna, F.; et al. Improved astrophysical rate for the 18O(p,α)15N reaction by underground measurements. Phys. Lett. B 2019, 790, 237–242. [Google Scholar] [CrossRef]
- Bruno, C.G.; Scott, D.A.; Formicola, A.; Aliotta, M.; Davinson, T.; Anders, M.; Best, A.; Bemmerer, D.; Broggini, C.; Caciolli, A.; et al. Resonance strengths in the 17,18O(p,α)14,15N reactions and background suppression underground. Eur. Phys. J. A 2015, 51, 94. [Google Scholar] [CrossRef]
- Csedreki, L.; Ciani, G.F.; Balibrea-Correa, J.; Best, A.; Aliotta, M.; Barile, F.; Bemmerer, D.; Boeltzig, A.; Broggini, C.; Bruno, C.G.; et al. Characterization of the LUNA neutron detector array for the measurement of the 13C(α, n)16O reaction. Nucl. Instrum. Methods Phys. Res. A 2021, 994, 165081. [Google Scholar] [CrossRef]
- Ciani, G.F.; Csedreki, L.; Rapagnani, D.; Aliotta, M.; Balibrea-Correa, J.; Barile, F.; Bemmerer, D.; Best, A.; Boeltzig, A.; Broggini, C.; et al. Direct Measurement of the 13C(α,n)16O Cross Section into the s-Process Gamow Peak. Phys. Rev. Lett. 2021, 127, 152701. [Google Scholar] [CrossRef]
- Scott, D.A.; Caciolli, A.; Di Leva, A.; Formicola, A.; Aliotta, M.; Anders, M.; Bemmerer, D.; Broggini, C.; Campeggio, M.; Corvisiero, P.; et al. First Direct Measurement of the 17O(p,γ)18F Reaction Cross Section at Gamow Energies for Classical Novae. Phys. Rev. Lett. 2012, 109, 202501. [Google Scholar] [CrossRef] [PubMed]
- Di Leva, A.; Scott, D.A.; Caciolli, A.; Formicola, A.; Strieder, F.; Aliotta, M.; Anders, M.; Bemmerer, D.; Broggini, C.; Corvisiero, P.; et al. Underground study of the 17O(p,γ)18F reaction relevant for explosive hydrogen burning. Phys. Rev. C 2014, 89, 015803. [Google Scholar] [CrossRef]
- Redondo-Cubero, A.; Borge, M.J.G.; Gordillo, N.; Gutiérrez, P.C.; Olivares, J.; Pérez Casero, R.; Ynsa, M.D. Current status and future developments of the ion beam facility at the centre of micro-analysis of materials in Madrid. Eur. Phys. J. Plus 2021, 136, 175. [Google Scholar] [CrossRef]
- Fraile, L.M.; Äystö, J. The ISOLDE Silicon Ball. Nucl. Instrum. Methods Phys. Res. A 2003, 513, 287. [Google Scholar] [CrossRef]
- Carmona-Gallardo, M.; Nara Singh, B.S.; Borge, M.J.G.; Briz, J.A.; Cubero, M.; Fulton, B.R.; Fynbo, H.; Gordillo, N.; Hass, M.; Haquin, G.; et al. New measurement of the 3He(α,γ)7Be cross section at medium energies. Phys. Rev. C 2012, 86, 032801. [Google Scholar] [CrossRef]
- Alcorta, M.; Borge, M.J.G.; Cubero, M.; Diget, C.A.; Domínguez-Reyes, R.; Fraile, L.M.; Fulton, B.R.; Fynbo, H.O.U.; Galaviz, D.; Hyldegaard, S.; et al. Properties of 12C resonances determined from the 10B(3He,pααα) and 11B(3He,dααα) reactions studied in complete kinematics. Phys. Rev. C 2012, 86, 064306. [Google Scholar] [CrossRef]
- Harissopulos, S.; Andrianis, M.; Axiotis, M.; Lagoyannis, A.; Karydas, A.G.; Kotsina, Z.; Laoutaris, A.; Apostolopoulos, G.; Theodorou, A.; Zouros, T.J.M.; et al. The Tandem Accelerator Laboratory of NCSR “Demokritos”: Current status and perspectives. Eur. Phys. J. Plus 2021, 136, 617. [Google Scholar] [CrossRef]
