Neutron Beam Characterization at Neutron Radiography (NRAD) Reactor East Beam Following Reactor Modifications
Abstract
:1. Introduction
2. Neutron Beam Characteristics
2.1. Neutron Beam Flux
2.2. Neutron Beam Uniformity
2.3. Cadmium Ratio
2.4. Image Quality per ASTM Standards
2.5. Neutron Energy Spectrum
3. Results
3.1. Neutron Beam Flux and Uniformity
3.2. Cadmium Ratio
3.3. Image Quality
3.4. Neutron Energy Spectrum
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bess, J.D.; Briggs, J.B.; Lell, R.M. Neutron Radiography (NRAD) Reactor 64-Element Core Upgrade; Idaho National Laboratory: Idaho Falls, ID, USA, 2014. [Google Scholar]
- Craft, A.E.; Wachs, D.M.; Okuniewski, M.A.; Chichester, D.L.; Williams, W.J.; Papaionannou, G.C.; Smolinski, A.T. Neutron radiography of irradiated nuclear fuel at Idaho National Laboratory. Phys. Proc. 2015, 69, 483–490. [Google Scholar] [CrossRef] [Green Version]
- Craft, A.E.; Papaioannou, G.C.; Chichester, D.L.; Williams, W.J. Conversion from film to image plates for transfer method neutron radiography of nuclear fuel. Phys. Proc. 2017, 88, 81–88. [Google Scholar] [CrossRef]
- Papaioannou, G.C.; Craft, A.E.; Ruddell, M.A. Conversion from film based transfer method neutron radiography to computed radiography for post irradiation examination of nuclear fuels. Mat. Res. Proc. 2020, 15, 136–141. [Google Scholar]
- Tremsin, A.S.; Craft, A.E.; Papaioannou, G.C.; Smolinski, A.T.; Boulton, N.M.; Ruddell, M.A.; Littell, B.J.; Riley, K.D. On the possibility to investigate irradiated fuel pins non-destructively by digital neutron radiography with a neutron-sensitive microchannel plate detector with Timepix readout. Nucl. Inst. Meth. A 2019, 927, 109–118. [Google Scholar] [CrossRef]
- Craft, A.; Schillinger, B.; Chuirazzi, W.; Papaioannou, G.; Smolinski, A.; Boulton, N. First neutron computed tomography with digital neutron imaging systems in a high-radiation environment at the 250 kW Neutron Radiography Reactor at Idaho National Laboratory. Mat. Res. Proc. 2020, 15, 42–47. [Google Scholar]
- Imel, G.R.; Urbatsch, T. Beam characterization at the Neutron Radiography Facility (NRAD). In Proceedings of the Fourth World Conference on Neutron Radiography, San Francisco, CA, USA, 10–16 May 1992; pp. 673–680. [Google Scholar]
- Morgan, S.W.; King, J.C.; Pope, C.L. Beam characterization at the Neutron Radiography Reactor. Nucl. Eng. Des. 2013, 265, 639–653. [Google Scholar] [CrossRef] [Green Version]
- Craft, A.E.; Hilton, B.A.; Papaioannou, G.C. Characterization of a neutron beam following reconfiguration of the Neutron Radiography Reactor (NRAD) core and addition of new fuel elements. Nucl. Eng. Technol. 2016, 48, 200–210. [Google Scholar] [CrossRef] [Green Version]
- Amsil, H.; Jalil, A.; Kabach, O.; Chahidi, H.; Bounouira, H.; Elyounoussi, C.; Chetaine, A. Neutron beam characterization for the Moroccan TRIGA Mark II reactor. J. Radioanal. Nucl. Chem. 2021, 327, 1063–1072. [Google Scholar] [CrossRef]
- Jensen, S.R.; Craft, A.E.; Papaioannou, G.C.; Empie, W.W.; Ward, B.R.; Batt, L.A. Restart of the transient reactor test (TREAT) facility neutron radiography program. Nucl. Technol. 2019, 205, 1325–1335. [Google Scholar] [CrossRef]
- Baum, E.M.; Ernesti, M.C.; Knox, H.D.; Miller, T.R.; Watson, A.M. Nuclides and Isotopes: Chart of the Nuclides; Bechtel Marine Propulsion Corporation: Niskayuna, NY, USA, 2009. [Google Scholar]
- Larson, N.R.; Storms, B.J. Interviewees, Email Correspondence. [Interview]. 19 September 2017. [Google Scholar]
- Lamarsh, J.R.; Baratta, A.J. Introduction to Nuclear Engineering, 4th ed.; Pearson: Hoboken, NJ, USA, 2018. [Google Scholar]
- Flemming, R. Neutron self-shielding factors for simple geometries. Appl. Rad. Iso. 1982, 33, 1263–1268. [Google Scholar] [CrossRef]
- Knoll, G.F. Radiation Detection and Measurement; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010. [Google Scholar]
- Kobayashi, H.; Plaut, R.H. Beam formation and characterization for neutron radiography. Nondest. Test. Eval. 2001, 16, 121–129. [Google Scholar] [CrossRef]
- ASTM International. E262-17 Standard Test Method for Determining Thermal Neutron Reaction Rates and Thermal Neutron Fluence Rates by Radioactivation Techniques; ASTM International: West Conshohocken, PA, USA, 2008. [Google Scholar]
- Nuclear Data Center at KAERI. Korea Atomic Energy Research Institute. Available online: http://atom.kaeri.re.kr/ (accessed on 14 April 2021).
