Recent Progress in the Development of a-Se/CMOS Sensors for X-ray Detection
Abstract
:1. Introduction
2. Energy-Integrating Detectors
2.1. Achieving High Resolution in a-Se/CMOS Imaging
2.2. Further Improvements in Spatial Resolution by Pitch Reduction
3. Single-Photon Detection
4. Conclusions and Considerations for Further Advancements in a-Se/CMOS Technology
Author Contributions
Funding
Conflicts of Interest
References
- Kasap, S.; Frey, J.B.; Belev, G.; Tousignant, O.; Mani, H.; Laperriere, L.; Reznik, A.; Rowlands, J.A. Amorphous Selenium and Its Alloys from Early Xeroradiography to High Resolution X-ray Image Detectors and Ultrasensitive Imaging Tubes. Phys. Status Solidi B 2009, 246, 1794–1805. [Google Scholar] [CrossRef]
- Mort, J.; Pai, D.M.; Pai, C.M. Photoconductivity and Related Phenomena; Elsevier Scientific Publishing Company: Amerstdam, The Netherlands, 1976; ISBN 978-0-444-41463-2. [Google Scholar]
- Pellegrini, G.; Chmeissani, M.; Maiorino, M.; Blanchot, G.; Garcia, J.; Lozano, M.; Martinez, R.; Puigdengoles, C.; Ullan, M.; Casado, P. Performance Limits of a 55-µm Pixel CdTe Detector. IEEE Trans. Nucl. Sci. 2006, 53, 361–366. [Google Scholar] [CrossRef]
- Fredenberg, E.; Lundqvist, M.; Cederström, B.; Åslund, M.; Danielsson, M. Energy Resolution of a Photon-Counting Silicon Strip Detector. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 2010, 613, 156–162. [Google Scholar] [CrossRef]
- Iwanczyk, J.S.; Nygård, E.; Meirav, O.; Arenson, J.; Barber, W.C.; Hartsough, N.E.; Malakhov, N.; Wessel, J.C. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging. IEEE Trans. Nucl. Sci. 2009, 56, 535–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barber, W.C.; Nygard, E.; Wessel, J.C.; Malakhov, N.; Wawrzyniak, G.; Hartsough, N.E.; Gandhi, T.; Iwanczyk, J.S. Fast Photon Counting CdTe Detectors for Diagnostic Clinical CT: Dynamic Range, Stability, and Temporal Response. In Proceedings of the Medical Imaging 2010: Physics of Medical Imaging, San Diego, CA, USA, 18 March 2010; SPIE: Bellingham, WA, USA, 2010; Volume 7622, pp. 465–472. [Google Scholar]
- Grynko, O.; Thibault, T.; Pineau, E.; Reznik, A. Engineering of a Blocking Layer Structure for Low-Lag Operation of the a-PbO-Based X-ray Detector. IEEE Trans. Electron Devices 2021, 68, 2335–2341. [Google Scholar] [CrossRef]
- Bolotnikov, A.E.; Camarda, G.C.; Wright, G.W.; James, R.B. Factors Limiting the Performance of CdZnTe Detectors. IEEE Trans. Nucl. Sci. 2005, 52, 589–598. [Google Scholar] [CrossRef]
- Juška, G.; Arlauskas, K. Impact Ionization and Mobilities of Charge Carriers at High Electric Fields in Amorphous Selenium. Phys. Status Solidi A 1980, 59, 389–393. [Google Scholar] [CrossRef]
- Maruyama, E. Amorphous Built-in-Field Effect Photoreceptors. Jpn. J. Appl. Phys. 1982, 21, 213. [Google Scholar] [CrossRef]
- Tanioka, K.; Yamazaki, J.; Shidara, K.; Taketoshi, K.; Kawamura, T.; Ishioka, S.; Takasaki, Y. An Avalanche-Mode Amorphous Selenium Photoconductive Layer for Use as a Camera Tube Target. IEEE Electron Device Lett. 1987, 8, 392–394. [Google Scholar] [CrossRef]
