Erratum: Cureton et al. Review of Swift Heavy Ion Irradiation Effects in CeO2. Quantum Beam Sci. 2021, 5, 19
- 45.
 - Palomares, R.I.; Tracy, C.L.; Zhang, F.; Park, C.; Popov, D.; Trautmann, C.; Ewing, R.C.; Lang, M. In situ defect annealing of swift heavy ion irradiated CeO2 and ThO2 using synchrotron X-ray diffraction and a hydrothermal diamond anvil cell. J. Appl. Crystallogr. 2015, 48, 711–717, doi:10.1107/S160057671500477X.
 - 46.
 - Tracy, C.L.; Lang, M.; Pray, J.M.; Zhang, F.X.; Popov, D.; Park, C.Y.; Trautmann, C.; Bender, M.; Severin, D.; Skuratov, V.A.; et al. Redox response of actinide materials to highly ionizing radiation. Nat. Commun. 2015, 6, 9, doi:10.1038/ncomms7133.
 - 47.
 - Pakarinen, J.; He, L.F.; Hassan, A.R.; Wang, Y.Q.; Gupta, M.; El-Azab, A.; Allen, T.R. Annealing-induced lattice recovery in room-temperature xenon irradiated CeO2: X-ray diffraction and electron energy loss spectroscopy experiments. J. Mater. Res. 2015, 30, 1555–1562, doi:10.1557/jmr.2015.13.
 - 48.
 - Yablinsky, C.A.; Devanathan, R.; Pakarinen, J.; Gan, J.; Severin, D.; Trautmann, C.; Allen, T.R. Characterization of swift heavy ion irradiation damage in ceria. J. Mater. Res. 2015, 30, 1473–1484, doi:10.1557/jmr.2015.43.
 - 49.
 - Costantini, J.-M.; Miro, S.; Gutierrez, G.; Yasuda, K.; Takaki, S.; Ishikawa, N.; Toulemonde, M. Raman spectroscopy study of damage induced in cerium dioxide by swift heavy ion irradiations. J. Appl. Phys. 2017, 122, 205901, doi:10.1063/1.5011165.
 - 50.
 - Palomares, R.I.; Shamblin, J.; Tracy, C.L.; Neuefeind, J.; Ewing, R.C.; Trautmann, C.; Lang, M. Defect accumulation in swift heavy ion-irradiated CeO2 and ThO2. J. Mater. Chem. A 2017, 12193–12201, doi:10.1039/C7TA02640D.
 - 51.
 - Maslakov, K.I.; Teterin, Y.A.; Popel, A.J.; Teterin, A.Y.; Ivanov, K.E.; Kalmykov, S.N.; Petrov, V.G.; Petrov, P.K.; Farnan, I. XPS study of ion irradiated and unirradiated CeO2 bulk and thin film samples. Appl. Surf. Sci. 2018, 448, 154–162, doi:10.1016/j.apsusc.2018.04.077.
 - 52.
 - Cureton, W.F.; Palomares, R.I.; Walters, J.; Tracy, C.L.; Chen, C.-H.; Ewing, R.C.; Baldinozzi, G.; Lian, J.; Trautmann, C.; Lang, M. Grain size effects on irradiated CeO2, ThO2, and UO2. Acta Mater. 2018, 160, 47–56, doi:10.1016/j.actamat.2018.08.040.
 - 53.
 - Shelyug, A.; Palomares, R.I.; Lang, M.; Navrotsky, A. Energetics of defect production in fluorite-structured CeO2 induced by highly ionizing radiation. Phys. Rev. Mater. 2018, 2, 093607, doi:10.1103/PhysRevMaterials.2.093607.
 - 54.
 - Cureton, W.F.; Palomares, R.I.; Tracy, C.L.; O’Quinn, E.C.; Walters, J.; Zdorovets, M.; Ewing, R.C.; Toulemonde, M.; Lang, M. Effects of irradiation temperature on the response of CeO2, ThO2, and UO2 to highly ionizing radiation. J. Nucl. Mater. 2019, 525, 83–91, doi:10.1016/j.jnucmat.2019.07.029.
 - 55.