- Harissopulos, S. Cross-section measurements of capture reactions relevant to p-process nucleosynthesis. Eur. Phys. J. Plus 2018, 133, 332. [Google Scholar] [CrossRef]
- Foteinou, V.; Axiotis, M.; Harissopulos, S.; Dimitriou, P.; Provatas, G.; Lagoyannis, A.; Becker, H.-W.; Rogalla, D.; Zilges, A.; Schreckling, A.; et al. Cross section measurements of proton capture reactions on Mo isotopes relevant to the astrophysical p process. Eur. Phys. J. A 2019, 55, 67. [Google Scholar] [CrossRef]
- Medina, N.H. In-beam γ-ray spectroscopy with GASP. APH N.S. Heavy Ion Phys. 1995, 2, 141. [Google Scholar] [CrossRef]
- Harissopulos, S.; Becker, H.W.; Hammer, J.W.; Lagoyannis, A.; Rolfs, C.; Strieder, F. Cross section of the 13C(α,n)16O reaction: A background for the measurement of geo-neutrinos. Phys. Rev. C 2005, 72, 062801. [Google Scholar] [CrossRef]
- Harissopulos, S.; Spyrou, A.; Lagoyannis, A.; Axiotis, M.; Demetriou, P.; Hammer, J.W.; Kunz, R.; Becker, H.-W. Cross section measurements of proton capture reactions relevant to the p process: The case of 89Y(p,γ)90Zr and 121,123Sb(p,γ)122,124Te. Phys. Rev. C 2013, 87, 025806. [Google Scholar] [CrossRef]
- Vlastoua, R.; Kalamara, A.; Serris, M.; Diakaki, M.; Kokkoris, M.; Paneta, V.; Axiotis, M.; Lagoyannis, A. Neutron Induced Reactions with the 17 Mev Facility at the Athens Tandem Accelerator NCSR ‘Demokritos’. Phys. Proc. 2015, 66, 425. [Google Scholar] [CrossRef]
- Kalamara, A.; Patronis, N.; Vlastou, R.; Kokkoris, M.; Chasapoglou, S.; Stamatopoulos, A.; Serris, M.; Paneta, V.; Axiotis, M.; Lagoyannis, A.; et al. Determination of the 193Ir(n,2n) reaction cross section and correction methodology for the 191Ir(n γ) contamination. Eur. Phys. J. A 2019, 55, 187. [Google Scholar] [CrossRef]
- Lagoyannis, A.; Preketes-Sigalas, K.; Axiotis, M.; Foteinou, V.; Harissopulos, S.; Kokkoris, M.; Misaelides, P.; Paneta, V.; Patronis, N. Study of the 10B(p,αγ)7Be and 10B(p,p’γ)10B reactions for PIGE purposes. Adv. Nucl. Phys. 2019, 22, 40. [Google Scholar] [CrossRef]
- Preketes-Sigalas, K.; Lagoyannis, A.; Axiotis, M.; Harissopulos, S.; Kokkoris, M.; Mertzimekis, T.J.; Paneta, V.; Provatas, G. Study of the 11B(p,p´γ) 11B reaction for PIGE applications. Nucl. Instrum. Methods Phys. Res. B 2016, 368, 71. [Google Scholar] [CrossRef]
- Vesić, J. Nuclear Physics at the Jožef Stefan Institute. Nucl. Phys. News 2022, 32, 6. [Google Scholar] [CrossRef]
- Raiola, F.; Gang, L.; Bonomo, C.; Gyürky, G.; Aliotta, M.; Becker, H.W.; Bonetti, R.; Broggini, C.; Corvisiero, P.; D’Onofrio, A.; et al. Enhanced electron screening in d(d,p)t for deuterated metals. Eur. Phys. J. A 2004, 19, 283. [Google Scholar] [CrossRef]
- Lipoglavšek, M.; Markelj, S.; Mihovilovič, M.; Petrovič, T.; Štajner, S.; Vencelj, M.; Vesić, J. Observation of electron emission in the nuclear reaction between protons and deuterons. Phys. Lett. B 2017, 773, 553. [Google Scholar] [CrossRef]
- Available online: https://www.matfis.unicampania.it/dipartimento/strutture-del-dipartimento/laboratori/circe-laboratory (accessed on 15 September 2023).
