The Visual Behaviour of the Cyclist: Comparison between Simulated and Real Scenarios
Abstract
1. Introduction
1.1. Eye Tracking Applied to Road Safety
1.2. The Visual Behavior of Road Users
2. Materials and Methods
2.1. Experimental Procedure
2.2. Instrument and Data Analysis
- Infrastructure, which includes sidewalks and streets;
- Users, correlated with cars, parked cars, pedestrians, and bicycles;
- Signs, considering horizontal, vertical, pedestrian passage, and traffic lights;
- background, including buildings, vegetation, street lamps, and sky;
- Bicycle tests, such as handlebars, pedals, and GPS.
3. Results and Discussion
3.1. On-Site Test
3.2. Simulated Test
3.3. Comparison
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ahlstrom, C.; Kircher, K.; Kircher, A. A gaze-based driver distraction warning system and its effect on visual behavior. IEEE Trans. Intell. Transp. Syst. 2013, 14, 965–973. [Google Scholar] [CrossRef]
- Massey, H.S.; Whitehead, A.E.; Marchant, D.; Polman, R.C.; Williams, E.L. An investigation of expertise in cycling: Eye tracking, Think Aloud and the influence of a competitor. Psychol. Sport Exerc. 2020, 49, 101681. [Google Scholar] [CrossRef]
- Cortez, A.; Vázquez, P.P. Advanced Visual Interaction with Public Bicycle Sharing Systems. In WSCG 2021 Proceedings; Václav Skala—UNION Agency: Pilsen, Czech Republic, 2021. [Google Scholar]
- Walker, I. Drivers overtaking bicyclists: Objective data on the effects of riding position, helmet use, vehicle type and apparent gender. Accid. Anal. Prev. 2007, 39, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Ryerson, M.S.; Long, C.S.; Fichman, M.; Davidson, J.H.; Scudder, K.N.; Kim, M.; Katti, R.; Poon, G.; Harris, M.D. Evaluating cyclist biometrics to develop urban transportation safety metrics. Accid. Anal. Prev. 2021, 159, 106287. [Google Scholar] [CrossRef]
- Villing, J. Towards Dialogue Strategies for Cognitive Workload Man. Accid. Anal. Prev. 2015, 41, 924–930. [Google Scholar]
- Bucchi, A.; Sangiorgi, C.; Vignali, V. Traffic Psychology and Driver Behavior. Procedia Soc. Behav. Sci. 2012, 53, 972–979. [Google Scholar] [CrossRef][Green Version]
- Khan, M.Q.; Lee, S. Gaze and eye tracking: Techniques and applications in ADAS. Sensors 2019, 24, 5540. [Google Scholar] [CrossRef][Green Version]
- Recarte, M.A.; Nunes, L.M. Mental Workload While Driving: Effects on Visual Search, Discrimination, and Decision Making. J. Exp. Psychol. Appl. 2003, 9, 119–137. [Google Scholar] [CrossRef]
- Recarte, M.A.; Nunes, L.M. Effects of Verbal and Spatial-Imagery Tasks on Eye Fixations While Driving. J. Exp. Psychol. Appl. 2000, 6, 31–43. [Google Scholar] [CrossRef]
- Pashkevich, A.; Burghardt, T.E.; Puławska-Obiedowska, S.; Šucha, M. Visual attention and speeds of pedestrians, cyclists, and electric scooter riders when using shared road–a field eye tracker experiment. Case Stud. Transp. Policy 2022, 10, 549–558. [Google Scholar] [CrossRef]
- Nabatilan, L.B.; Aghazadeh, F.; Nimbarte, A.D.; Harvey, C.C.; Chowdhury, S.K. Effect of driving experience on visual behavior and driving performance under different driving conditions. Cogn. Technol. Work. 2012, 14, 355–363. [Google Scholar] [CrossRef]
- Fournier, N.; Bakhtiari, S.; Valluru, K.D.; Campbell, N.; Christofa, E.; Roberts, S.; Knodler, M., Jr. Accounting for drivers’ bicycling frequency and familiarity with bicycle infrastructure treatments when evaluating safety. Accid. Anal. Prev. 2020, 137, 105410. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Bao, S.; Du, W.; Ye, Z.; Sayer, J.R. Examining drivers’ eye glance patterns during distracted driving: Insights from scanning randomness and glance transition matrix. J. Saf. Res. 2017, 63, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Lee, J.D. Combining cognitive and visual distraction: Less than the sum of its parts. Accid. Anal. Prev. 2010, 42, 881–890. [Google Scholar] [CrossRef]
- Beratis, I.N.; Pavlou, D.; Papadimitriou, E.; Andronas, N.; Kontaxopoulou, D.; Fragkiadaki, S.; Yannis, G.; Papageorgiou, S.G. Mild Cognitive Impairment and driving: Does in-vehicle distraction affect driving performance? Accid. Anal. Prev. 2017, 103, 148–155. [Google Scholar] [CrossRef]
- Regan, M.A.; Hallett, C.; Gordon, C.P. Driver distraction and driver inattention: Definition, relationship and taxonomy. Accid. Anal. Prev. 2011, 43, 1771–1781. [Google Scholar] [CrossRef]
- Gordon, C. Driver Distraction: An Initial Examination of the ‘Attention Diverted by’ Contributory Factor Codes from Crash Reports and Focus Group Research on Perceived Risks. 2005, 350, 1–14. Available online: https://www.transportationgroup.nz/papers/2005/04_Gordon.pdf (accessed on 20 February 2023).