- ASTM International. E545-19 Standard Test Method for Determining Image Quality in Direct Thermal Neutron Radiographic Examination; ASTM International: West Conshohocken, PA, USA, 2010. [Google Scholar]
- Horkely, M.D. Neutron Spectral Measurements and Calculation Comparisons of Idaho State University ANG-201 Reactor; Idaho State University: Pocatello, ID, USA, 2013. [Google Scholar]
- Nimmagadda, J.K. Analysis of Fast Reactor Filter Spectra in the Advanced Test Reactor and Neutron Spectral Measurement at Idaho Accelerator Center; Idaho State University: Pocatello, ID, USA, 2012. [Google Scholar]
- Aghara, S.K. Characterization and quantification of an in-core neutron irradiation facility at TRIGA II research reactor. Nucl. Inst. Meth. B 2006, 248, 181–190. [Google Scholar] [CrossRef]
- Permana, S.; Ilham, Y. Characterization of neutron and gamma beams at the tangential beam port of TRIGA 2000 reactor using Monte Carlo methods. J. Phys. 2021, 1772, 012024. [Google Scholar]
- Jafari, H.; Choopan Dastjerdi, M.H.; Rajabi Moghadam, S. A Monte Carlo evaluation of neutron images quality in a research reactor based neutron radiography facility. Nucl. Inst. Meth. A 2020, 976, 164258. [Google Scholar] [CrossRef]
- Giegel, S.H.; Pope, C.L.; Craft, A.E. Determination of the neutron energy spectrum of a radial neutron beam at a TRIGA reactor. Nucl. Inst. Meth. B 2019, 454, 28–39. [Google Scholar] [CrossRef]
- How Does a Densitometer Work? US Ink, Sun Chemical Corporation. Available online: http://www.sunchemical.com/product/technical-library/ (accessed on 29 September 2017).
- Pope, C.L.; Jensen, B.; Gerstner, D.M.; Parry, J.R. Transient Reactor Test (TREAT) facility design and experiment capability. Nucl. Technol. 2019, 205, 1378–1386. [Google Scholar] [CrossRef]
DB | Film densities measured through the images of the boron nitride disks |
DL | Film densities measured through the images of the lead disks |
DH | Film density measured at the center of the hole in the BPI |
DT | Film density measured through the image of the polytetrafluorethylene |
ΔDL | Difference between the DL values |
ΔDB | Difference between the DB values |
Value of H. | Shim | Value of G | Gap |
---|---|---|---|
1 | C | 1 | T |
2 | C | 2 | U |
3 | C | 3 | V |
4 | C | 4 | W |
5 | B | 5 | X |
6 | B | 6 | Y |
7 | B | 7 | Z |
8 | B | ||
9 | A | ||
10 | A | ||
11 | A | ||
12 | A |
Category | NC | H | G | S | γ | P |
---|---|---|---|---|---|---|
I | 65 | 6 | 6 | 5 | 3 | 3 |
II | 60 | 6 | 6 | 6 | 4 | 4 |
III | 55 | 5 | 5 | 7 | 5 | 5 |
IV | 50 | 4 | 5 | 8 | 6 | 6 |
