Application of Laser-Induced Breakdown Spectroscopy for Quantitative Analysis of the Chemical Composition of Historical Lead Silicate Glasses
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Construction of Calibration Curves
3.2. Testing the Method on Historical Glazed Tile
3.2.1. Optical Microscopy Examination
3.2.2. SEM-EDS Analysis
3.2.3. In-Depth Profiling
4. Discussion
- The first area, on the order of 5 microns thick, is characterized by an increased content of lead oxide, up to 98 wt%. This area was probably formed by the weathering products of the glaze in the form of pure lead oxide.
- The second area corresponds to a decrease in the concentration of PbO (85 wt% for the homogeneous glaze and 35 wt% for the iridized layer) to a depth of about 25 microns.
- The third area is different for the glaze and for irisation layers. In the case of the irisation layer, there is an exponential growth in the PbO contents (from ~35 wt% to 82 wt%). This is due to the diffusion of components from the depth of the layer to the surface. In a homogeneous glaze layer, the concentration of lead practically does not change. Small changes can be explained by the dissolution of silicon from the ceramic body during the glazing process [32]. It should be noted that the difference in the depth of laser penetration in the glaze and in the irisation layer with the same number of pulses is due to the strong evaporation of the irisation layer.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tite, M.S.; Freestone, I.; Mason, R.; Molera, J.; Vendrell-Saz, M.; Wood, N. Lead glazes in antiquity—Methods of production and reasons for use. Archaeometry 1998, 40, 241–260. [Google Scholar] [CrossRef]
- Безбoрoдoв, М.А. Русскoе стеклo XII века. Дoклады Академии Наук СССР 1950, 74, 789–790. Available online: https://elib.belstu.by/bitstream/123456789/37960/1/Untitled.FR12.pdf (accessed on 11 March 2023). (In Russian).
- Brill, R.H. Ancient glass. Sci. Am. 1963, 209, 120–131. [Google Scholar] [CrossRef]
- Freestone, I.C.; Degryse, P.; Lankton, J.; Gratuze, B.; Schneider, J. HIMT, glass composition and commodity branding in the primary glass industry. In Things That Travelled: Mediterranean Glass in the First Millennium AD; Rosenow, D., Phelps, M., Meek, A., Freestone, I., Eds.; UCL Press: London, UK, 2018; pp. 159–190. [Google Scholar] [CrossRef]
- Schibille, N.; Gratuze, B.; Ollivier, E.; Blondeau, É. Chronology of early Islamic glass compositions from Egypt. J. Archaeol. Sci. 2019, 104, 10–18. [Google Scholar] [CrossRef]
- Siu, L.; Henderson, J.; Faber, E. The production and circulation of Carthaginian glass under the rule of the romans and the vandals (fourth to sixth century ad): A chemical investigation. Archaeometry 2017, 59, 255–273. [Google Scholar] [CrossRef]
- Adlington, L.W.; Freestone, I.C.; Kunicki-Goldfinger, J.J.; Ayers, T.; Scott, H.G.; Eavis, A. Regional patterns in medieval European glass composition as a provenancing tool. J. Archaeol. Sci. 2019, 110, 104991. [Google Scholar] [CrossRef]
- Molera, J.; Pradell, T.; Salvado, N.; Vendrell-Saz, M. Lead frits in Islamic and Hispano-Moresque glazed productions. In From Mine to Microscope. Advances in the Study of Ancient Materials, Chapter 1; Shortland, A.J., Freestone, I., Rehren, T., Eds.; OxbowBooks: Oxford, UK, 2009; pp. 1–11. Available online: https://www.researchgate.net/publication/284658758_Lead_frits_in_Islamic_and_Hispano-Moresque_glazed_productions (accessed on 25 December 2022).
- Walton, M.S.; Tite, M.S. Production technology of Roman lead-glazed pottery and its continuance into late antiquity. Archaeometry 2010, 52, 733–759. [Google Scholar] [CrossRef]
- Matin, M.; Tite, M.; Watson, O. On the origins of tin-opacified ceramic glazes: New evidence from early Islamic Egypt, the Levant, Mesopotamia, Iran, and Central Asia. J. Archaeol. Sci. 2018, 97, 42–66. [Google Scholar] [CrossRef]
- Pérez-Serradilla, J.A.; Jurado-López, A.; de Castro, M.L. Complementarity of XRFS and LIBS for corrosion studies. Talanta 2007, 71, 97–102. [Google Scholar] [CrossRef]
- De Giacomo, A.; Dell’Aglio, M.; De Pascale, O.; Gaudiuso, R.; Santagata, A.; Teghil, R. Laser Induced Breakdown Spectroscopy methodology for the analysis of copper-based-alloys used in ancient artworks. Spectrochim. Acta Part B At. Spectrosc. 2008, 63, 585–590. [Google Scholar] [CrossRef]
- Щапoва, Ю.Л. Стеклo Киевскoй Руси. Мoсква Изд-вo МГУ им. М. В. Лoмoнoсoва 1972, 91–117. Available online: https://www.academia.edu/30895628/%D0%AE_%D0%9B_%D0%A9%D0%B0%D0%BF%D0%BE%D0%B2%D0%B0_%D0%A1%D1%82%D0%B5%D0%BA%D0%BB%D0%BE_%D0%9A%D0%B8%D0%B5%D0%B2%D1%81%D0%BA%D0%BE%D0%B9_%D0%A0%D1%83%D1%81%D0%B8_Sklo_Kyjevsk%C3%A9_Rusi_Glass_of_Kievan_Rus (accessed on 16 October 2022). (In Russian).
