Measurement of Mechanical Behavior of 11B-Enriched MgB2 Wire Using a Pulsed Neutron Source
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of MgB2 Wires
2.2. Strain Calculation Using the ToF Method
2.3. In Situ Strain Measurement under Tensile Test and Equipment
3. Results
3.1. Diffraction Histogram by the ToF Method
3.2. Strain Measurement under Tensile Loadings
4. Discussion
5. Conclusions
- (1)
- Neutron scattering experiments conducted on 11B-enriched MgB2 wire have successfully yielded abundant diffraction peaks specific to MgB2. The subsequent Rietveld analysis of each phase enabled the fine-tuning of lattice constants, incorporating nearly all available peaks. The ratio of the change in lattice constant to the load in the axial and lateral directions was close, indicating that the axial strain may be relaxing.
- (2)
- This groundbreaking analysis has unveiled previously unreported variations in the load and strain experienced by MgB2 wires subjected to tensile stress at room temperature. The discrepancy in lattice constants between the axial and lateral directions strongly implies the presence of tensile residual stress or strain at room temperature.
- (3)
- The proportionate change in lattice constant relative to the applied load in both axial and lateral directions exhibits remarkable similarity, suggesting the potential relaxation of axial strain.
- (4)
- Notably, in experiments involving two commercially available, conventional MgB2 wire types, neutron scattering experiments were conducted for a duration of 7200 s. However, no discernible MgB2 peaks suitable for analysis were obtained. This observation strongly indicates the formidable challenge of achieving MgB2 diffraction in neutron scattering experiments when dealing with boron-containing natural isotopes with their inherent ratios.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nagamatsu, J.; Nakagawa, N.; Muranaka, T.; Zenitani, Y.; Akimitsu, J. Superconductivity at 39 K in magnesium diboride. Nature 2001, 410, 63–64. [Google Scholar] [CrossRef] [PubMed]
- Ballarino, A.; Flükiger, R. Status of MgB2 wire and cable applications in Europe. J. Phys. Conf. Ser. 2017, 871, 012098. [Google Scholar] [CrossRef]
- Marino, I.; Pujana, A.; Sarmiento, G.; Sanz, S.; Merino, J.M.; Tropeano, M.; Sun, J.; Canosa, T. Lightweight MgB2 superconducting 10 MW wind generator. Supercond. Sci. Technol. 2016, 29, 024005. [Google Scholar] [CrossRef]
- Tanaka, H.; Suzuki, T.; Kodama, M.; Koga, T.; Watanabe, H.; Yamamoto, A.; Michizono, S. Performance of MgB2 superconductor developed for high-efficiency klystron applications. IEEE Trans. Appl. Supercond. 2020, 29, 6200105. [Google Scholar] [CrossRef]
- Choi, Y.; Park, D.; Li, Y.; Tanaka, H.; Lee, E.; Bascuñán, J.; Iwasa, Y. Persistent-mode operation and magnetization behavior of a solid nitrogen-cooled MgB2 small-scale test coil towards a tabletop 1.5-T osteoporosis MRI. Supercond. Sci. Technol. 2020, 33, 1018. [Google Scholar] [CrossRef]
- Sykes, A.; Costley, A.E.; Windsor, C.G.; Asunta, O.; Brittles, G.; Buxton, P.; Chuyanov, V.; Connor, J.W.; Gryaznevich, M.P.; Huang, B.; et al. Compact fusion energy based on the spherical tokamak. Nucl. Fusion 2018, 58, 016039. [Google Scholar] [CrossRef]
- Leslie, M.; Ito, T.; Aizawa, K.; Arima, H. Start-Ups Seek to Accelerate Path to Nuclear Fusion. Engineering 2021, 8, 6–8. [Google Scholar] [CrossRef]
- Ekin, W.J. Chapter “Strain Effects in Superconducting Compounds”. In Advances in Cryogenic Engineering Materials; Plenum Press: New York, NY, USA, 1984; Volume 30. [Google Scholar]
- Osamura, K.; Machiya, S.; Tsuchiya, Y.; Suzuki, H. Internal Strain and Mechanical Properties at Low Temperatures of Surround Cu Stabilized YBCO coated conductor. IEEE Trans. Appl. Supercond. 2010, 20, 1532–1536. [Google Scholar] [CrossRef]
- Osamura, K.; Machiya, S.; Tsuchiya, Y.; Suzuki, H. Force free strain exerted on a YBCO layer at 77 K in surround Cu stabilized YBCO coated conductors. Supercond. Sci. Technol. 2010, 23, 045020–045026. [Google Scholar] [CrossRef]
- Oguro, H.; Awaji, S.; Nishijima, G.; Takahashi, K.; Watanabe, K.; Machiya, S.; Suzuki, H.; Tsuchiya, Y.; Osamura, K. Residual strain measurement using neutron diffraction for practical Nb3Sn wires under a tensile load. Supercond. Sci. Technol. 2010, 23, 025034. [Google Scholar] [CrossRef]
