A Top-Down Approach Based on the Circularity Potential to Increase the Use of Reclaimed Asphalt
Abstract
:1. Introduction
1.1. Reclaimed Asphalt (RA)
1.2. Circular Economy and Reclaimed Asphalt
2. Scope and Objectives
- The development and elaboration of indicators able to precisely describe the rules of the supply and demand of virgin and recycled materials in the road engineering industry, taking under consideration possible situations of recycled material surplus and/or shortage.
- The identification of the maximum allowed use percentage of RA in different asphalt mixtures, depending on their utility within the pavement. Different allowed percentages of RA are allowed for base, binder, and surface courses; and these percentages also change based on regions/nations.
- The quantification of the expected service life of the investigated asphalt mixture with RA and the comparison of said service life with the equivalent of an industry average asphalt mixture without RA, that offers the same utility in asphalt pavement.
- The development of a composite indicator that considers all the aforementioned parameters and describes the so-called circularity potential (Ω) of RA.
- The definition of an illustrative case study for an EU country, for which the necessary data will be collected and utilized in order for the viability of the methodology to be projected and the usefulness of the composite indicator to be established.
3. Methods
- Ω = circularity potential;
- L = legislative limit on the percentage of RA present in pavement construction;
- St = total supply;
- Sv = supply of virgin product;
- Sr = supply of recovered product;
- Dt = total demand;
- Dv = demand for virgin product;
- Dr = demand for recovered product;
- Nr = number of cycles at failure of an asphalt mixture containing RA;
- N = number of cycles at failure of an equivalent asphalt mixture without RA.
3.1. Supply and Demand Assessment
3.2. Mechanical Performance Assessment
3.3. Legislative Threshold Identification
3.4. Composite 3-Layered Indicator Definition
4. Structuring and Undertaking of a Case Study in Germany
4.1. Selection Criteria of the Case Study
4.2. Quantifying the Circularity Potential of RA in Germany: A Case Study
5. Results and Discussion
- improvements made in separate recovery (milling, possibly re-crushing, and storage);
- improved technologies for increasing quantities added;
- increasing focus on recycling in rules and standards and construction contracts;
- comprehensive distribution and improvement of reclaimed asphalt feeding technologies [57].
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- EN 13108-8:2006; Bituminous Mixtures—Material Specifications–Part 8: Re-claimed Asphalt. European Committee for Standardization: Brussels, Belgium, 2006.
- Daniel, J.S.; Gibson, N.; Tarbox, S.; Copeland, A.; Andriescu, A. Effect of long-term ageing on RAP mixtures: Laboratory evaluation of plant-produced mixtures. Road Mater. Pavement Des. 2013, 14, 173–192. [Google Scholar] [CrossRef]
- Copeland, A. Reclaimed Asphalt Pavement in Asphalt Mixtures: State of the Practice; Report No. FHWA-HRT-11-021; Federal Highway Administration: Washington, DC, USA, 2011. [CrossRef]
- Gao, L.; Li, H.; Xie, J.; Yu, Z.; Charmot, S. Evaluation of pavement performance for reclaimed asphalt materials in different layers. Constr. Build. Mater. 2018, 159, 561–566. [Google Scholar] [CrossRef]
- Wang, Y.; Leng, Z.; Li, X.; Hu, C. Cold recycling of reclaimed asphalt pavement towards improved engineering performance. J. Clean. Prod. 2018, 171, 1031–1038. [Google Scholar] [CrossRef]
- Huang, Y.; Galatioto, F.; Parry, T.; Ne, T. Road pavement maintenance life cycle assessment—A UK case study. In Proceedings of the International Symposium on Pavement LCA, Davis, CA, USA, 14–16 October 2014; pp. 179–190. [Google Scholar]
- Birgisdóttir, H.; Pihl, K.; Bhander, G.; Hauschild, M.; Christensen, T. Environmental assessment of roads constructed with and without bottom ash from municipal solid waste incineration. Transp. Res. Part D Transp. Environ. 2006, 11, 358–368. [Google Scholar] [CrossRef]
- Mroueh, U.M.; Eskola, P.; Laine-Ylijoki, J. Lifecycle impacts of the use of industrial by-products in road and earth construction. Waste Manag. 2001, 21, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Rathore, M.; Zaumanis, M.; Haritonovs, V. Asphalt Recycling Technologies: A Review on Limitations and Benefits. IOP Conf. Series Mater. Sci. Eng. 2019, 660, 012046. [Google Scholar] [CrossRef]
- Kandhal, P.S.; Mallick, R.B. Pavement Recycling Guidelines for State and Local Governments; Report No. FHWA-SA-98-042; Federal Highway Administration: Washington, DC, USA, 1997; p. 301.