- Kircher, K.; Ahlstrom, C. Minimum Required Attention: A Human-Centered Approach to Driver Inattention. Hum Factors 2017, 59, 471–484. [Google Scholar] [CrossRef] [PubMed]
- Crundall, D.; Underwood, G.; Chapman, P. Driving experience and the functional field of view. Perception 1999, 28, 1075–1088. [Google Scholar] [CrossRef]
- Kass, S.J.; Cole, K.S.; Stanny, C.J. Effects of distraction and experience on situation awareness and simulated driving. Transp Res Part F Traffic Psychol Behav 2007, 10, 321–329. [Google Scholar] [CrossRef]
- Jiang, K.; Yang, Z.; Feng, Z.; Sze, N.N.; Yu, Z.; Huang, Z.; Chen, J. Effects of using mobile phones while cycling: A study from the perspectives of manipulation and visual strategies. Transp. Res. Part. F Traffic. Psychol. Behav. 2021, 83, 291–303. [Google Scholar] [CrossRef]
- Bao, S.; Flannagan, C.; Xiong, H.; Sayer, J. Eye glance behavior associated with cell-phone use: Examination with naturalistic driving data. In Proceedings of the Human Factors and Ergonomics Society; Human Factors an Ergonomics Society Inc.: Washington, DC, USA, 2014; pp. 2112–2116. [Google Scholar] [CrossRef]
- Fitch, G.M.; Bartholomew, P.R.; Hanowski, R.J.; Perez, M.A. Drivers’ visual behavior when using handheld and hands-free cell phones. J. Saf. Res. 2015, 54, 105.e29–108. [Google Scholar] [CrossRef][Green Version]
- Crundall, D.; van Loon, E.; Underwood, G. Attraction and distraction of attention with roadside advertisements. Accid. Anal. Prev. 2006, 38, 671–677. [Google Scholar] [CrossRef]
- Costa, M.; Bonetti, L.; Vignali, V.; Bichicchi, A.; Lantieri, C.; Simone, A. Driver’s visual attention to different categories of roadside advertising signs. Appl. Ergon. 2019, 78, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Dukic, T.; Ahlstrom, C.; Patten, C.; Kettwich, C.; Kircher, K. Effects of Electronic Billboards on Driver Distraction. Traffic. Inj. Prev. 2013, 14, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Stavrinos, D.; Mosley, P.R.; Wittig, S.M.; Johnson, H.D.; Decker, J.S.; Sisiopiku, V.P.; Welburn, S.C. Visual behavior differences in drivers across the lifespan: A digital billboard simulator study. Transp. Res. Part F Traffic. Psychol. Behav. 2016, 41, 19–28. [Google Scholar] [CrossRef][Green Version]
- Mantuano, A.; Bernardi, S.; Rupi, F. Cyclist gaze behavior in urban space: An eye-tracking experiment on the bicycle network of Bologna. Case Stud. Transp. Policy 2017, 5, 408–416. [Google Scholar] [CrossRef]
- Schepers, J.P.; Kroeze, P.A.; Sweers, W.; Wüst, J.C. Road factors and bicycle-motor vehicle crashes at unsignalized priority intersections. Accid. Anal. Prev. 2011, 43, 853–861. [Google Scholar] [CrossRef]
- Walker, G.H.; Stanton, N.A.; Chowdhury, I. Self Explaining Roads and situation awareness. Saf. Sci. 2013, 56, 18–28. [Google Scholar] [CrossRef]
- Kovácsová, N.; Cabrall, C.D.D.; Antonisse, S.J.; de Haan, T.; van Namen, R.; Nooren, J.L.; Schreurs, R.; Hagenzieker, M.P.; de Winter, J.C.F. Cyclists’ eye movements and crossing judgments at uncontrolled intersections: An eye-tracking study using animated video clips. Accid. Anal. Prev. 2018, 120, 270–280. [Google Scholar] [CrossRef][Green Version]
- Vignali, V.; Cuppi, F.; Acerra, E.; Bichicchi, A.; Lantieri, C.; Simone, A.; Costa, M. Effects of median refuge island and flashing vertical sign on conspicuity and safety of unsignalized crosswalks. Transp. Res. Part F Traffic Psychol. Behav. 2019, 60, 427–439. [Google Scholar] [CrossRef]