- Osamura, K.; Machiya, S.; Ochiai, S.; Osabe, G.; Yamazaki, K.; Fujikami, J. High strength/high strain tolerance DI-BSCCO tapes by means of pre-tensioned lamination technique. IEEE Trans. Appl. Supercond. 2013, 23, 6400504. [Google Scholar] [CrossRef]
- Hishinuma, Y.; Kikuchi, A.; Shimada, Y.; Kashiwai, T.; Hata, S.; Yamada, S.; Muroga, T.; Sagara, A. Development of MgB2 superconducting wire for the low activation superconducting magnet system operated around core D-T plasma. Fusion Eng. Des. 2015, 98–99, 1076–1080. [Google Scholar] [CrossRef]
- Hishinuma, Y.; Shimada, Y.; Hata, S.; Tanaka, T.; Kikuchi, A. Superconducting Properties and Microstructure of In-situ Cu Addition Low Activation MgB2 Multifilamentary Wires Using Different Boron-11 Isotope Powders. Teion Kogaku 2022, 57, 32–38. (In Japanese) [Google Scholar]
- Cheng, F.; Liu, Y.; Ma, Z.; Li, H.; Shahriar, M.; Hossain, A. Superior critical current density obtained in Mg11B2 low activation superconductor by using reactive amorphous 11B and optimizing sintering temperature. J. Alloys Compd. 2015, 650, 508–513. [Google Scholar] [CrossRef]
- Mooring, F.P.; Monahan, J.E.; Huddleston, C.M. Neutron cross sections of the boron isotopes for energies between 10 and 500 keV. Nucl. Phys. 1966, 82, 16–32. [Google Scholar] [CrossRef]
- Harjo, S.; Ito, T.; Aizawa, K.; Arima, H. Current Status of Engineering Materials Diffractometer at J-PARC. Mater. Sci. Forum 2013, 681, 443–448. [Google Scholar] [CrossRef]
- Kikuchi, A.; Yoshida, Y.; Iijima, Y.; Banno, N.; Takeuchi, T.; Inoue, K. The synthesis of MgB2 superconductor using Mg2Cu as a starting material. Supercond. Sci. Technol. 2004, 17, 781–785. [Google Scholar] [CrossRef]
- Jin, X.; Nakamoto, T.; Harjo, S.; Hemmi, T.; Umeno, T.; Ogitsu, T.; Yamamoto, A.; Sugano, M.; Aizawa, K.; Abe, J.; et al. Development of a cryogenic load frame for the neutron diffractometer at Takumi in Japan Proton Accelerator Research Complex. Rev. Sci. Instrum. 2013, 84, 063106. [Google Scholar] [CrossRef]
- Nyilas, A. Strain sensing systems tailored for tensile measurement of fragile wires. Supercond. Sci. Technol. 2005, 18, S409. [Google Scholar] [CrossRef]
- IEC 61788-19: 2013; Mechanical properties measurement-Room temperature tensile test of reacted Nb3Sn composite superconductors.
- Oishi, R.; Yonemura, M.; Nishimaki, Y.; Torii, S.; Hoshikawa, A.; Ishigaki, T.; Morishima, T.; Mori, K.; Kamiyama, T. Rietveld analysis software for J-PARC. Nucl. Instrum. Methods Phys. Res. Sect. A 2009, 600, 94–96. [Google Scholar] [CrossRef]
- Sugano, M.; Machiya, S.; Osamura, K.; Adachi, H.; Sato, M.; Semerad, R.; Prussei, W. The direct evaluation of the internal strain of biaxially textured YBCO film in a coated conductor using synchrotron radiation. Supercond. Sci. Technol. 2009, 22, 015002. [Google Scholar] [CrossRef]
Manufacturer | Filament | Filament 2 | Inner Sheath | Matrix | Outer Sheath |
---|---|---|---|---|---|
Samdong | MgB2 (0.132) | Nb (0.165) | Cu (0.320) | Ni-Cu-Fe alloy (0.382) | |
Hypertech | MgB2 (0.099) | Cu (0.149) | Nb (0.369) | Ni-Cu-Fe alloy (0.382) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machiya, S.; Osamura, K.; Hishinuma, Y.; Taniguchi, H.; Harjo, S.; Kawasaki, T. Measurement of Mechanical Behavior of 11B-Enriched MgB2 Wire Using a Pulsed Neutron Source. Quantum Beam Sci. 2023, 7, 34. https://doi.org/10.3390/qubs7040034
Machiya S, Osamura K, Hishinuma Y, Taniguchi H, Harjo S, Kawasaki T. Measurement of Mechanical Behavior of 11B-Enriched MgB2 Wire Using a Pulsed Neutron Source. Quantum Beam Science. 2023; 7(4):34. https://doi.org/10.3390/qubs7040034
Chicago/Turabian StyleMachiya, Shutaro, Kozo Osamura, Yoshimitsu Hishinuma, Hiroyasu Taniguchi, Stefanus Harjo, and Takuro Kawasaki. 2023. "Measurement of Mechanical Behavior of 11B-Enriched MgB2 Wire Using a Pulsed Neutron Source" Quantum Beam Science 7, no. 4: 34. https://doi.org/10.3390/qubs7040034
APA StyleMachiya, S., Osamura, K., Hishinuma, Y., Taniguchi, H., Harjo, S., & Kawasaki, T. (2023). Measurement of Mechanical Behavior of 11B-Enriched MgB2 Wire Using a Pulsed Neutron Source. Quantum Beam Science, 7(4), 34. https://doi.org/10.3390/qubs7040034