Irradiation Hardening Behavior of He-Irradiated V–Cr–Ti Alloys with Low Ti Addition
Abstract
:1. Introduction
2. Experimental Procedure
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matsui, H.; Fukumoto, K.; Smith, D.; Chung, H.M.; Van Witzenburg, W.; Votinov, S. Status of vanadium alloys for fusion reactors. J. Nucl. Mater. 1996, 233, 92–99. [Google Scholar] [CrossRef][Green Version]
- Kurtz, R.J.; Abe, K.; Chernov, V.M.; Hoelzer, D.T.; Matsui, H.; Muroga, T.; Odette, G.R. Vanadium alloys for fusion blanket ap-plications. J. Nucl. Mater 2004, 329–333, 47–55. [Google Scholar] [CrossRef]
- Muroga, T.; Chen, J.; Chernov, V.; Kurtz, R.; Le Flem, M. Present status of vanadium alloys for fusion applications. J. Nucl. Mater. 2014, 455, 263–268. [Google Scholar] [CrossRef]
- Smith, D.L.; Chung, H.M.; Loomis, B.A.; Tsai, H.-C. Reference vanadium alloy V-4Cr-4Ti for fusion application. J. Nucl. Mater. 1996, 233, 356–363. [Google Scholar] [CrossRef][Green Version]
- Chung, H.M.; Loomis, B.A.; Smith, D.L. Properties of V-4Cr-4Ti for application as fusion reactor structural components. Fusion Eng. Des. 1995, 29, 455–464. [Google Scholar]
- Zinkle, S.J.; Matsui, H.; Smith, D.; Rowcliffe, A.; Van Osch, E.; Abe, K.; Kazakov, V. Research and development on vanadium alloys for fusion applications. J. Nucl. Mater. 1998, 258, 205–214. [Google Scholar] [CrossRef]
- Nagasaka, T.; Muroga, T.; Imamura, M.; Tomiyama, S.; Sakata, M. Fabrication of high-purity V-4Cr-4Ti low activation alloy products. Fusion Technol. 2001, 39, 659–663. [Google Scholar] [CrossRef]
- Muroga, T.; Nagasaka, T.; Abe, K.; Chernov, V.M.; Matsui, H.; Smith, D.L.; Xu, Z.-Y.; Zinkle, S.J. Vanadium alloys—Overview and recent results. J. Nucl. Mater. 2002, 307, 547–554. [Google Scholar] [CrossRef]
- Nagasaka, T.; Muroga, T.; Yican, W.; Zengyu, X.; Imamura, M. Low activation characteristics of several heats of V-4Cr-4Ti ingots. J. Plasma Fusion Res. Ser. 2002, 5, 545–550. [Google Scholar]
- Muroga, T. Vanadium alloys for fusion blanket application. Mater. Trans. 2005, 46, 405–411. [Google Scholar] [CrossRef][Green Version]
- Tanaka, T.; Nagasaka, T.; Muroga, T.; Yamazaki, M.; Toyama, T. Activation analysis for the reference low-activation vanadium alloy NIFS-HEAT-2. Nucl. Mater. Eng. 2020, 25, 100782. [Google Scholar] [CrossRef]
- Nagasaka, T. Unpublished Work in Grant-in-Aid for Scientific Research (A) 20H00144, 2020, Japan. Available online: https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20H00144/ (accessed on 31 December 2020).