- Галибин, В.А. Сoстав стекла как археoлoгический истoчник. In Труды ИИМК РАН, Т. IV; Петербургскoе Вoстoкoведение: Saint Petersburg, Russia, 2001; pp. 14–36. (In Russian) [Google Scholar]
- Раппoпoрт, П.А. Зoдчествo Древней Руси. Ленинград: Изд-вo Наука 1986, 7–29. Available online: http://www.russiancity.ru/books/b57.htm (accessed on 16 October 2022). (In Russian).
- Singh, J.P.; Thakur, S.N. (Eds.) Laser-Induced Breakdown Spectroscopy; Elsevier: Amsterdam, The Netherlands, 2020; pp. 23–35. Available online: https://julac-hku.primo.exlibrisgroup.com/discovery/fulldisplay?vid=852JULAC_HKU:HKU&search_scope=MyInst_and_CI&tab=Everything&docid=alma991037145109703414&lang=en&context=L&adaptor=Local%20Search%20Engine&query=sub,exact,Vibrational%20spectra,AND&mode=advanced&offset=0 (accessed on 26 July 2022).
- Detalle, V.; Bai, X. The assets of laser-induced breakdown spectroscopy (LIBS) for the future of heritage science. Spectrochim. Acta Part B At. Spectrosc. 2022, 191, 106407. [Google Scholar] [CrossRef]
- Madariaga, J.M. Analytical chemistry in the field of cultural heritage. Anal. Methods 2015, 7, 4848–4876. [Google Scholar] [CrossRef]
- Botto, A.; Campanella, B.; Legnaioli, S.; Lezzerini, M.; Lorenzetti, G.; Pagnotta, S.; Poggialini, F.; Palleschi, V. Applications of laser-induced breakdown spectroscopy in cultural heritage and archaeology: A critical review. J. Anal. At. Spectrom. 2019, 34, 81–103. [Google Scholar] [CrossRef]
- Ruan, F.; Zhang, T.; Li, H. Laser-induced breakdown spectroscopy in archeological science: A review of its application and future perspectives. Appl. Spectrosc. Rev. 2019, 54, 573–601. [Google Scholar] [CrossRef]
- Spizzichino, V.; Fantoni, R. Laser induced breakdown spectroscopy in archeometry: A review of its application and future perspectives. Spectrochim. Acta Part B At. Spectrosc. 2014, 99, 201–209. [Google Scholar] [CrossRef]
- Gómez-Morón, M.A.; Ortiz, P.; Ortiz, R.; Martín, J.M.; Mateo, M.P.; Nicolás, G. Laser-induced breakdown spectroscopy study of silversmith pieces: The case of a Spanish canopy of the nineteenth century. Appl. Phys. A 2016, 122, 548. [Google Scholar] [CrossRef]
- Prokuratov, D.; Samokhvalov, A.; Pankin, D.; Vereshchagin, O.; Kurganov, N.; Povolotckaia, A.; Shimko, A.; Mikhailova, A.; Balmashnov, R.; Reveguk, A.; et al. Investigation towards laser cleaning of corrosion products from Lead Objects. Heritage 2023, 6, 1293–1307. [Google Scholar] [CrossRef]
- Samokhvalov, A.A.; Frenkel, Y.V.; Prokuratov, D.S.; Kurganov, N.S.; Gorlov, K.V. Layer-By-Layer Analysis of Archaeological Coins by Means of Laser-Induced Breakdown Spectroscopy. In Proceedings of the Fundamentals of Laser Assisted Micro–and Nanotechnologies (FLAMN-19): Symposium Abstract Book, Saint-Petersburg, Russia, 30 June–4 July 2019; p. 172. [Google Scholar]
- Prokuratov, D.; Samokhvalov, A.; Pankin, D.; Vereshchagin, O.; Kurganov, N.; Povolotckaia, A.; Povolotckaia, A.V.; Shimko, A.A.; Mikhailova, A.A.; Somov, P.A.; et al. Laser irradiation effects on metallic zinc and its corrosion products. J. Cult. Herit. 2023, 61, 13–22. [Google Scholar] [CrossRef]
- Grigor’Eva, I.A.; Parfenov, V.A.; Prokuratov, D.S.; Shakhmin, A.L. Laser cleaning of copper in air and nitrogen atmospheres. J. Opt. Technol. 2017, 84, 1–4. [Google Scholar] [CrossRef]
- Prokuratov, D.S.; Davtian, A.S.; Vereshchagin, O.S.; Kurganov, N.S.; Samokhvalov, A.A.; Pankin, D.V.; Povolotckaia, A.V.; Shimko, A.A.; Mikhailova, A.A.; Somov, P.A.; et al. Laser cleaning of archaeologically corroded iron objects with inlays. Opt. Quantum Electron. 2020, 52, 113. [Google Scholar] [CrossRef]
- Безбoрoдoв, М.А. Химический сoстав и технoлoгические приемы прoизвoдства стекла в Древней Руси. In Дoклады Академии Наук СССР; Наука и техника: Minsk, Republic of Belarus, 1954; pp. 1041–1044. Available online: https://elib.belstu.by/bitstream/123456789/37975/1/Untitled.FR12.pdf (accessed on 16 October 2022). (In Russian)
- Безбoрoдoв, М.А.; Фехнер, М.В. Химическoе исследoвание русских стекoл XI–XIII векoв. In Дoклады Академии Наук СССР; Наука: Moscow, Russia, 1954; pp. 1037–1040. Available online: https://elib.belstu.by/bitstream/123456789/37973/1/Untitled.FR12.pdf (accessed on 16 October 2022). (In Russian)
- Раппoпoрт, П.А. Русская архитектура X–XIII вв.: Каталoг памятникoв. Археoлoгия СССР. Свoд археoлoгических истoчникoв. 1982, pp. 94–95. Available online: https://arheologija.ru/rappoport-russkaya-arhitektura-x-xiii-vv/ (accessed on 14 October 2022). (In Russian).