- Tanioka, K. High-Gain Avalanche Rushing Amorphous Photoconductor (HARP) Detector. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 2009, 608, S15–S17. [Google Scholar] [CrossRef]
- Tanioka, K. Development of Ultrahigh-Sensitivity HARP Pickup Tube and Its Applications. Int. Conf. Mach. Vis. Appl. 2013, 7, 173–176. [Google Scholar]
- Reznik, A.; Lui, B.J.M.; Lyubin, V.; Klebanov, M.; Ohkawa, Y.; Matsubara, T.; Miyakawa, K.; Kubota, M.; Tanioka, K.; Kawai, T.; et al. The Effect of Temperature on Photoinduced Metastability in Avalanche a-Se Layers. J. Non-Cryst. Solids 2006, 352, 1595–1598. [Google Scholar] [CrossRef]
- Johanson, R.E.; Kasap, S.O.; Rowlands, J.; Polischuk, B. Metallic Electrical Contacts to Stabilized Amorphous Selenium for Use in X-ray Image Detectors. J. Non-Cryst. Solids 1998, 227–230, 1359–1362. [Google Scholar] [CrossRef]
- Polischuk, B.T.; Shukri, Z.; Legros, A.; Rougeot, H. Selenium Direct-Converter Structure for Static and Dynamic X-ray Detection in Medical Imaging Applications. In Proceedings of the Medical Imaging 1998: Physics of Medical Imaging, San Diego, CA, USA, 24 July 1998; SPIE: Bellingham, WA, USA, 1998; Volume 3336, pp. 494–504. [Google Scholar]
- Abbaszadeh, S.; Rom, K.; Bubon, O.; Weinstein, B.A.; Karim, K.S.; Rowlands, J.A.; Reznik, A. The Effect of the Substrate on Transient Photodarkening in Stabilized Amorphous Selenium. J. Non-Cryst. Solids 2012, 358, 2389–2392. [Google Scholar] [CrossRef]
- Lindberg, G.P.; O’Loughlin, T.; Gross, N.; Mishchenko, A.; Reznik, A.; Abbaszadeh, S.; Karim, K.S.; Belev, G.; Weinstein, B.A. Photo-Crystallization in a-Se Layer Structures: Effects of Film-Substrate Interface-Rigidity. J. Appl. Phys. 2014, 116, 193511. [Google Scholar] [CrossRef]
- Ogusu, K.; Nakane, O.; Igasaki, Y.; Okamura, Y.; Yamada, S.; Hirai, T. Advanced a-Se Film with High Sensitivity and Heat Resistance for X-ray Detectors. In Proceedings of the Medical Imaging 2009: Physics of Medical Imaging, Lake Buena Vista, FL, USA, 13 March 2009; SPIE: Bellingham, WA, USA, 2009; Volume 7258, pp. 1135–1144. [Google Scholar]
- Zentai, G.; Partain, L.; Richmond, M.; Ogusu, K.; Yamada, S. 50 µm Pixel Size a-Se Mammography Imager with High DQE and Increased Temperature Resistance. In Proceedings of the Medical Imaging 2010: Physics of Medical Imaging, San Diego, CA, USA, 18 March 2010; SPIE: Bellingham, WA, USA, 2010; Volume 7622, pp. 385–393. [Google Scholar]
- Abbaszadeh, S.; Allec, N.; Ghanbarzadeh, S.; Shafique, U.; Karim, K.S. Investigation of Hole-Blocking Contacts for High-Conversion-Gain Amorphous Selenium Detectors for X-ray Imaging. IEEE Trans. Electron Devices 2012, 59, 2403–2409. [Google Scholar] [CrossRef]
- Abbaszadeh, S.; Tari, A.; Wong, W.S.; Karim, K.S. Enhanced Dark Current Suppression of Amorphous Selenium Detector With Use of IGZO Hole Blocking Layer. IEEE Trans. Electron Devices 2014, 61, 3355–3357. [Google Scholar] [CrossRef]