- Buompane, R.; Porzio, G.; Santonastaso, C. Recoil mass separators for nuclear astrophysics: The role of ERNA. EPJ Web Conf. 2023, 275, 01004. [Google Scholar] [CrossRef]
- Schürmann, D.; Di Leva, A.; Gialanella, L.; Rogalla, D.; Strieder, F.; De Cesare, N.; D’Onofrio, A.; Imbriani, G.; Kunz, R.; Lubritto, C.; et al. First direct measurement of the total cross-section of 12C(α,γ)16O. Eur. Phys. J. A 2005, 26, 301. [Google Scholar] [CrossRef]
- Di Leva, A.; De Cesare, M.; Schürmann, D.; De Cesare, N.; D’Onofrio, A.; Gialanella, L.; Kunz, R.; Imbriani, G.; Ordine, A.; Roca, V.; et al. Recoil separator ERNA: Measurement of 3He(α,γ)7Be. Nucl. Instrum. Methods Phys. Res. A 2008, 595, 381. [Google Scholar] [CrossRef]
- Di Leva, A.; Imbriani, G.; Buompane, R.; Gialanella, L.; Best, A.; Cristallo, S.; De Cesare, M.; D’Onofrio, A.; Duarte, J.G.; Gasques, L.R.; et al. Measurement of 1323 and 1487 keV resonances in 15N(α,γ)19F with the recoil separator ERNA. Phys. Rev. C 2017, 95, 045803. [Google Scholar] [CrossRef]
- Buompane, R.; Di Leva, A.; Gialanella, L.; D’Onofrio, A.; De Cesare, M.; Duarte, J.G.; Fülöp, Z.; Gasques, L.R.; Gyürky, G.; Morales-Gallegos, L.; et al. Determination of the 7Be(p,γ)8B cross section at astrophysical energies using a radioactive 7Be ion beam. Phys. Lett. B 2022, 824, 136819. [Google Scholar] [CrossRef]
- Romoli, M.; Morales-Gallegos, L.; Aliotta, M.; Bruno, C.G.; Buompane, R.; D’Onofrio, A.; Davinson, T.; De Cesare, M.; Di Leva, A.; Di Meo, P.; et al. Development of a two-stage detection array for low-energy light charged particles in nuclear astrophysics applications. Eur. Phys. J. A 2018, 54, 142. [Google Scholar] [CrossRef]
Facility | Country | Accelerators Available | Beams |
---|---|---|---|
Cologne Accelerator Laboratory | Germany | 10 MV FN-Tandem | Beams up to 120 MeV (Z up to 30) |
6 MV Tandetron | AMS * | ||
Heavy Ion Laboratory | Poland | Isochronous heavy ion cyclotron (Kmax = 160) | He-Xe |
IJC Lab | 15 MV Tandem (ALTO) | Proton to aggregates | |
France | 50 MV electron accelerator (ALTO) | e- | |
4 MeV NEC pelletron accelerator (ANDROMEDE) | p-Au, He, Ne, Ar, Kr, Xe | ||
Licorne neutron source | n | ||
Rudjer Bošković Institute Accelerator Facility | Croatia | 6.0 MV EN Tandem | p to Au |
1 MV Tandetron | p to Au | ||
Tandetron laboratory in Piešt’any | Slovakia | 2 MV Tandetron | p, d, α |
The Oslo Cyclotron Laboratory | Norway | MC-35 Cyclotron | 1H (max 35 MeV), 2H (max 18 MeV), 3He (max 47 MeV), and 4He (max 35 MeV) |
S-DALINAC | Germany | Superconducting electron accelerator | e- |
The INFN Laboratori Nazionali del Sud | 13 MV TANDEM—HVEC MP | p to Au | |
Italy | Superconducting Cyclotron K800 | H to U, also exotic beams, see Section 2.8 | |
1.7 MV Pelletron | ** Used mostly for material research | ||
The Jyväskylä Accelerator Laboratory | Finland | K130 isochronous cyclotron | Range of heavy and light ions up to energy of 130·Q2/A MeV |
MCC30/15 | p,d | ||
RUBION | Germany | 4 MV Dynamitron Tandem 100 and 500 keV accelerators, 60 keV implanter | p to Fe ** Mainly used for material science research |
Frankfurt Van de Graaff accelerator | Germany | Van de Graaff | p, α, n (for n, see Section 2.11.) |
2 MV Van de Graaff | p, He | ||
IBC, HZDR | Germany | 3 MV Tandetron | p to Au |
