Durability, Capillary Rise and Water Absorption Properties of a Fiber-Reinforced Cement-Stabilized Fly Ash–Stone Dust Mixture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Fly Ash
2.1.2. Stone Dust and Crushed Stone Aggregates
2.1.3. Cement
2.1.4. Fibers
2.2. Mix Proportioning
2.3. Sample Preparation and Curing
2.4. Experimental Investigation
2.4.1. Unconfined Compressive Strength Test
2.4.2. Indirect Tensile Strength (IDT) Test
2.4.3. Wet–Dry Durability Test
2.4.4. Capillary Rise and Water Absorption Test
2.4.5. X-ray Diffraction Test and Scanning Electron Microscopic Study
3. Result and Discussions
3.1. Wet–Dry Durability
3.1.1. Effect of Cement Content on Mass Loss of FA–SD Mixes
3.1.2. Effect of Fiber Percentages on Mass Loss of the Stabilized FA–SD Mixes
3.1.3. Correlations between Mass Loss and UCS
3.1.4. Correlations between Mass Loss and IDT
3.2. Capillary Rise
3.2.1. Effect of Cement and Coarse Aggregate on Capillary Rise
3.2.2. Effect of Fiber on the Capillary Rise of FA-SD Samples
3.3. Water Absorption
3.3.1. Effect of Cement on Water Absorption
3.3.2. Effect of Fiber on Water Absorption of FA–SD Mixes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- ASTM C618; Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. American Society for Testing and Materials: West Conshohocken, PA, USA, 2022.
- Tkaczewska, E. Effect of the superplasticizer type on the properties of the fly ash blended cement. Constr. Build. Mater. 2014, 70, 388–393. [Google Scholar] [CrossRef]
- Gorai, S. Utilization of fly ash for sustainable environment management. J. Mater. Environ. Sci. 2018, 9, 385–393. [Google Scholar] [CrossRef]
- Yoon, S.; Balunaini, U.; Yildirim, I.Z.; Prezzi, M.; Siddiki, N.Z. Construction of an embankment with a fly and bottom ash mixture: Field performance study. J. Mater. Civ. Eng. 2009, 21, 271–278. [Google Scholar] [CrossRef]
- Azaiez, H.; Cherif Taiba, A.; Mahmoudi, Y.; Belkhatir, M. Shear characteristics of fly ash improved sand as an embankment material for road infrastructure purpose. Innov. Infrastruct. Solut. 2021, 6, 148. [Google Scholar] [CrossRef]
- Renjith, R.; Robert, D.; Setunge, S.; Costa, S.; Mohajerani, A. Optimization of fly ash based soil stabilization using secondary admixtures for sustainable road construction. J. Clean. Prod. 2021, 294, 126264. [Google Scholar] [CrossRef]
- Rai, P.; Qiu, W.; Pei, H.; Chen, J.; Ai, X.; Liu, Y.; Ahmad, M. Effect of fly ash and cement on the engineering characteristic of stabilized subgrade soil: An experimental study. Geofluids 2021, 2021, 1368194. [Google Scholar] [CrossRef]
- Ghosh, A.; Subbarao, C. Strength characteristics of class F fly ash modified with lime and gypsum. J. Geotech. Geoenviron. Eng. 2007, 133, 757–766. [Google Scholar] [CrossRef]
- Patel, S.; Shahu, J.T. Comparison of industrial waste mixtures for use in subbase course of flexible pavements. J. Mater. Civ. Eng. 2018, 30, 04018124. [Google Scholar] [CrossRef]
- Puppala, A.J.; Saride, S.; Williammee, R. Sustainable reuse of limestone quarry fines and RAP in pavement base/subbase layers. J. Mater. Civ. Eng. 2012, 24, 418–429. [Google Scholar] [CrossRef]
- Samanta, M. Investigation on geomechanical behaviour and microstructure of cement-stabilized fly ash. Int. J. Geotech. Eng. 2018, 12, 449–461. [Google Scholar] [CrossRef]
- Bakare, M.D.; Pai, R.R.; Patel, S.; Shahu, J.T. Environmental sustainability by bulk utilization of fly ash and GBFS as road subbase materials. J. Hazard Toxic. Radioact. Waste 2019, 23, 04019011. [Google Scholar] [CrossRef]
- Pai, R.R.; Bakare, M.; Patel, S.; Shahu, J.T. Structural evaluation of flexible pavement constructed with steel slag fly ash-lime mix in the base layer. J. Mater. Civ. Eng. 2021, 33, 04021097. [Google Scholar] [CrossRef]
- Kaniraj, S.R.; Gayathri, V. Factors influencing the strength of cement fly ash base courses. J. Transp. Eng. 2003, 129, 538–548. [Google Scholar] [CrossRef]
- Beriha, B.; Biswal, D.R.; Sahoo, U.C. Effect of Wet-Dry Cycles on Mechanical Strength Properties of Cement Stabilized Granular Lateritic Soil. In Latest Thoughts on Ground Improvement Techniques: Proceedings of the 2nd GeoMEast International Congress and Exhibition on Sustainable Civil. Infrastructures, Cairo, Egypt, 24 November 2018—The Official International Congress of the Soil-Structure Interaction Group. in Egypt. (SSIGE); Shehata, H., Poulos, H., Eds.; Springer: Cham, Switzerland, 2018; pp. 112–121. ISBN 978-3-030-01917-4. [Google Scholar]
- Patel, D.; Kumar, R.; Chauhan, K.A.; Patel, S. Experimental and modeling studies of resilient modulus and permanent strain of stabilized fly ash. J. Mater. Civ. Eng. 2019, 31, 06019005. [Google Scholar] [CrossRef]
- Barmade, S.; Patel, S.; Dhamaniya, A. Laboratory and field evaluation of stabilized fly ash as an alternative material for sustainable pavements. J. Hazard. Toxic. Radioact. Waste 2022, 26, 04022028. [Google Scholar] [CrossRef]
- IRC SP:89; Guidelines for the Design of Stabilized Pavement (Part I). IRC: New Delhi, India, 2010.