- Stavro, J.; Goldan, A.H.; Zhao, W. Photon Counting Performance of Amorphous Selenium and Its Dependence on Detector Structure. In Proceedings of the Medical Imaging 2018: Physics of Medical Imaging, Houston, TX, USA, 9 March 2018; SPIE: Bellingham, WA, USA, 2018; Volume 10573, p. 105735Y. [Google Scholar]
- Reznik, A.; Baranovskii, S.D.; Rubel, O.; Juska, G.; Kasap, S.O.; Ohkawa, Y.; Tanioka, K.; Rowlands, J.A. Avalanche Multiplication Phenomenon in Amorphous Semiconductors: Amorphous Selenium versus Hydrogenated Amorphous Silicon. J. Appl. Phys. 2007, 102, 053711. [Google Scholar] [CrossRef] [Green Version]
- Park, W.-D.; Tanioka, K. Lag and Light-Transfer Characteristics of Amorphous Selenium Photoconductive Film with Tellurium-Doped Layer. Jpn. J. Appl. Phys. 2016, 55, 071401. [Google Scholar] [CrossRef]
- Abbaszadeh, S.; Karim, K.S.; Karanassios, V. Measurement of UV from a Microplasma by a Microfabricated Amorphous Selenium Detector. IEEE Trans. Electron Devices 2013, 60, 880–883. [Google Scholar] [CrossRef]
- Hunt, D.C.; Tousignant, O.; Rowlands, J.A. Evaluation of the Imaging Properties of an Amorphous Selenium-Based Flat Panel Detector for Digital Fluoroscopy. Med. Phys. 2004, 31, 1166–1175. [Google Scholar] [CrossRef]
- Reznik, A.; Lui, B.J.M.; Rowlands, J.A. An Amorphous Selenium Based Positron Emission Mammography Camera with Avalanche Gain. Technol. Cancer Res. Treat. 2005, 4, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Adnani, S.; Pil-Ali, A.; Scott, C.C.; Karim, K.S. Monte Carlo Simulation of an Amorphous Selenium-Based Multi-Layer Photon-Counting Detector for SPECT Applications. In Proceedings of the Medical Imaging 2021: Physics of Medical Imaging, Online Only, 15 February 2021; SPIE: Bellingham, WA, USA, 2021; Volume 11595, p. 1159515. [Google Scholar]
- Barman, S.K.; Huda, M.; Asaadi, J.; Gramellini, E.; Nygren, D. Thermodynamic and Optoelectronic Properties of Ultra-Thin-Film Crystalline and Amorphous Selenium from a First-Principles Investigation. Presented at the APS March Meeting, Virtual, 15–19 March 2021. [Google Scholar]
- Graeve, T.; Weckler, G.P. High-Resolution CMOS Imaging Detector. In Proceedings of the Medical Imaging 2001: Physics of Medical Imaging, San Diego, CA, USA, 28 June 2001; SPIE: Bellingham, WA, USA, 2001; Volume 4320, pp. 68–76. [Google Scholar]
- Nano, T.F.; Escartin, T.; Ismailova, E.; Karim, K.S.; Lindström, J.; Kim, H.K.; Cunningham, I.A. MTF and DQE Enhancement Using an Apodized-Aperture X-ray Detector Design. Med. Phys. 2017, 44, 4525–4535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nano, T.F.; Scott, C.C.; Li, Y.; Con, C.; Karim, K.S.; Cunningham, I.A. Performance Evaluation of a Se/CMOS Prototype X-ray Detector with the Apodized Aperture Pixel (AAP) Design. In Proceedings of the Medical Imaging 2019: Physics of Medical Imaging, San Diego, CA, USA, 1 March 2019; SPIE: Bellingham, WA, USA, 2019; Volume 10948, p. 1094816. [Google Scholar]
- Andre, M.P.; Spivey, B.A.; Martin, P.J.; Morsell, A.L.; Atlas, E.; Pellegrino, T. Integrated CMOS-Selenium X-ray Detector for Digital Mammography. In Proceedings of the Medical Imaging 1998: Physics of Medical Imaging, San Diego, CA, USA, 24 July 1998; SPIE: Bellingham, WA, USA, 1998; Volume 3336, pp. 204–209. [Google Scholar]