 - Costantini, J.-M.; Gutierrez, G.; Watanabe, H.; Yasuda, K.; Takaki, S.; Lelong, G.; Guillaumet, M.; Weber, W.J. Optical spectroscopy study of modifications induced in cerium dioxide by electron and ion irradiations. Philos. Mag. 2019, 99, 1695–1714, doi:10.1080/14786435.2019.1599145.
 - 56.
 - Yamamoto, Y.; Ishikawa, N.; Hori, F.; Iwase, A. Analysis of Ion-Irradiation Induced Lattice Expansion and Ferromagnetic State in CeO2 by Using Poisson Distribution Function. Quantum Beam Sci. 2020, 4, 26.
 - 57.
 - Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM—The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2010, 268, 1818–1823, doi:10.1016/j.nimb.2010.02.091.
 - 58.
 - Kumar, A.; Devanathan, R.; Shutthanandan, V.; Kuchibhatla, S.V.N.T.; Karakoti, A.S.; Yong, Y.; Thevuthasan, S.; Seal, S. Radiation-Induced Reduction of Ceria in Single and Polycrystalline Thin Films. J. Phys. Chem. C 2012, 116, 361–366, doi:10.1021/jp209345w.
 - 59.
 - Park, C.; Popov, D.; Ikuta, D.; Lin, C.; Kenney-Benson, C.; Rod, E.; Bommannavar, A.; Shen, G. New developments in micro-X-ray diffraction and X-ray absorption spectroscopy for high-pressure research at 16-BM-D at the Advanced Photon Source. Rev. Sci. Instrum. 2015, 86, 072205, doi:10.1063/1.4926893.
 - 60.
 - Tahara, Y.; Zhu, B.; Kosugi, S.; Ishikawa, N.; Okamoto, Y.; Hori, F.; Matsui, T.; Iwase, A. Study on effects of swift heavy ion irradiation on the crystal structure in CeO2 doped with Gd2O3. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2011, 269, 886–889, doi:10.1016/j.nimb.2010.12.032.
 - 61.
 - Neuefeind, J.; Feygenson, M.; Carruth, J.; Hoffmann, R.; Chipley, K.K. The Nanoscale Ordered MAterials Diffractometer NOMAD at the Spallation Neutron Source SNS. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2012, 287, 68–75, doi:10.1016/j.nimb.2012.05.037.
 - 62.
 - Schmitt, R.; Nenning, A.; Kraynis, O.; Korobko, R.; Frenkel, A.I.; Lubomirsky, I.; Haile, S.M.; Rupp, J.L.M. A review of defect structure and chemistry in ceria and its solid solutions. Chem. Soc. Rev. 2020, 49, 554–592, doi:10.1039/C9CS00588A.
 - 63.
 - Devanathan, R. Molecular Dynamics Simulation of Fission Fragment Damage in Nuclear Fuel and Surrogate Material. MRS Adv. 2017, 2, 1225–1230, doi:10.1557/adv.2017.9.
 - 64.
 - Skanthakumar, S.; Soderholm, L. Oxidation state of Ce in Pb2Sr2Ce1−xCaxCu3O8. Phys. Rev. B 1996, 53, 920–926, doi:10.1103/PhysRevB.53.920.
 - 65.
 - Zhang, J.; Lang, M.; Lian, J.; Liu, J.; Trautmann, C.; Della-Negra, S.; Toulemonde, M.; Ewing, R.C. Liquid-like phase formation in Gd2Zr2O7 by extremely ionizing irradiation. J. Appl. Phys. 2009, 105, 113510, doi:10.1063/1.3124370.
 - 66.
 - Matzke, H.; Lucuta, P.G.; Wiss, T. Swift heavy ion and fission damage effects in UO2. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2000, 166–167, 920-926, doi:10.1016/S0168-583X(99)00801-0.
 - 67.
 - Toulemonde, M.; Paumier, E.; Dufour, C. Thermal spike model in the electronic stopping power regime. Radiat. Eff. Defects Solids 1993, 126, 201–206, doi:10.1080/10420159308219709.
 - 68.
 - Szenes, G. Ion-induced amorphization in ceramic materials. J. Nucl. Mater. 2005, 336, 81–89, doi:10.1016/j.jnucmat.2004.09.004.
 - 69.