- NCHRP (National Cooperative Highway Research Program). Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures; Final Report Project No. 1-37 A; Transportation Research Board (TRB): Washington, DC, USA, 2004. [Google Scholar]
- Austroads. Guide to Pavement Technology Part 2: Pavement Structural Design; Austroad: Sydney, Australia, 2012. [Google Scholar]
- IRC 37; Guidelines for the Design of Flexible Pavement. IRC: New Delhi, India, 2018.
- PCA. Soil-Cement Laboratory Handbook; Portland Cement Association: Chicago, IL, USA, 1992. [Google Scholar]
- IS 8112; Ordinary Portland Cement, 43 Grade—Specification (Second Revision). BIS: New Delhi, India, 2003.
- ASTM D1633; Standard Test Methods for Compressive Strength of Molded Soil-Cement Cylinders. ASTM International: West Conshohocken, PA, USA, 2017.
- Yeo, R. The Development and Evaluation of Protocols for the Laboratory Characterisation of Cemented Materials; Austroads Publication No. AP–T101/08; ARRB-Australia: Melbourne, Australia, 2008. [Google Scholar]
- ASTM D559; Standard Test Methods for Wetting and Drying Compacted Soil-Cement Mixtures. ASTM International: West Conshohocken, PA, USA, 2015.
- AS 1141.53; Absorption, Swell and Capillary Rise of Compacted Materials. Standards Australia: Sydney, Australia, 1996.
- Furlan, A.P.; Razakamanantsoa, A.; Ranaivomanana, H.; Amiri, O.; Levacher, D.; Deneele, D. Effect of Fly Ash on microstructural and resistance characteristics of dredged sediment stabilized with lime and cement. Constr. Build. Mater. 2021, 272, 121637. [Google Scholar] [CrossRef]
- Solikin, M.; Setunge, S.; Patnaikuni, I. The influence of lime water as mixing water on the compressive strength development of high volume ultra fine fly ash mortar. In Proceedings of the Modern Methods and Advances in Structural Engineering and Construction, Zurich, Switzerland, 21–26 June 2011. [Google Scholar]
- Zimar, Z.; Robert, D.; Zhou, A.; Giustozzi, F.; Setunge, S.; Kodikara, J. Application of coal fly ash in pavement subgrade stabilisation: A review. J. Environ. Manag. 2022, 312, 114926. [Google Scholar] [CrossRef] [PubMed]
- Biswal, D.R.; Sahoo, U.C.; Dash, S.R. Durability and shrinkage studies of cement stabilsed granular lateritic soils. Int. J. Pavement Eng. 2019, 20, 1451–1462. [Google Scholar] [CrossRef]
- Shihata, S.A.; Baghdadi, Z.A. Long-term strength and durability of soil cement. J. Mater. Civ. Eng. 2001, 13, 161–165. [Google Scholar] [CrossRef]
- AUSTSTAB. Developments in road stabilization. In Proceedings of the Joint VicRoads and AusStab Technology Transfer Seminar for Austroads NT&E Project 01; Australian Stabilisation Industry Association: Melbourne, Australia, 2001. [Google Scholar]
- Chakrabarti, S.; Kodikara, J. Basaltic crushed rock stabilized with cementitious additives: Compressive strength and stiffness, drying shrinkage, and capillary flow characteristics. Transp. Res. Rec. 2003, 1819, 18–26. [Google Scholar] [CrossRef]
References | Minimum UCS (MPa) for Base | Minimum UCS (Mpa) for Subbase |
---|---|---|
NCHRP [19] | 5.17 | 1.72 |
Austroads [20] | 2 | 2 |
IRC [21] | 4.5 | 1.5 |
Soil Types | Permissible Mass Loss (%) | Reference |
---|---|---|
Granular and sandy low-plasticity materials | 14 | Portland Cement Association [22] |
Granular and sandy higher plasticity materials | 10 | |
Silts and clays | 7 | |
Base | 20 | IRC [18] |
Subbase | 30 |
Properties | Values |
---|---|
Specific Gravity | 2.14 |
Liquid Limit (%) | Non-Plastic |