- Hristovski, C.; Goldan, A.; Majid, S.H.; Wang, K.; Shafique, U.; Karim, K. Characterization and Comparison of Lateral Amorphous Semiconductors with Embedded Frisch Grid Detectors on 0.18 µm CMOS Processed Substrate for Medical Imaging Applications. In Proceedings of the Medical Imaging 2011: Physics of Medical Imaging, Lake Buena Vista, FL, USA, 16 March 2011; SPIE: Bellingham, WA, USA, 2011; Volume 7961, p. 79610Q. [Google Scholar]
- Majid, S.H.; Goldan, A.H.; Hadji, B.; Belev, G.; Kasap, S.; Karim, K.S. Selenium Coated CMOS Passive Pixel Array for Medical Imaging. In Proceedings of the Medical Imaging 2011: Physics of Medical Imaging, Lake Buena Vista, FL, USA, 15 March 2011; SPIE: Bellingham, WA, USA, 2011; Volume 7961, p. 79614L. [Google Scholar]
- Hajdok, G.; Battista, J.J.; Cunningham, I.A. Fundamental X-ray Interaction Limits in Diagnostic Imaging Detectors: Spatial Resolution. Med. Phys. 2008, 35, 3180–3193. [Google Scholar] [CrossRef]
- Que, W.; Rowlands, J.A. X-ray Imaging Using Amorphous Selenium: Inherent Spatial Resolution. Med. Phys. 1995, 22, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Kabir, M.Z.; Kasap, S.O. Modulation Transfer Function of Photoconductive X-ray Image Detectors: Effects of Charge Carrier Trapping. J. Phys. Appl. Phys. 2003, 36, 2352–2358. [Google Scholar] [CrossRef]
- Scott, C.C.; Allec, N.; Karim, K.S. A Study of Factors Limiting Spatial Resolution Using a 25 Micron Pixel Pitch Direct-Detection Amorphous Selenium Imaging System. In Proceedings of the Medical Imaging 2012: Physics of Medical Imaging, San Diego, CA, USA, 3 March 2012; SPIE: Bellingham, WA, USA, 2012; Volume 8313, pp. 1655–1666. [Google Scholar]
- Berger, M.J.; Hubbell, J.H.; Seltzer, S.M.; Chang, J.; Coursey, J.S.; Sukumar, R.; Zucker, D.S.; Olsen, K. XCOM: Photon cross Sections Database. Available online: https://www.nist.gov/pml/xcom-photon-cross-sections-database (accessed on 30 September 2021).
- Kabir, M.Z.; Rahman, M.W.; Shen, W.Y. Modelling of Detective Quantum Efficiency of Direct Conversion X-ray Imaging Detectors Incorporating Charge Carrier Trapping and K-Fluorescence. IET Circuits Devices Syst. 2011, 5, 222. [Google Scholar] [CrossRef]
- Hu, Y.-H.; Scaduto, D.A.; Zhao, W. The Effect of Amorphous Selenium Thickness on Imaging Performance of Contrast Enhanced Digital Breast Tomosynthesis. In Proceedings of the Breast Imaging; Maidment, A.D.A., Bakic, P.R., Gavenonis, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 9–16. [Google Scholar]
- Scott, C.C.; Abbaszadeh, S.; Ghanbarzadeh, S.; Allan, G.; Farrier, M.; Cunningham, I.A.; Karim, K.S. Amorphous Selenium Direct Detection CMOS Digital X-ray Imager with 25 Micron Pixel Pitch. In Proceedings of the Medical Imaging 2014: Physics of Medical Imaging, San Diego, CA, USA, 19 March 2014; SPIE: Bellingham, WA, USA, 2014; Volume 9033, p. 90331G. [Google Scholar]
- Samei, E.; Flynn, M.J.; Reimann, D.A. A Method for Measuring the Presampled MTF of Digital Radiographic Systems Using an Edge Test Device. Med. Phys. 1998, 25, 102–113. [Google Scholar] [CrossRef] [Green Version]