- Epps, J.A.; Terrel, R.L.; Little, D.N. Recycling Asphalt Pavements. In Proceedings of the Sixty-Third Annual Meeting of the American Association of State Highway and Transportation Officials (AASHTO), Atlantic, NJ, USA, 31 October–2 November 1997. [Google Scholar]
- Williams, B.A.; Willis, J.R.; Ross, T.C. Asphalt Pavement Industry Survey on Recycled Materials and Warm-Mix Asphalt Usage: 2018, Information Series 138, 9th ed.; National Asphalt Pavement Association: Greenbelt, MD, USA, 2019. [Google Scholar]
- Zaumanis, M.; Mallick, R.B.; Frank, R. 100% Hot Mix Asphalt Recycling: Challenges and Benefits. Transp. Res. Procedia 2016, 14, 3493–3502. [Google Scholar] [CrossRef]
- European Asphalt Pavement Association. Asphalt in Figures 2017; European Asphalt Pavement Association: Ljubljana, Sofia, 2017. [Google Scholar]
- European Asphalt Pavement Association. Asphalt in Figures 2011; European Asphalt Pavement Association: Ljubljana, Sofia, 2011. [Google Scholar]
- European Asphalt Pavement Association. Asphalt in Figures 2012; European Asphalt Pavement Association: Ljubljana, Sofia, 2012. [Google Scholar]
- European Asphalt Pavement Association. Asphalt in Figures 2013; European Asphalt Pavement Association: Ljubljana, Sofia, 2013. [Google Scholar]
- European Asphalt Pavement Association. Asphalt in Figures 2014; European Asphalt Pavement Association: Ljubljana, Sofia, 2014. [Google Scholar] [CrossRef]
- European Asphalt Pavement Association. Asphalt in Figures 2015; European Asphalt Pavement Association: Ljubljana, Sofia, 2015. [Google Scholar]
- European Asphalt Pavement Association. Asphalt in Figures 2016; European Asphalt Pavement Association: Ljubljana, Sofia, 2016. [Google Scholar]
- European Asphalt Pavement Association. Asphalt in Figures 2020; European Asphalt Pavement Association: Ljubljana, Sofia, 2020. [Google Scholar]
- European Asphalt Pavement Association. Asphalt in Figures 2019; European Asphalt Pavement Association: Ljubljana, Sofia, 2019. [Google Scholar]
- European Asphalt Pavement Association. Asphalt in Figures 2018; European Asphalt Pavement Association: Ljubljana, Sofia, 2018. [Google Scholar]
- Miliutenko, S.; Björklund, A.; Carlsson, A. Opportunities for environmentally improved asphalt recycling: The example of Sweden. J. Clean. Prod. 2013, 43, 156–165. [Google Scholar] [CrossRef]
- Presti, D.L.; Carrión, A.J.D.B.; Airey, G.; Hajj, E. Towards 100% recycling of reclaimed asphalt in road surface courses: Binder design methodology and case studies. J. Clean. Prod. 2016, 131, 43–51. [Google Scholar] [CrossRef]
- Blasl, A.; Kraft, J.; Presti, D.L.; Di Mino, G.; Wellner, F. Performance of asphalt mixes with high recycling rates for wearing layers. In Proceedings of the 6th Eurasphalt & Eurobitume Congress, Prague, Czech Republic, 1–3 June 2016. [Google Scholar] [CrossRef]
- Mantalovas, K.; Carrión, A.J.D.B.; Blanc, J.; Chailleux, E.; Hornych, P.; Planche, J.; Porot, L.; Pouget, S.; Williams, C.; Presti, D.L. Interpreting life cycle assessment results of bio-recycled asphalt pavements for more informed decision-making. In Proceedings of the International Symposium on Pavement, Roadway, and Bridge Life Cycle Assessment 2020, Sacramento, CA, USA, 3–6 June 2020; pp. 313–323. [Google Scholar] [CrossRef]