 - Meftah, A.; Brisard, F.; Costantini, J.M.; Hage-Ali, M.; Stoquert, J.P.; Studer, F.; Toulemonde, M. Swift heavy ions in magnetic insulators: A damage-cross-section velocity effect. Phys. Rev. B 1993, 48, 920–925, doi:10.1103/PhysRevB.48.920.
 - 70.
 - Rose, M.; Gorzawski, G.; Miehe, G.; Balogh, A.G.; Hahn, H. Phase stability of nanostructured materials under heavy ion irradiation. Nanostruct. Mater. 1995, 6, 731–734, doi:10.1016/0965-9773(95)00162-X.
 - 71.
 - Toulemonde, M.; Dufour, C.; Meftah, A.; Paumier, E. Transient thermal processes in heavy ion irradiation of crystalline inorganic insulators. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2000, 166, 903–912, doi:10.1016/S0168-583X(99)00799-5.
 - 72.
 - Weber, W.J. Alpha-irradiation damage in CeO2, UO2 and PuO2. Radiat. Eff. 1984, 83, 145–156, doi:10.1080/00337578408215798.
 - 73.
 - Lang, M.; Zhang, F.; Zhang, J.; Wang, J.; Schuster, B.; Trautmann, C.; Neumann, R.; Becker, U.; Ewing, R.C. Nanoscale manipulation of the properties of solids at high pressure with relativistic heavy ions. Nat. Mater. 2009, 8, 793–797, doi:10.1038/nmat2528.
 - 74.
 - Kourouklis, G.A.; Jayaraman, A.; Espinosa, G.P. High-pressure Raman study of CeO2 to 35 GPa and pressure-induced phase transformation from the fluorite structure. Phys. Rev. B 1988, 37, 4250–4253, doi:10.1103/PhysRevB.37.4250.
 - 75.
 - Duclos, S.J.; Vohra, Y.K.; Ruoff, A.L.; Jayaraman, A.; Espinosa, G.P. High-pressure x-ray diffraction study of CeO2 to 70 GPa and pressure-induced phase transformation from the fluorite structure. Phys. Rev. B 1988, 38, 7755–7758, doi:10.1103/PhysRevB.38.7755.
 - 76.
 - Wang, J.; Ewing, R.C.; Becker, U. Electronic structure and stability of hyperstoichiometric UO2+x under pressure. Phys. Rev. B 2013, 88, 024109, doi:10.1103/PhysRevB.88.024109.
 - 77.
 - Ge, M.Y.; Fang, Y.Z.; Wang, H.; Chen, W.; He, Y.; Liu, E.Z.; Su, N.H.; Stahl, K.; Feng, Y.P.; Tse, J.S.; et al. Anomalous compressive behavior in CeO2 nanocubes under high pressure. New J. Phys. 2008, 10, 123016, doi:10.1088/1367-2630/10/12/123016.
 - 78.
 - Chen, W.; Navrotsky, A. Thermochemical study of trivalent-doped ceria systems: CeO2–MO1.5 (M = La, Gd, and Y). J. Mater. Res. 2006, 21, 3242–3251, doi:10.1557/jmr.2006.0400.
 - 79.
 - Tahara, Y.; Shimizu, K.; Ishikawa, N.; Okamoto, Y.; Hori, F.; Matsui, T.; Iwase, A. Study on effects of energetic ion irradiation in Gd2O3-doped CeO2 by means of synchrotron radiation X-ray spectroscopy. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2012, 277, 53–57, doi:10.1016/j.nimb.2011.12.048.
 - 80.
 - Sasajima, Y.; Ajima, N.; Osada, T.; Ishikawa, N.; Iwase, A. Molecular dynamics simulation of fast particle irradiation to the Gd2O3-doped CeO2. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2013, 316, 176–182, doi:10.1016/j.nimb.2013.09.004.
 - 81.
 - Zhu, B.; Ohno, H.; Kosugi, S.; Hori, F.; Yasunaga, K.; Ishikawa, N.; Iwase, A. Effects of swift heavy ion irradiation on the structure of Er2O3-doped CeO2. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2010, 268, 3199–3202, doi:10.1016/j.nimb.2010.05.088.
 - 82.