V | 45 | 3 | 5 | 9 | 7 | 7 |
Parameter | (±) | (%) |
---|---|---|
Foil Weight (g) | 0.0005 | 0.42% |
Activity (dps) * | -- | 1.5% |
Time (s) | 0.001 | 0.10% |
Placement (in) | 0.0625 | 1.04% |
Position | Trial #1 | Trial #2 | Average | ||||
---|---|---|---|---|---|---|---|
Activity (dps) | Flux (n/cm2/s) | Error (2σ) | Activity (dps) | Flux (n/cm2/s) | Error (2σ) | Flux (n/cm2/s) | |
1 | 1.795 × 104 | 9.591 × 106 | 2.6% | 1.828 × 104 | 9.753 × 106 | 2.6% | 9.672 × 106 |
2 | 1.765 × 104 | 9.410 × 106 | 2.6% | 1.799 × 104 | 9.635 × 106 | 2.6% | 9.522 × 106 |
3 | 1.743 × 104 | 9.479 × 106 | 2.6% | 1.836 × 104 | 9.769 × 106 | 2.6% | 9.624 × 106 |
4 | 1.769 × 104 | 9.604 × 106 | 2.6% | 1.821 × 104 | 9.533 × 106 | 2.6% | 9.568 × 106 |
5 | 1.813 × 104 | 9.722 × 106 | 2.6% | 1.865 × 104 | 9.813 × 106 | 2.6% | 9.768 × 106 |
6 | 1.736 × 104 | 9.399 × 106 | 2.6% | 1.780 × 104 | 9.512 × 106 | 2.6% | 9.456 × 106 |
7 | 1.788 × 104 | 9.713 × 106 | 2.6% | 1.839 × 104 | 9.591 × 106 | 2.6% | 9.652 × 106 |
8 | 1.806 × 104 | 9.715 × 106 | 2.6% | 1.832 × 104 | 9.630 × 106 | 2.6% | 9.672 × 106 |
9 | 1.799 × 104 | 9.691 × 106 | 2.6% | 1.832 × 104 | 9.661 × 106 | 2.6% | 9.676 × 106 |
10 | 1.784 × 104 | 9.692 × 106 | 2.6% | 1.865 × 104 | 9.845 × 106 | 2.6% | 9.769 × 106 |
11 | 1.802 × 104 | 9.695 × 106 | 2.7% | 1.843 × 104 | 9.480 × 106 | 2.7% | 9.588 × 106 |
12 | 1.780 × 104 | 9.672 × 106 | 2.6% | 1.821 × 104 | 9.381 × 106 | 2.6% | 9.527 × 106 |
13 | 1.784 × 104 | 9.668 × 106 | 2.6% | 1.828 × 104 | 9.434 × 106 | 2.6% | 9.551 × 106 |
14 | 1.839 × 104 | 9.902 × 106 | 2.5% | 1.832 × 104 | 9.552 × 106 | 2.5% | 9.727 × 106 |
15 | 1.806 × 104 | 9.838 × 106 | 2.6% | 1.906 × 104 | 9.827 × 106 | 2.6% | 9.832 × 106 |
16 | 1.780 × 104 | 9.713 × 106 | 2.6% | 1.799 × 104 | 9.333 × 106 | 2.6% | 9.523 × 106 |
17 | 1.765 × 104 | 9.560 × 106 | 2.6% | 1.865 × 104 | 9.656 × 106 | 2.6% | 9.608 × 106 |
18 | 1.780 × 104 | 9.664 × 106 | 2.6% | 1.802 × 104 | 9.421 × 106 | 2.6% | 9.542 × 106 |
19 | 1.758 × 104 | 9.504 × 106 | 2.6% | 1.765 × 104 | 9.138 × 106 | 2.6% | 9.321 × 106 |
20 | 1.795 × 104 | 9.568 × 106 | 2.6% | 1.839 × 104 | 9.453 × 106 | 2.6% | 9.511 × 106 |
21 | 1.825 × 104 | 9.460 × 106 | 2.6% | 1.791 × 104 | 9.857 × 106 | 2.6% | 9.659 × 106 |
Trial #1 | Trial #2 | Averaged | ||||
Position | Activity (dps) | Error (2σ) | Activity (dps) | Error (2σ) | Cd Ratio | Error (2σ) |
1 | 8.96 × 103 | 2.9% | 8.33 × 103 | 2.9% | 2.10 | 2.9% |
2 | 8.96 × 103 | 2.9% | 8.48 × 103 | 2.9% | 2.04 | 2.9% |
3 | 8.73 × 103 | 2.9% | 8.44 × 103 | 2.9% | 2.08 | 2.9% |
4 | 8.62 × 103 | 2.9% | 8.29 × 103 | 2.9% | 2.12 | 2.9% |