- Saleh, M.; Xu, A.; Hurt, C.; Ionescu, M.; Daniels, J.E.; Munroe, P.; Edwards, L.; Bhattacharyya, D. Oblique cross-section nanoindentation for determining the hardness change in ion-irradiated steel. Int. J. Plast. 2019, 112, 242–256. [Google Scholar] [CrossRef]
- Fukumoto, K.; Matsui, H.; Chung, H.; Gazda, J.; Smith, D. Helium behavior in vanadium-based alloys irradiated in the dynamic helium charging experiments. Sci. Rep. Res. Inst. Tohoku Univ. A Phys. Chem. Met. 1997, 45, 149–155. [Google Scholar]
- Fukumoto, K.; Onitsuka, T.; Narui, M. Dose dependence of irradiation hardening of neutron irradiated vanadium alloys by using temperature control rig in JMTR. Nucl. Mater. Energy 2016, 9, 441–446. [Google Scholar] [CrossRef][Green Version]
- Heo, N.J.; Nagasaka, T.; Muroga, T. Effect of impurity levels on precipitation behavior in the low-activation V–4Cr–4Ti alloys. J. Nucl. Mater. 2002, 307–311, 620–624. [Google Scholar] [CrossRef][Green Version]
- Yaggee, F.L.; Gilbert, E.R.; Styles, J.W. Thermal expansivities, thermal conductivities, and densities of vanadium, titanium, chromium and some vanadium-base alloys: A comparison with austenitic stainless steel. J. Less Common Met. 1969, 19, 39–51. [Google Scholar] [CrossRef]
- Börm, H.; Schirra, M. Zeitstand- und kriechverhalten von Vanadin-Titan und Vanadin-Titan-Niob-legierungen. Z Metallkde 1968, 59, 715–723. [Google Scholar]
- Börm, H.; Schirra, M. Untersuchungen über das zeitstand- und kreichverhalten binärer und ternärer vanadin-legierungen. J. Less Common Met. 1967, 12, 280–293. [Google Scholar]
- Fukumoto, K.; Matsui, H. Precipitation behavior of vanadium alloys during creep deformation in a liquid sodium environment. Mater. Jpn. 2008, 47, 611. (In Japanese) [Google Scholar] [CrossRef][Green Version]
- Impagnatiello, A.; Shubeita, S.M.; Wady, P.T. Monolayer-thick TiO precipitation in V-4Cr-4Ti alloy induced by proton irradiation. Scr. Mater. 2017, 130, 174–177. [Google Scholar] [CrossRef][Green Version]
- Impagnatiello, A.; Toyama, T.; Jimenez-Melero, E. Ti-rich precipitate evolution in vanadium-based alloys during annealing above 400 °C. J. Nucl. Mater. 2017, 485, 122–128. [Google Scholar] [CrossRef]
- Impagnatiello, A.; Hernandez-Maldonado, D.; Bertali, G. Atomically resolved chemical ordering at the nm-thick TiO precipitate/matrix interface in V-4Ti-4Cr alloy. Scr. Mater. 2017, 126, 50–54. [Google Scholar] [CrossRef][Green Version]
- Chung, H.M.; Loomis, B.A.; Smith, D.L. Creep properties of vanadium-base alloys. J. Nucl. Mater. 1994, 212–215, 772–777. [Google Scholar] [CrossRef][Green Version]
- Fukumoto, K.; Matsui, H.; Candra, Y.; Takahashi, K.; Sasanuma, H.; Nagata, S.; Takahiro, K. Radiation-induced precipitation in V–(Cr,Fe)–Ti alloys irradiated at low temperature with low dose during neutron or ion irradiation. J. Nucl. Mater. 2000, 283–287, 535–540. [Google Scholar] [CrossRef]
- Fukumoto, K.; Iwasaki, M. A replica technique for extracting precipitates from neutron-irradiated or thermal-aged vanadium alloys for TEM analysis. J. Nucl. Mater. 2014, 449, 315–319. [Google Scholar] [CrossRef]