 - Lucid, A.K.; Keating, P.R.L.; Allen, J.P.; Watson, G.W. Structure and Reducibility of CeO2 Doped with Trivalent Cations. J. Phys. Chem. C 2016, 120, 23430–23440, doi:10.1021/acs.jpcc.6b08118.
 - 83.
 - Tracy, C.L.; McLain Pray, J.; Lang, M.; Popov, D.; Park, C.; Trautmann, C.; Ewing, R.C. Defect accumulation in ThO2 irradiated with swift heavy ions. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2014, 326, 169–173, doi:10.1016/j.nimb.2013.08.070.
 - 84.
 - Preuss, A.; Gruehn, R. Preparation and Structure of Cerium Titanates Ce2TiO5, Ce2TiO7, and Ce4Ti9O24. J. Solid State Chem. 1994, 110, 363–369, doi:10.1006/jssc.1994.1181.
 - 85.
 - Uberuaga, B.P.; Sickafus, K.E. Interpreting oxygen vacancy migration mechanisms in oxides using the layered structure motif. Comput. Mater. Sci. 2015, 103, 216–223, doi:10.1016/j.commatsci.2014.10.013.
 - 86.
 - Adachi, G.-y.; Imanaka, N. The Binary Rare Earth Oxides. Chem. Rev. 1998, 98, 1479–1514, doi:10.1021/cr940055h.
 - 87.
 - Gaboriaud, R.J.; Jublot, M.; Paumier, F.; Lacroix, B. Phase transformations in Y2O3 thin films under swift Xe ions irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2013, 310, 6–9, doi:10.1016/j.nimb.2013.05.014.
 - 88.
 - Sattonnay, G.; Bilgen, S.; Thomé, L.; Grygiel, C.; Monnet, I.; Plantevin, O.; Huet, C.; Miro, S.; Simon, P. Structural and microstructural tailoring of rare earth sesquioxides by swift heavy ion irradiation. Phys. Status Solidi (b) 2016, 253, 2110–2114, doi:10.1002/pssb.201600451.
 - 89.
 - Lang, M.; Zhang, F.; Zhang, J.; Tracy, C.L.; Cusick, A.B.; VonEhr, J.; Chen, Z.; Trautmann, C.; Ewing, R.C. Swift heavy ion-induced phase transformation in Gd2O3. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2014, 326, 121–125, doi:10.1016/j.nimb.2013.10.073.
 - 90.
 - Bilgen, S.; Sattonnay, G.; Grygiel, C.; Monnet, I.; Simon, P.; Thomé, L. Phase transformations induced by heavy ion irradiation in Gd2O3: Comparison between ballistic and electronic excitation regimes. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2018, 435, 12–18, doi:10.1016/j.nimb.2017.12.024.
 - 91.
 - Bevan, D.J.M. Ordered intermediate phases in the system CeO2-Ce2O3. J. Inorg. Nucl. Chem. 1955, 1, 49–59, doi:10.1016/0022-1902(55)80067-X.
 - 92.
 - Da Silva, J.L.F. Stability of the Ce2O3 phases: A DFT+U investigation. Phys. Rev. B 2007, 76, 193108, doi:10.1103/PhysRevB.76.193108.
 - 93.
 - Ewing, R.C.; Weber, W.J.; Lian, J. Nuclear waste disposal—pyrochlore (A2B2O7): Nuclear waste form for the immobilization of plutonium and “minor” actinides. J. Appl. Phys. 2004, 95, 5949–5971, doi:10.1063/1.1707213.
 - 94.
 - Subramanian, M.A.; Aravamudan, G.; Subba Rao, G.V. Oxide pyrochlores—A review. Prog. Solid State Chem. 1983, 15, 55–143, doi:10.1016/0079-6786(83)90001-8.
 - 95.
 - Zhang, F.X.; Tracy, C.L.; Lang, M.; Ewing, R.C. Stability of fluorite-type La2Ce2O7 under extreme conditions. J. Alloys Compd. 2016, 674, 168–173, doi:10.1016/j.jallcom.2016.03.002.
 - 96.