- Mantalovas, K.; Di Mino, G.; Jimenez Del Barco Carrion, A.; Keijzer, E.; Kalman, B.; Parry, T.; Lo Presti, D. European National Road Authorities and Circular Economy: An Insight into Their Approaches. Sustainability 2020, 12, 7160. [Google Scholar] [CrossRef]
- Mantalovas, K.; Di Mino, G. The Sustainability of Reclaimed Asphalt as a Resource for Road Pavement Management through a Circular Economic Model. Sustainability 2019, 11, 2234. [Google Scholar] [CrossRef]
- Mantalovas, K.; Di Mino, G.; Inzerillo, L.; Roberts, R. Exploiting 3D Modelling and Life Cycle Assessment to Improve the Sustainability of Pavement Management; Springer International Publishing: Cham, Switzerland, 2021; Volume 178. [Google Scholar] [CrossRef]
- Manosalvas-Paredes, M.; Roberts, R.; Barriera, M.; Mantalovas, K. Towards More Sustainable Pavement Management Practices Using Embedded Sensor Technologies. Infrastructures 2019, 5, 4. [Google Scholar] [CrossRef]
- Lachat, A.; Mantalovas, K.; Desbois, T.; Yazoghli-Marzouk, O.; Colas, A.-S.; Di Mino, G.; Feraille, A. From Buildings’ End of Life to Aggregate Recycling under a Circular Economic Perspective: A Comparative Life Cycle Assessment Case Study. Sustainability 2021, 13, 9625. [Google Scholar] [CrossRef]
- CNR—Consiglio Nazionale Delle Ricerche. CNR—Bolletino Ufficiale; Parte IV, Norme Techiche, A.XxiX—N.178; Consiglio Nazionale Delle Ricerche: Rome, Italy, 1995. [Google Scholar]
- Ministero dei Lavori Pubblici. Apitolato Speciale D’Appalto Tipo Per Lavori Stradali, Articolo 8—Conglomerati Bituminosi Riciclati a Freddo, Formazione di Strati in Conglomerato Bituminoso Riciclato a Freddo; Ministero dei Lavori Pubblici: Rome, Italy, 2000. [Google Scholar]
- Working Group Infrastructure Management and Committee. Guidelines for the Standardisation of Pavement Structures of Traffic Areas; Road and Transportation Research Association: Cologne, Germany, 2015. [Google Scholar]
- Celauro, C.; Bernardo, C.; Gabriele, B. Production of innovative, recycled and high-performance asphalt for road pavements. Resour. Conserv. Recycl. 2010, 54, 337–347. [Google Scholar] [CrossRef]
- Maupin, G.W.; Diefenderfer, S.D.; Gillespie, J.S. Evaluation of Using Higher Percentages of Recycled Asphalt Pavement in Asphalt Mixes in Virginia; Virginia Transportation Research Council: Charlottesville, VA, USA, 2008; Volume 434, p. 29. [Google Scholar]
- McDaniel, R.; Soleymani, H.; Shah, A. Use of Reclaimed Asphalt Pavement (RAP) under Superpave Specifications: A Regional Pooled Fund Project; Purdue University: West Lafayette, IN, USA, 2002. [Google Scholar] [CrossRef]
- Silva, H.; Oliveira, J.; Jesus, C. Are totally recycled hot mix asphalts a sustainable alternative for road paving? Resour. Conserv. Recycl. 2012, 60, 38–48. [Google Scholar] [CrossRef]
- Tran, D.H.; Kim, D.-S.; Hoa, T.D. Minimum latency and energy efficiency routing with lossy link awareness in wireless sensor networks. In Proceedings of the 2012 9th IEEE International Workshop on Factory Communication Systems, WFCS, Lemgo, Germany, 21–24 May 2012; pp. 75–78. [Google Scholar]
- Falla, G.; Blasl, A.; Millow, R.; Presti, D.L. Mix design considerations for asphalt wearing courses with high reclaimed asphalt content. In Proceedings of the 6th International Conference Bituminous Mixtures and Pavements, Thessaloniki, Greece, 10–12 June 2015; pp. 561–566. [Google Scholar] [CrossRef]