- NIST LIBS Database. Available online: https://physics.nist.gov/PhysRefData/ASD/LIBS/libs-form.html (accessed on 27 March 2023).
- Molera, J.; Pradell, T.; Salvadó, N.; Vendrell-Saz, M. Interactions between clay bodies and lead glazes. J. Am. Ceram. Soc. 2001, 84, 1120–1128. [Google Scholar] [CrossRef]
Series | Sample | SiO2, wt% | K2O, wt% | PbO, wt% |
---|---|---|---|---|
Si-Pb | PS1 | 15 | - | 85 |
PS2 | 20 | - | 80 | |
PS3 | 25 | - | 75 | |
PS4 | 30 | - | 70 | |
Si-Pb-K | PSK1 | 15 | 5 | 80 |
PSK2 | 15 | 10 | 75 | |
PSK3 | 15 | 15 | 70 | |
PSK4 | 15 | 20 | 65 |
Series | Sample | S (Pb), Avg. | S (Si), Avg. | Pb/Si Ratio |
---|---|---|---|---|
Pb-Si | PS1 | 1250 | 440 | 2.84 |
PS2 | 1100 | 451 | 2.44 | |
PS3 | 473 | 249 | 1.89 | |
PS4 | 222 | 133 | 1.67 | |
Series | Sample | S (K), Avg. | S (Si), Avg. | K/Si Ratio |
Pb-Si-K | PSK1 | 1544 | 109 | 14.31 |
PSK2 | 1009 | 70 | 14.39 | |
PSK3 | 1437 | 99 | 14.40 | |
PSK4 | 799 | 49 | 16.10 |
Layer/Elements, wt% | Na2O | MgO | Al2O3 | SiO2 | K2O | CaO | Fe2O3 | CuO | SnO2 | PbO |
---|---|---|---|---|---|---|---|---|---|---|
Glaze | 0.21 | 0.99 | 1.78 | 5.62 | 1.00 | 2.20 | 0.35 | 0.72 | 1.77 | 88.96 |
Irisation | 0.39 | 0.79 | 3.08 | 26.04 | 0.79 | 1.94 | 1.37 | 0.74 | 0.20 | 62.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leonidova, A.; Aseev, V.; Prokuratov, D.; Jolshin, D.; Khodasevich, M. Application of Laser-Induced Breakdown Spectroscopy for Quantitative Analysis of the Chemical Composition of Historical Lead Silicate Glasses. Quantum Beam Sci. 2023, 7, 24. https://doi.org/10.3390/qubs7030024
Leonidova A, Aseev V, Prokuratov D, Jolshin D, Khodasevich M. Application of Laser-Induced Breakdown Spectroscopy for Quantitative Analysis of the Chemical Composition of Historical Lead Silicate Glasses. Quantum Beam Science. 2023; 7(3):24. https://doi.org/10.3390/qubs7030024
Chicago/Turabian StyleLeonidova, Aleksandra, Vladimir Aseev, Denis Prokuratov, Denis Jolshin, and Mikhail Khodasevich. 2023. "Application of Laser-Induced Breakdown Spectroscopy for Quantitative Analysis of the Chemical Composition of Historical Lead Silicate Glasses" Quantum Beam Science 7, no. 3: 24. https://doi.org/10.3390/qubs7030024
APA StyleLeonidova, A., Aseev, V., Prokuratov, D., Jolshin, D., & Khodasevich, M. (2023). Application of Laser-Induced Breakdown Spectroscopy for Quantitative Analysis of the Chemical Composition of Historical Lead Silicate Glasses. Quantum Beam Science, 7(3), 24. https://doi.org/10.3390/qubs7030024