Plastic Limit (%) | Non-Plastic |
Maximum Dry Density | 1.35 g/cc |
Optimum Moisture Content | 19.54% |
Colour | Grey |
Element | Concentration (%) |
---|---|
SiO2 | 61.34 |
Al2O3 | 29.54 |
Fe2O3 | 4.89 |
CaO | 1.05 |
MgO | 0.56 |
Na2O | 0.10 |
K2O | 0.25 |
TiO2 | 0.67 |
P2O5 | 0.10 |
Loss on Ignition | 1.1 |
Property | Value |
---|---|
Length/Diameter | 12.0 mm/24 micron |
Aspect ratio | 500 |
Melting point | 162 °C |
Thermal Conductivity | Low |
Electrical Conductivity | Low |
Alkali resistance | 100% alkali proof |
Acid resistance | High |
Notation | Description |
---|---|
Faxx-Sdyy | xx% Fly Ash + yy% Stone Aggregate |
Faxx-Sdyy-Czz | xx% Fly Ash + yy% Stone Aggregate + zz% Cement |
Faxx-Sdyy-Czz-Fpp | xx% Fly Ash + yy% Stone Aggregate + zz% Cement + pp% Fiber |
Test Name | Type of Material | Proportion of Fly Ash, Stone Aggregate | Cement Content in % | Percentage of Fibre | Number of Tests |
---|---|---|---|---|---|
Compaction | Fly Ash | - | - | 1 | |
Compaction | Fly ash + stone aggregate + cement + fibers | 50:50, 60:40 70:30, 80:20 | 4% and 6% | 8 | |
Unconfined Compressive Strength (UCS) Test | Fly ash + stone aggregate + cement + fibers | 60:40 70:30 | 4% and 6% | 0, 0.25%, 0.35% and 0.50% | 18 |
Indirect Tensile Strength Test (IDT) | Fly ash + stone aggregate + cement + fibers | 60:40 70:30 | 4% and 6% | 0, 0.25, 0.35 and 0.5% | 24 |
Wet and Dry durability test | Fly ash + stone aggregate + cement + fibers | 60:40 70:30 | 4% and 6% | 0, 0.25, 0.35 and 0.5% | 16 |
Water absorption test | Fly ash + stone aggregate + cement + fibers | 60:40 70:30 | 4% and 6% | 0, 0.25, 0.35 and 0.5% | 16 |
Fibre (%) | Mass Loss (%) | |||||
---|---|---|---|---|---|---|
FA60-SD40-C4 | FA60-SD40-C6 | FA70-SD30-C4 | FA70-SD30-C6 | FA80-SD20-C4 | FA50-SD50-C4 | |
0 | 20.42 | 14.32 | 17.12 | 11.21 | 31.96 | 15.56 |
0.25 | 17.65 | 13.21 | 17.08 | 10.21 | - | - |
0.35 | 17.45 | 12.21 | 16.11 | 9.98 | - | - |
0.50 | 17.34 | 11.12 | 15.04 | 9.78 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohanty, S.K.; Pandit, N.K.; Sah, P.K.; Mahaseth, N.; Yadav, R.; Biswal, D.R.; Mohapatra, B.G.; Beriha, B.; Pradhan, R.; Pradhan, S.K. Durability, Capillary Rise and Water Absorption Properties of a Fiber-Reinforced Cement-Stabilized Fly Ash–Stone Dust Mixture. Infrastructures 2024, 9, 17. https://doi.org/10.3390/infrastructures9020017
Mohanty SK, Pandit NK, Sah PK, Mahaseth N, Yadav R, Biswal DR, Mohapatra BG, Beriha B, Pradhan R, Pradhan SK. Durability, Capillary Rise and Water Absorption Properties of a Fiber-Reinforced Cement-Stabilized Fly Ash–Stone Dust Mixture. Infrastructures. 2024; 9(2):17. https://doi.org/10.3390/infrastructures9020017
Chicago/Turabian StyleMohanty, Sanjeeb Kumar, Nirmal Kumar Pandit, Pawan Kumar Sah, Niraj Mahaseth, Rajesh Yadav, Dipti Ranjan Biswal, Benu Gopal Mohapatra, Brundaban Beriha, Ramachandra Pradhan, and Sujit Kumar Pradhan. 2024. "Durability, Capillary Rise and Water Absorption Properties of a Fiber-Reinforced Cement-Stabilized Fly Ash–Stone Dust Mixture" Infrastructures 9, no. 2: 17. https://doi.org/10.3390/infrastructures9020017
APA StyleMohanty, S. K., Pandit, N. K., Sah, P. K., Mahaseth, N., Yadav, R., Biswal, D. R., Mohapatra, B. G., Beriha, B., Pradhan, R., & Pradhan, S. K. (2024). Durability, Capillary Rise and Water Absorption Properties of a Fiber-Reinforced Cement-Stabilized Fly Ash–Stone Dust Mixture. Infrastructures, 9(2), 17. https://doi.org/10.3390/infrastructures9020017