- Von Stülpnagel, R. Gaze behavior during urban cycling: Effects of subjective risk perception and vista space properties. Transp. Res. Part F Traffic. Psychol. Behav. 2020, 75, 222–238. [Google Scholar] [CrossRef]
- Räsänen, M.; Koivisto, I.; Summala, H. Car Driver and Bicyclist Behavior at Bicycle Crossings Under Different Priority Regulations. J. Saf. Res. 1999, 30, 67–77. [Google Scholar] [CrossRef]
- Atkinson, J.E.; Hurst, P.M. Collisions between cyclists and motorists in New Zealand. Accid. Anal. Prev. 1983, 15, 137–151. [Google Scholar] [CrossRef]
- Prati, G.; Marín Puchades, V.; De Angelis, M.; Fraboni, F.; Pietrantoni, L. Factors contributing to bicycle–motorised vehicle collisions: A systematic literature review. Transp. Rev. 2018, 38, 184–208. [Google Scholar] [CrossRef]
- Vansteenkiste, P.; Zeuwts, L.; Cardon, G.; Philippaerts, R.; Lenoir, M. The implications of low quality bicycle paths on gaze behavior of cyclists: A field test. Transp. Res. Part F Traffic. Psychol. Behav. 2014, 23, 81–87. [Google Scholar] [CrossRef][Green Version]
- Pai, C.W.; Jou, R.C. Cyclists’ red-light running behaviours: An examination of risk-taking, opportunistic, and law-obeying behaviours. Accid. Anal. Prev. 2014, 62, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Yao, L.; Zhang, K. The red-light running behavior of electric bike riders and cyclists at urban intersections in China: An observational study. Accid. Anal. Prev. 2012, 49, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Godley, S.T.; Triggs, T.J.; Fildes, B.N. Driving simulator validation for speed research. Accid. Anal. Prev. 2002, 34, 589–600. [Google Scholar] [CrossRef]
- Bogacz, M.; Hess, S.; Calastri, C.; Choudhury, C.F.; Erath, A.; Van Eggermond, M.A.B.; Mushtaq, F.; Nazemi, M.; Awais, M. Comparison of cycling behavior between keyboard-controlled and instrumented bicycle experiments in virtual reality. Transp. Res. Rec. 2020, 2674, 244–257. [Google Scholar] [CrossRef]
- O’Hern, S.; Oxley, J.; Stevenson, M. Validation of a bicycle simulator for road safety research. Accid. Anal. Prev. 2017, 100, 53–58. [Google Scholar] [CrossRef]
- He, Q.; Fan, X.; Ma, D. Full bicycle dynamic model for interactive bicycle simulator. J. Comput. Inf. Sci. Eng. 2005, 5, 373–380. [Google Scholar] [CrossRef]
- Kwon, D.S.; Yang, G.H.; Lee, C.W.; Shin, J.C.; Park, Y.; Jung, B.; Lee, D.Y.; Lee, K.; Han, S.H.; Yoo, B.H.; et al. KAIST interactive bicycle simulator. Proc. IEEE Int. Conf. Robot. Autom. 2001, 3, 2313–2318. [Google Scholar] [CrossRef]
- Herpers, R.; Heiden, W.; Kutz, M.; Scherfgen, D.; Hartmann, U.; Bongartz, J.; Schulzyk, O. FIVIS bicycle simulator: An immersive game platform for physical activities. In Proceedings of the 2008 Conference on Future Play: Research, Play, Share, Toronto, ON, Canada, 3–5 November 2008; pp. 244–247. [Google Scholar]
- Törnros, J. Driving behaviour in a real and a simulated road tunnel—A validation study. Accid. Anal. Prev. 1998, 30, 497–503. [Google Scholar] [CrossRef] [PubMed][Green Version]
- De Waard, D.; Westerhuis, F.; Lewis-Evans, B. More screen operation than calling: The results of observing cyclists’ behaviour while using mobile phones. Accid. Anal. Prev. 2015, 76, 42–48. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Planek, T.W.; Sinelnikov, S.; Thomas, J.; Kolosh, K.; Porretta, K. Letter from the Editors-Fourth international symposium on naturalistic driving research. J. Saf. Res. 2015, 54, 29. [Google Scholar] [CrossRef]