- Estribeau, M.; Magnan, P. Fast MTF Measurement of CMOS Imagers Using ISO 12333 Slanted-Edge Methodology. In Detectors and Associated Signal Processing, St. Etienne, France, 19 February 2004; SPIE: Bellingham, WA, USA, 2004; Volume 5251, pp. 243–252. [Google Scholar]
- Russ, M.; Shankar, A.; Jain, A.; Nagesh, S.V.S.; Ionita, C.N.; Scott, C.; Karim, K.S.; Bednarek, D.R.; Rudin, S. Quantitative Comparison Using Generalized Relative Object Detectability (G-ROD) Metrics of an Amorphous Selenium Detector with High Resolution Microangiographic Fluoroscopes (MAF) and Standard Flat Panel Detectors (FPD). In Proceedings of the Medical Imaging 2016: Physics of Medical Imaging, San Diego, CA, USA, 22 March 2016; SPIE: Bellingham, WA, USA, 2016; Volume 9783, pp. 954–962. [Google Scholar]
- Parsafar, A.; Scott, C.C.; El-Falou, A.; Levine, P.M.; Karim, K.S. Direct-Conversion CMOS X-ray Imager With 5.6 µm × 6.25 µm Pixels. IEEE Electron Device Lett. 2015, 36, 481–483. [Google Scholar] [CrossRef]
- El Gamal, A.; Eltoukhy, H. CMOS Image Sensors. IEEE Circuits Devices Mag. 2005, 21, 6–20. [Google Scholar] [CrossRef]
- Scott, C.C.; Parsafar, A.; El-Falou, A.; Levine, P.M.; Karim, K.S. High Dose Efficiency, Ultra-High Resolution Amorphous Selenium/CMOS Hybrid Digital X-ray Imager. In Proceedings of the 2015 IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 7–9 December 2015; pp. 30.6.1–30.6.4. [Google Scholar]
- Scott, C.C.; Farrier, M.; Li, Y.; Laxer, S.; Ravi, P.; Kenesei, P.; Wojcik, M.J.; Miceli, A.; Karim, K.S. High-Energy Micrometre-Scale Pixel Direct Conversion X-ray Detector. J. Synchrotron Radiat. 2021, 28, 1081–1089. [Google Scholar] [CrossRef]
- Burgess, A.E. The Rose Model, Revisited. J. Opt. Soc. Am. A 1999, 16, 633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fredenberg, E. Spectral and Dual-Energy X-ray Imaging for Medical Applications. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 2018, 878, 74–87. [Google Scholar] [CrossRef]
- Goldan, A.H.; Karim, K.S.; Reznik, A.; Caldwell, C.B.; Rowlands, J.A. Photon Counting Readout Pixel Array in 0.18-µm CMOS Technology for on-Line Gamma-Ray Imaging of 103-Palladium Seeds for Permanent Breast Seed Implant (PBSI) Brachytherapy. In Proceedings of the Medical Imaging 2008: Physics of Medical Imaging, San Diego, CA, USA, 18 March 2008; SPIE: Bellingham, WA, USA, 2008; Volume 6913, p. 69130S. [Google Scholar]
- Goldan, A.H.; Hadji, B.; Karim, K.S.; DeCrescenzo, G.; Rowlands, J.A.; Tousignant, O.; Laperrière, L. A Counting and Integrating Pixel Readout Chip for Amorphous Selenium Direct Radiation Detectors for Medical Imaging Applications. In Proceedings of the Medical Imaging 2009: Physics of Medical Imaging, Lake Buena Vista, FL, USA, 14 March 2009; SPIE: Bellingham, WA, USA, 2009; Volume 7258, p. 72583K. [Google Scholar]
- Chen, Y.; Liu, B.; O’Connor, J.M.; Didier, C.S.; Glick, S.J. Characterization of Scatter in Cone-Beam CT Breast Imaging: Comparison of Experimental Measurements and Monte Carlo Simulation. Med. Phys. 2009, 36, 857–869. [Google Scholar] [CrossRef] [Green Version]