- Praticò, F.G.; Vaiana, R.; Giunta, M.; Iuele, T.; Moro, A. Recycling PEMs back to TLPAs: Is that Possible Notwithstanding RAP Variability? Appl. Mech. Mater. 2012, 253–255, 376–384. [Google Scholar] [CrossRef]
- Praticò, F.G.; Vaiana, R.; Giunta, M. Sustainable Rehabilitation of Porous European Mixes. In Proceedings of the ICSDC 2011: Integrating Sustainability Practices in the Construction Industry—International Conference on Sustainable Design and Construction, Kansas City, MI, USA, 23–25 March 2011. [Google Scholar]
- Barragán-Escandón, A.; Terrados-Cepeda, J.; Zalamea-León, E. The Role of Renewable Energy in the Promotion of Circular Urban Metabolism. Sustainability 2017, 9, 2341. [Google Scholar] [CrossRef]
- Swagemakers, P.; Garcia, M.D.D.; Wiskerke, J.S.C. Socially Inclusive Development and Value Creation: How a Composting Project in Galicia (Spain) ‘Hit the Rocks’. Sustainability 2018, 10, 2040. [Google Scholar] [CrossRef]
- Huang, Y.; Ning, Y.; Zhang, T.; Wu, J. Measuring Carbon Emissions of Pavement Construction in China. Sustainability 2016, 8, 723. [Google Scholar] [CrossRef]
- Gregson, N.; Crang, M.; Fuller, S.; Holmes, H. Interrogating the circular economy: The moral economy of resource recovery in the EU. Econ. Soc. 2015, 44, 218–243. [Google Scholar] [CrossRef]
- Vanner, R.; Bicket, M. Scoping Study to Identify Potential Circular Economy Actions, Priority Sectors, Material Flows and Value Chains; European Union: Luxembourg, 2014.
- Boulding, K.E. Environmental Quality in a Growing Economy; Taylor&Francis: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Dobbs, C.G. Silent Spring. For. Int. J. For. Res. 1962, 36, 195–198. [Google Scholar] [CrossRef]
- BS 8001:2017; Framework for Implementing the Principles of the Circular Economy in Organizations—Guide. BSI Standards Publication: London, UK, 2017.
- Clark, G.; Kosoris, J.; Hong, L.N.; Crul, M. Design for Sustainability: Current Trends in Sustainable Product Design and Development. Sustainability 2009, 1, 409–424. [Google Scholar] [CrossRef]
- AECOM; Atkins. Circular Economy Approach and Routemap; AECOM and Atkins: London, UK, 2016. [Google Scholar]
- LWARB. London’s Circular Economy Route Map; LWARB: London, UK, 2017. [Google Scholar]
- Ellen MacArthur Foundation. Cities in the Circular Economy: An Initial Exploration; Ellen MacArthur Foundation: Isle of Wight, UK, 2017; p. 16. [Google Scholar]
- Opportunity Peterborough. Circular Peterborough Circular City Roadmap—An Ambitious Plan & Performance Monitoring Framework Towards 2021; Opportunity Peterborough: Peterborough, UK, 2018. [Google Scholar]
- German Asphalt Pavement Association. Recycling of Asphalt—New Set of Rules and Standards Shows the Way Forward; German Asphalt Pavement Association: Bonn, Germany, 2008. [Google Scholar]
- Al-Rousan, T.; Asi, I.; Al-Hattamleh, O.; Al-Qablan, H. Performance of asphalt mixes containing RAP. Jordan J. Civ. Eng. 2008, 2, 218–227. [Google Scholar]
- Lajnef, N.; Chatti, K.; Chakrabartty, S.; Rhimi, M.; Sarkar, P. Smart Pavement Monitoring System; Report: FHWA-HRT-12-072; Federal Highway Administration: Washington, DC, USA, 2013.