- Gadsby, A.; Watkins, K. Instrumented bikes and their use in studies on transportation behaviour, safety, and maintenance. Transp. Rev. 2020, 40, 774–795. [Google Scholar] [CrossRef]
- Bernard, G.E.; van Dongen, W.F.; Guay, P.J.; Symonds, M.R.; Robinson, R.W.; Weston, M.A. Bicycles evoke longer flight-initiation distances and higher intensity escape behaviour of some birds in parks compared with pedestrians. Landsc. Urban Plan. 2018, 178, 276–280. [Google Scholar] [CrossRef]
- Ma, C.; Yang, D.; Zhou, J.; Feng, Z.; Yuan, Q. Risk riding behaviors of urban e-bikes: A literature review. Int. J. Environ. Res. Public Health 2019, 16, 2308. [Google Scholar] [CrossRef][Green Version]
- Shoman, M.; Imine, H.; Johansson, K.; Wallqvist, V. Bicycle instrumentation and analysis of the output signals. Highlights Veh. 2022. under submission. [Google Scholar]
- Cao, A.; Chintamani, K.K.; Pandya, A.K.; Ellis, R.D. NASA TLX: Software for assessing subjective mental workload. Behav. Res. Methods 2009, 41, 113–117. [Google Scholar] [CrossRef]
- Ghasemi, N.; Acerra, E.; Vignali, V.; Lantieri, C.; Simone, A.; Imine, H. Road Safety Review update by using innovative technologies to investigate driver behaviour. Transp. Res. Procedia 2020, 45, 368–375. [Google Scholar] [CrossRef]
- Acerra, E.M.; Lantieri, C.; Simone, A.; Di Flumeri, G.; Borghini, G.; Babiloni, F.; Vignali, V. The Impact of the Adaptive Cruise Control on the Drivers’ Workload and Attention. 2022. Available online: http://dx.doi.org/10.2139/ssrn.4281921 (accessed on 20 February 2023).
- Ghasemi, N.; Acerra, E.M.; Lantieri, C.; Simone, A.; Rupi, F.; Vignali, V. Urban Mid-Block Bicycle Crossings: The Effects of Red Colored Pavement and Portal Overhead Bicycle Crossing Sign. Coatings 2022, 12, 150. [Google Scholar] [CrossRef]
- Lantieri, C.; Costa, M.; Vignali, V.; Acerra, E.M.; Marchetti, P.; Simone, A. Flashing in-curb LEDs and beacons at unsignalized crosswalks and driver’s visual attention to pedestrians during nighttime. Ergonomics 2021, 64, 330–341. [Google Scholar] [CrossRef] [PubMed]
- Shoman, M.; Imine, H. Bicycle Simulator Improvement and Validation. IEEE Access 2021, 9, 55063–55076. [Google Scholar] [CrossRef]
- Jelijs, B.; Heutink, J.; de Waard, D.; Brookhuis, K.A.; Melis-Dankers, B.J. How visually impaired cyclists ride regular and pedal electric bicycles. Transp. Res. Part F Traffic Psychol. Behav. 2020, 69, 251–264. [Google Scholar] [CrossRef]
- Shoman, M.; Simone, A.; Vignali, V. Looking behavior to vertical road signs on rural roads. MOJ Civ. Eng. 2018, 4, 75–79. [Google Scholar]
- Shoman, M.; Imine, H. Subjective validity of bicycle simulators. In Proceedings of the VEHICULAR 2020: The Ninth International Conference on Advances in Vehicular Systems, Technologies and Application, Porto, Portugal, 18–22 October 2020; pp. 1–6. [Google Scholar]
- Shoman, M.M.; Imine, H.; Acerra, E.M.; Lantieri, C. Evaluation of cycling safety and comfort in bad weather and surface conditions using an instrumented bicycle. IEEE Access 2023, 11, 15096–15108. [Google Scholar] [CrossRef]
- Heinovski, J.; Stratmann, L.; Buse, D.S.; Klingler, F.; Franke, M.; Oczko, M.-C.H.; Sommer, C.; Scharlau, I.; Dressler, F. Modeling Cycling Behavior to Improve Bicyclists’ Safety at Intersections-A Networking Perspective. In Proceedings of the 2019 IEEE 20th International Symposium on “A World of Wireless, Mobile and Multimedia Networks” (WoWMoM), Washington, DC, USA, 10–12 June 2019; IEEE: New York, NY, USA, 2019; pp. 1–8. [Google Scholar]