- Tanguay, J.; Yun, S.; Kim, H.K.; Cunningham, I.A. Cascaded-Systems Analyses of Photon-Counting X-ray Detectors. In Proceedings of the Medical Imaging 2013: Physics of Medical Imaging, Lake Buena Vista, FL, USA, 19 March 2013; SPIE: Bellingham, WA, USA, 2013; Volume 8668, p. 86680S. [Google Scholar]
- Tanguay, J.; Yun, S.; Kim, H.K.; Cunningham, I.A. Detective Quantum Efficiency of Photon-Counting X-ray Detectors. Med. Phys. 2015, 42, 491–509. [Google Scholar] [CrossRef] [PubMed]
- Goldan, A.H.; Rowlands, J.A.; Tousignant, O.; Karim, K.S. Unipolar Time-Differential Charge Sensing in Non-Dispersive Amorphous Solids. J. Appl. Phys. 2013, 113, 224502. [Google Scholar] [CrossRef]
- Camlica, A.; El-Falou, A.; Mohammadi, R.; Levine, P.M.; Karim, K.S. CMOS-Integrated Single-Photon-Counting X-ray Detector Using an Amorphous-Selenium Photoconductor with 11 × 11-µm2 Pixels. In Proceedings of the 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 1–5 December 2018; pp. 32.5.1–32.5.4. [Google Scholar]
- El-Falou, A.; Camlica, A.; Mohammadi, R.; Levine, P.M.; Karim, K.S. A Monolithic Amorphous-Selenium/CMOS Single-Photon-Counting X-ray Detector. IEEE Trans. Electron Devices 2021, 68, 1746–1752. [Google Scholar] [CrossRef]
- Barrett, H.H.; Eskin, J.D.; Barber, H.B. Charge Transport in Arrays of Semiconductor Gamma-Ray Detectors. Phys. Rev. Lett. 1995, 75, 156–159. [Google Scholar] [CrossRef] [Green Version]
- Abbene, L.; Gerardi, G.; Principato, F.; Del Sordo, S.; Ienzi, R.; Raso, G. High-Rate X-ray Spectroscopy in Mammography with a CdTe Detector: A Digital Pulse Processing Approach. Med. Phys. 2010, 37, 6147–6156. [Google Scholar] [CrossRef]
- Camlica, A.; Lee, D.; Jang, H.; Arnab, S.M.; Fang, Y.; Kabir, M.Z.; Karim, K.S. Performance of Amorphous Selenium Based Unipolar Charge Sensing Detector for Photon-Counting X-ray Imaging. In Proceedings of the Medical Imaging 2020: Physics of Medical Imaging, Houston, TX, USA, 16–19 February 2020; Bosmans, H., Chen, G.-H., Eds.; SPIE: Bellingham, WA, USA, 2020; Volume 11312, p. 113120G. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hellier, K.; Benard, E.; Scott, C.C.; Karim, K.S.; Abbaszadeh, S. Recent Progress in the Development of a-Se/CMOS Sensors for X-ray Detection. Quantum Beam Sci. 2021, 5, 29. https://doi.org/10.3390/qubs5040029
Hellier K, Benard E, Scott CC, Karim KS, Abbaszadeh S. Recent Progress in the Development of a-Se/CMOS Sensors for X-ray Detection. Quantum Beam Science. 2021; 5(4):29. https://doi.org/10.3390/qubs5040029
Chicago/Turabian StyleHellier, Kaitlin, Emmie Benard, Christopher C. Scott, Karim S. Karim, and Shiva Abbaszadeh. 2021. "Recent Progress in the Development of a-Se/CMOS Sensors for X-ray Detection" Quantum Beam Science 5, no. 4: 29. https://doi.org/10.3390/qubs5040029
APA StyleHellier, K., Benard, E., Scott, C. C., Karim, K. S., & Abbaszadeh, S. (2021). Recent Progress in the Development of a-Se/CMOS Sensors for X-ray Detection. Quantum Beam Science, 5(4), 29. https://doi.org/10.3390/qubs5040029