6 MV Tandetron 500 kV Ion Implanter 40 kV Ion Implanter | p to Au ** Primarily used for solid-state physics and applications | ||
Felsenkeller underground accelerator laboratory, HZDR | Germany | 5 MV Pelletron accelerator | p, α, 12C |
The Atomki Accelerator Center | MGC-20E Cyclotron | p, d, 3He2+, and 4He2+ | |
Hungary | 1 MV Van de Graaff | p, d, He | |
5 MV Van de Graaff 2 MV Tandetron ECR ion source 200 kV AMS | Inactive p, He, and heavier ion ** Used for atomic and plasma phys. AMS * | ||
2 MV Tandetron | p, He, B, C, O, S, Si, Cu, etc. | ||
TR-24 cyclotron | p | ||
CANAM RI | Czech R. | U-120 M cyclotron | H+, H−, D+, D−, 3He2+, 4He2+ H+, D+, 3He2+, 4He2+, as well as generated secondary fast neutrons |
MT25 microtron | e- | ||
3 MV Tandetron | Wide range of ions up to Au | ||
Bronowice Cyclotron Center | Poland | Proteus C-235 cyclotron | p |
18/9 MeV cyclotron | p, d | ||
CNA, Seville | Spain | 3 MV Van de Graaff Tandem | Almost all types of stable ions |
1 MV Tandetron | AMS * | ||
HiSPANoS neutron source | n | ||
LATR, Lisbon | 2.5 MV Van de Graaff | H, 3He, 4He, and heavier ions | |
Portugal | 3 MV Tandem 210 kV Ion Implanter | H, 3He, 4He, and heavier ions ** Primarily used for material research | |
IFIN-HH | 9 MV FN Pelletron Tandem | p to Au | |
Romania | 3 MV HVEE Tandetron | p to Au | |
1 MV HVEE Tandetron | AMS * | ||
400 kV HVEE electrostatic accelerator | H+, He+ | ||
LUNA | Italy | 3.5 MV Cockroft-Walton accelerator | p, α, 12C |
CMAM, Madrid | Spain | 5 MV HVEE Pelletron Tandem | p to Au |
5.5 MV Van de Graaff Tandem | n (see Section 2.22.), stable beams | ||
TAL, Demokritos | Greece | 250 keV single-stage accelerator (PAPAP) | p, d |
17 MeV Scanditronix Cyclotron | p, d | ||
2.5 MV Tandetron | AMS * | ||
MIC, JSI | Slovenia | 2 MV Tandetron | H, 3He, 4He, and heavier ions |
VERA | Austria | 3 MV Pelletron | AMS * |
The Surrey Ion Beam Centre | England | 2 MV Tandetron | ** Primarily used for IBA |
The Dalton Cumbrian Facility | England | 5 MV Tandem 2.5 MV Pelletron | ** Primarily used for IBA, nuclear chemistry, and ion irradiation damage studies |
The Tandem Laboratory, Uppsala University | Sweden | 5 MV Pelletron 350 kV high-current implanter | ** Primarily used for IBA and AMS |
CIRCE | Italy | 3 MV Pelletron | H to U (up to 20 MeV) |
LABEC | Italy | 3 MV Tandetron | ** Primarily used for cultural heritage and environmental studies |
AIFIRA | France | 3.5 MV Singletron | ** Primarily used for irradiation of materials and IBA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vesić, J.; Vencelj, M. Nuclear Physics Opportunities at European Small-Scale Facilities. Quantum Beam Sci. 2024, 8, 4. https://doi.org/10.3390/qubs8010004
Vesić J, Vencelj M. Nuclear Physics Opportunities at European Small-Scale Facilities. Quantum Beam Science. 2024; 8(1):4. https://doi.org/10.3390/qubs8010004
Chicago/Turabian StyleVesić, Jelena, and Matjaž Vencelj. 2024. "Nuclear Physics Opportunities at European Small-Scale Facilities" Quantum Beam Science 8, no. 1: 4. https://doi.org/10.3390/qubs8010004
APA StyleVesić, J., & Vencelj, M. (2024). Nuclear Physics Opportunities at European Small-Scale Facilities. Quantum Beam Science, 8(1), 4. https://doi.org/10.3390/qubs8010004