5 | 8.81 × 103 | 2.9% | 8.55 × 103 | 2.9% | 2.12 | 2.9% |
6 | 8.92 × 103 | 2.9% | 8.62 × 103 | 2.9% | 2.00 | 2.9% |
7 | 8.88 × 103 | 2.9% | 8.33 × 103 | 2.9% | 2.11 | 2.9% |
8 | 9.44 × 103 | 2.9% | 8.48 × 103 | 2.9% | 2.03 | 2.9% |
9 | 1.05 × 104 | 2.9% | 8.62 × 103 | 2.9% | 1.90 | 2.9% |
10 | 8.92 × 103 | 2.9% | 8.62 × 103 | 2.9% | 2.08 | 2.9% |
11 | 8.62 × 103 | 2.9% | 8.81 × 103 | 2.9% | 2.09 | 2.9% |
12 | 9.18 × 103 | 2.9% | 8.66 × 103 | 2.9% | 2.02 | 2.9% |
13 | 8.73 × 103 | 2.9% | 8.48 × 103 | 2.9% | 2.10 | 2.9% |
14 | 8.92 × 103 | 2.9% | 8.44 × 103 | 2.9% | 2.12 | 2.9% |
15 | 1.01 × 104 | 2.9% | 8.62 × 103 | 2.9% | 1.98 | 2.9% |
16 | 8.66 × 103 | 2.9% | 8.77 × 103 | 2.9% | 2.05 | 2.9% |
17 | 9.25 × 103 | 2.9% | 8.85 × 103 | 2.9% | 2.01 | 2.9% |
18 | 8.92 × 103 | 2.9% | 8.51 × 103 | 2.9% | 2.06 | 2.9% |
19 | 9.10 × 103 | 2.9% | 8.62 × 103 | 2.9% | 1.99 | 2.9% |
20 | 9.29 × 103 | 2.9% | 8.59 × 103 | 2.9% | 2.03 | 2.9% |
21 | 8.92 × 103 | 2.9% | 8.70 × 103 | 2.9% | 2.05 | 2.9% |
BPI Parameters | ||
---|---|---|
DB | 0.47 | 0.44 |
DL | 2.13 | 2.23 |
DH | 2.77 | |
DT | 2.19 | |
ΔDL | 0.1 | |
ΔDB | 0.03 |
Parameter | ERS | Category I |
---|---|---|
NC | 79 | ≥65 |
S | 1 | ≤5 |
P | NA | ≤3 |
γ | NA | ≤3 |
G | 7 | ≥6 |
H | 7 | ≥6 |
Thermal Region (0–0.5 eV) | Intermediate Region (0.5 eV–100 keV) | Fast Region (100 keV–10 MeV) | Total |
---|---|---|---|
3.53 × 106 | 8.14 × 106 | 5.89 × 107 | 7.06 × 107 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giegel, S.H.; Craft, A.E.; Papaioannou, G.C.; Smolinski, A.T.; Pope, C.L. Neutron Beam Characterization at Neutron Radiography (NRAD) Reactor East Beam Following Reactor Modifications. Quantum Beam Sci. 2021, 5, 8. https://doi.org/10.3390/qubs5020008
Giegel SH, Craft AE, Papaioannou GC, Smolinski AT, Pope CL. Neutron Beam Characterization at Neutron Radiography (NRAD) Reactor East Beam Following Reactor Modifications. Quantum Beam Science. 2021; 5(2):8. https://doi.org/10.3390/qubs5020008
Chicago/Turabian StyleGiegel, Sam H., Aaron E. Craft, Glen C. Papaioannou, Andrew T. Smolinski, and Chad L. Pope. 2021. "Neutron Beam Characterization at Neutron Radiography (NRAD) Reactor East Beam Following Reactor Modifications" Quantum Beam Science 5, no. 2: 8. https://doi.org/10.3390/qubs5020008
APA StyleGiegel, S. H., Craft, A. E., Papaioannou, G. C., Smolinski, A. T., & Pope, C. L. (2021). Neutron Beam Characterization at Neutron Radiography (NRAD) Reactor East Beam Following Reactor Modifications. Quantum Beam Science, 5(2), 8. https://doi.org/10.3390/qubs5020008