 - Lang, M.; Lian, J.; Zhang, J.; Zhang, F.; Weber, W.J.; Trautmann, C.; Ewing, R.C. Single-ion tracks in Gd2Zr2-xTixO7 pyrochlores irradiated with swift heavy ions. Phys. Rev. B 2009, 79, 224105, doi:10.1103/PhysRevB.79.224105.
 - 97.
 - Lang, M.; Zhang, F.X.; Ewing, R.C.; Lian, J.; Trautmann, C.; Wang, Z. Structural modifications of Gd2Zr2-xTixO7 pyrochlore induced by swift heavy ions: Disordering and amorphization. J. Mater. Res. 2009, 24, 1322–1334, doi:10.1557/jmr.2009.0151.
 - 98.
 - Tracy, C.L.; Shamblin, J.; Park, S.; Zhang, F.; Trautmann, C.; Lang, M.; Ewing, R.C. Role of composition, bond covalency, and short-range order in the disordering of stannate pyrochlores by swift heavy ion irradiation. Phys. Rev. B 2016, 94, 064102, doi:10.1103/PhysRevB.94.064102.
 - 99.
 - Park, S.; Lang, M.; Tracy, C.L.; Zhang, J.; Zhang, F.; Trautmann, C.; Rodriguez, M.D.; Kluth, P.; Ewing, R.C. Response of Gd2Ti2O7 and La2Ti2O7 to swift-heavy ion irradiation and annealing. Acta Mater. 2015, 93, 1–11, doi:10.1016/j.actamat.2015.04.010.
 - 100.
 - Sickafus, K.E.; Minervini, L.; Grimes, R.W.; Valdez, J.A.; Ishimaru, M.; Li, F.; McClellan, K.J.; Hartmann, T. Radiation Tolerance of Complex Oxides. Science 2000, 289, 748.
 - 101.
 - Shamblin, J.; Feygenson, M.; Neuefeind, J.; Tracy, C.L.; Zhang, F.; Finkeldei, S.; Bosbach, D.; Zhou, H.; Ewing, R.C.; Lang, M. Probing disorder in isometric pyrochlore and related complex oxides. Nat. Mater. 2016, 15, 507–511, doi:10.1038/nmat4581. Available online: http://www.nature.com/nmat/journal/v15/n5/abs/nmat4581.html#supplementary-information (accessed on 30 April 2021).
 - 102.
 - Shamblin, J.; Tracy, C.L.; Palomares, R.I.; O’Quinn, E.C.; Ewing, R.C.; Neuefeind, J.; Feygenson, M.; Behrens, J.; Trautmann, C.; Lang, M. Similar local order in disordered fluorite and aperiodic pyrochlore structures. Acta Mater. 2018, 144, 60–67, doi:10.1016/j.actamat.2017.10.044.
 
Reference
- Cureton, W.F.; Tracy, C.L.; Lang, M. Review of Swift Heavy Ion Irradiation Effects in CeO2. Quantum Beam Sci. 2021, 5, 19. [Google Scholar] [CrossRef]
 
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.  | 
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cureton, W.F.; Tracy, C.L.; Lang, M. Erratum: Cureton et al. Review of Swift Heavy Ion Irradiation Effects in CeO2. Quantum Beam Sci. 2021, 5, 19. Quantum Beam Sci. 2021, 5, 24. https://doi.org/10.3390/qubs5030024
Cureton WF, Tracy CL, Lang M. Erratum: Cureton et al. Review of Swift Heavy Ion Irradiation Effects in CeO2. Quantum Beam Sci. 2021, 5, 19. Quantum Beam Science. 2021; 5(3):24. https://doi.org/10.3390/qubs5030024
Chicago/Turabian StyleCureton, William F., Cameron L. Tracy, and Maik Lang. 2021. "Erratum: Cureton et al. Review of Swift Heavy Ion Irradiation Effects in CeO2. Quantum Beam Sci. 2021, 5, 19" Quantum Beam Science 5, no. 3: 24. https://doi.org/10.3390/qubs5030024
APA StyleCureton, W. F., Tracy, C. L., & Lang, M. (2021). Erratum: Cureton et al. Review of Swift Heavy Ion Irradiation Effects in CeO2. Quantum Beam Sci. 2021, 5, 19. Quantum Beam Science, 5(3), 24. https://doi.org/10.3390/qubs5030024
        