- Watanabe, H.; Muroga, T.; Nagasaka, T. Effects of Irradiation Environment on V-4Cr-4Ti Alloys. Plasma Fusion Res. 2017, 12, 2405011. [Google Scholar] [CrossRef][Green Version]
- Rice, P.M.; Zinkle, S.J. Temperature dependence of the radiation damage microstructure in V–4Cr–4Ti neutron irradiated to low dose. J. Nucl. Mater. 1998, 258–263, 1414–1418. [Google Scholar] [CrossRef]
- Seeger, A. Proceedings of 2nd United Nations International Conference on the Peaceful Uses of Atomic Energy, Geneva; United Nations: New York, NY, USA, 1958; Volume 6, p. 250. [Google Scholar]
- Kiritani, M. Microstructure evolution during irradiation. J. Nucl. Mater. 1994, 216, 220–264. [Google Scholar] [CrossRef]
- Kinoshita, C.; Fukumoto, K.; Nakai, K. Radiation-induced microstructural change in ceramic materials. Ann. Chim. Fr. 1991, 16, 379. [Google Scholar]
- Fukumoto, K.; Kimura, A.; Matsui, H. Swelling behavior of V–Fe binary and V–Fe–Ti ternary alloys. J. Nucl. Mater. 1998, 258–263, 1431–1436. [Google Scholar] [CrossRef]
Composition (wt.%) | Cr | Ti | C | N | O | Mo | Al | Si |
---|---|---|---|---|---|---|---|---|
V-4Cr | 3.80 | 0.002 | 0.004 | 0.005 | 0.036 | (<0.001) | 0.005 | (0.02) |
V-4Cr (h) | 3.90 | 0.002 | 0.009 | 0.003 | 0.018 | (<0.001) | 0.011 | (0.02) |
V-4Cr-0.1Ti | 3.88 | 0.09 | 0.005 | 0.005 | 0.038 | (<0.001) | 0.012 | (0.02) |
V-4Cr-0.1Ti (h) | 3.90 | 0.09 | 0.007 | 0.003 | 0.017 | (<0.001) | 0.011 | (0.02) |
V-4Cr-1Ti | 3.86 | 0.96 | 0.005 | 0.006 | 0.035 | <0.001 | 0.006 | 0.016 |
V-4Cr-1Ti (h) | 4.02 | 0.96 | 0.008 | 0.004 | 0.016 | (<0.001) | 0.009 | (0.02) |
V-4Cr-2Ti | 3.94 | 1.93 | 0.005 | 0.005 | 0.037 | (<0.001) | 0.005 | (0.02) |
V-4Cr-2Ti (h) | 3.89 | 1.92 | 0.008 | 0.003 | 0.015 | (<0.001) | 0.006 | (0.02) |
V-4Cr-3Ti (h) | 3.92 | 2.99 | 0.009 | 0.003 | 0.016 | (<0.001) | 0.007 | (0.02) |
V-4Cr-4Ti | 3.93 | 3.91 | 0.006 | 0.006 | 0.036 | <0.001 | 0.009 | 0.016 |
V-4Cr-4Ti (h) | 4.11 | 3.89 | 0.008 | 0.003 | 0.018 | (<0.001) | 0.018 | (0.02) |
V-6Cr-1Ti | 5.97 | 0.96 | 0.006 | 0.006 | 0.036 | <0.001 | 0.006 | 0.016 |
V-6Cr-1Ti (h) | 5.95 | 0.95 | 0.010 | 0.003 | 0.015 | (<0.001) | 0.016 | (0.02) |
V-8Cr-1Ti | 7.89 | 0.99 | 0.006 | 0.006 | 0.038 | <0.001 | 0.008 | 0.016 |
V-8Cr-1Ti (h) | 7.83 | 1.00 | 0.008 | 0.003 | 0.015 | (<0.001) | 0.016 | (0.02) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fukumoto, K.-i.; Kitamura, Y.; Miura, S.; Fujita, K.; Ishigami, R.; Nagasaka, T. Irradiation Hardening Behavior of He-Irradiated V–Cr–Ti Alloys with Low Ti Addition. Quantum Beam Sci. 2021, 5, 1. https://doi.org/10.3390/qubs5010001
Fukumoto K-i, Kitamura Y, Miura S, Fujita K, Ishigami R, Nagasaka T. Irradiation Hardening Behavior of He-Irradiated V–Cr–Ti Alloys with Low Ti Addition. Quantum Beam Science. 2021; 5(1):1. https://doi.org/10.3390/qubs5010001
Chicago/Turabian StyleFukumoto, Ken-ichi, Yoshiki Kitamura, Shuichiro Miura, Kouji Fujita, Ryoya Ishigami, and Takuya Nagasaka. 2021. "Irradiation Hardening Behavior of He-Irradiated V–Cr–Ti Alloys with Low Ti Addition" Quantum Beam Science 5, no. 1: 1. https://doi.org/10.3390/qubs5010001