Zones | Total Frames | Total Fixation Duration [s] | Fixation Duration of Attention [s] | Percentage of Attention [%] | Fixation Duration of Inattention [s] | Percentage of Attention [%] |
---|---|---|---|---|---|---|
1A | 23,359 | 934.36 | 845.32 | 90 | 89.04 | 10 |
2 | 50,545 | 2021.8 | 1756.34 | 88 | 265.46 | 12 |
3 | 44,412 | 1776.48 | 1547.35 | 87 | 229.13 | 13 |
1B | 29,924 | 1196.96 | 1032.03 | 86 | 164.93 | 14 |
Categories | Total Frames | Total Fixation Duration [s] | Average Percentage [%] |
---|---|---|---|
Sidewalk | 3013 | 121 | 2 |
Street | 101,635 | 4065 | 78 |
Car | 5916 | 237 | 5 |
Parked car | 2818 | 113 | 2 |
Pedestrian | 5617 | 225 | 4 |
Bicycle | 1417 | 57 | 1 |
Horizontal Signs | 803 | 32 | 1 |
Vertical Signs | 755 | 30 | 1 |
Pedestrian passage | 2138 | 86 | 2 |
Traffic light | 5414 | 217 | 4 |
Categories | Total Frames | Total Fixation Duration [s] | Average Percentage [%] |
---|---|---|---|
Buildings | 3066 | 123 | 16 |
Vegetation | 774 | 31 | 4 |
Street lamps | 601 | 25 | 3 |
Sky | 7 | 0.28 | 0 |
Handlebar | 2136 | 85 | 11 |
Pedals | 721 | 29 | 4 |
GPS | 11,410 | 456 | 61 |
Zones | Total Frames | Total Fixation Duration [s] | Fixation Duration of Attention [s] | Percentage of Attention [%] | Fixation Duration of Inattention [s] | Percentage of Inattention [%] |
---|---|---|---|---|---|---|
1A | 12,168 | 487 | 386 | 79 | 101 | 21 |
2 | 24,315 | 973 | 813 | 84 | 159.48 | 16 |
3 | 16,712 | 668 | 492 | 74 | 176.24 | 26 |
1B | 8771 | 351 | 297 | 85 | 53.6 | 15 |
Categories | Total Frames | Total Fixation Duration [s] | Average Percentage [%] |
---|---|---|---|
Sidewalk | 19,203 | 768 | 9 |
Street | 159,839 | 6394 | 78 |
Car | 9355 | 374 | 5 |
Parked car | 4053 | 162 | 2 |
Pedestrian | 3272 | 131 | 2 |
Bicycle | 2026 | 81 | 1 |
Horizontal Signs | 0 | 0 | 0 |
Vertical Signs | 25 | 1 | 0 |
Pedestrian passage | 2782 | 111 | 1 |
Traffic light | 5476 | 219 | 3 |
Categories | Total Frames | Total Fixation Duration [s] | Average Percentage [%] |
---|---|---|---|
Buildings | 23,795 | 952 | 64 |
Vegetation | 11,535 | 461 | 31 |
Street lamps | 45 | 2 | 0 |
Sky | 1106 | 44 | 3 |
Handlebar | 744 | 30 | 2 |
Pedals | 17 | 0.68 | 0 |
GPS | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acerra, E.M.; Shoman, M.; Imine, H.; Brasile, C.; Lantieri, C.; Vignali, V. The Visual Behaviour of the Cyclist: Comparison between Simulated and Real Scenarios. Infrastructures 2023, 8, 92. https://doi.org/10.3390/infrastructures8050092
Acerra EM, Shoman M, Imine H, Brasile C, Lantieri C, Vignali V. The Visual Behaviour of the Cyclist: Comparison between Simulated and Real Scenarios. Infrastructures. 2023; 8(5):92. https://doi.org/10.3390/infrastructures8050092
Chicago/Turabian StyleAcerra, Ennia Mariapaola, Murad Shoman, Hocine Imine, Claudia Brasile, Claudio Lantieri, and Valeria Vignali. 2023. "The Visual Behaviour of the Cyclist: Comparison between Simulated and Real Scenarios" Infrastructures 8, no. 5: 92. https://doi.org/10.3390/infrastructures8050092
APA StyleAcerra, E. M., Shoman, M., Imine, H., Brasile, C., Lantieri, C., & Vignali, V. (2023). The Visual Behaviour of the Cyclist: Comparison between Simulated and Real Scenarios. Infrastructures, 8(5), 92. https://doi.org/10.3390/infrastructures8050092