- Tabaković, A.; Gibney, A.; McNally, C.; Gilchrist, M.D. Influence of Recycled Asphalt Pavement on Fatigue Performance of Asphalt Concrete Base Courses. J. Mater. Civ. Eng. 2010, 22, 643–650. [Google Scholar] [CrossRef]
- Tabakovic, A.; Gibney, A.; Gilchrist, M.D.; McNally, C. The Influence of Recycled Asphalt Pavement on 20mm Binder Course Mix Performance. In Proceedings of the 3rd National Symposium on Bridge and Infrastructure Research in Ireland, Dublin, 2006 and at ICAP (International Conference on Asphalt Pavements) Conference, Quebec, QC, Canada, 18–21 May 2015. [Google Scholar]
- Mantalovas, K. Increasing the Circularity of Asphalt Mixtures: Integrated Sustainability and Circularity Assessment as a Progress Monitoring Tool Towards More Circular and Sustainable Asphalt Pavements Increasing the Circularity of Asphalt Mixtures: Integrated Sustain; University of Palermo: Palermo, Italy, 2021. [Google Scholar]
- Mantalovas, K.; Di Mino, G. Integrating Circularity in the Sustainability Assessment of Asphalt Mixtures. Sustainability 2020, 12, 594. [Google Scholar] [CrossRef]
- Huang, B.; Kingery, W.; Zhang, Z.; Zuo, G. Laboratory study of fatigue characteristics of HMA surface mixtures containing RAP. In Proceedings of the 83rd Annual Meeting of the Transportation Research Board, Washington, DC, USA, 11–15 January 2004. [Google Scholar]
- Lo Presti, D. AB2P: Towards a sustainable 100% recycling of reclaimed asphalt in road pavements. In Proceedings of the International Workshop on Recycling: Road Construction in a Post-Fossil Fuel Society—Sustainability Assessment, Prague, Czech Republic, 24–25 September 2015. [Google Scholar]
- Lo Presti, D.; Airey, G.; Di Liberto, M.; Noto, S.; Di Mino, G.; Blasl, A.; Canon Falla, G.; Wellner, F. Allback2pave: Towards a sustainable recycling of asphalt in wearing courses. Transport Infrastructure and Systems. In Proceedings of the AIIT International Congress on Transport Infrastructure and Systems, TIS 2017, Rome, Italy, 10–12 April 2017; pp. 109–117. [Google Scholar] [CrossRef]
- Lo Presti, D. Deliverable No D3.1—AllBack2Pave End-User Manual CEDR Call2012: Recycling: Road Construction in a Post-Fossil Fuel SocietyALLBACK2PAVEToward a Sustainable 100% Recycling of Reclaimed Asphalt in Road Pavements. Unpublished work. 2015. [Google Scholar] [CrossRef]
- Wellner, F.; Falla, G.C.; Millow, R.; Blasl, A.; Di Mino, G.; Di Liberito, C.M.; Noto, S.; Lo Presti, D.; Del Barco Carrion, A.M.; Airey, G. ALLBACK2PAVE Toward a Sustainable 100% Recycling of Reclaimed Asphalt in Road Pavements—Deliverable No D2.1 High-Content RA Warm Asphalt Mixture Design; CEDR: London, UK, 2015. [Google Scholar]
- Golchin, B.; Mansourian, A. Evaluation of Fatigue Properties of Asphalt Mixtures Containing Reclaimed Asphalt Using Response Surface. Int. J. Transp. Eng. 2017, 4, 335–350. [Google Scholar] [CrossRef]
- Norouzi, A.; Sabouri, M.; Kim, Y. Evaluation of the Fatigue Performance of Asphalt Mixtures with High RAP Content. In Asphalt Pavements; CRC Press: Boca Raton, FL, USA, 2014; pp. 1069–1077. [Google Scholar] [CrossRef]
- Tang, S. Evaluate the Fracture and Fatigue Resistances of Hot Mix Asphalt Containing High Percentage Reclaimed Asphalt Pavement (RAP) Materials at Low and Intermediate Temperatures; CEDR: London, UK, 2014. [Google Scholar] [CrossRef]
- Flintsch, G.W.; Apeagyei, A.K.; Katicha, S.W.; Wang, L. The Effect of High RAP and High Asphalt Binder Content on the Dynamic Modulus and Fatigue Resistance of Asphalt Concrete Christopher Richard Tomlinson. Master′s Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2012. [Google Scholar]
- Antunes, V.; Neves, J.; Freire, A.C. Performance Assessment of Reclaimed Asphalt Pavement (RAP) in Road Surface Mixtures. Recycling 2021, 6, 32. [Google Scholar] [CrossRef]
- Mullapudi, R.; Gubbala, C.; Reddy, K.S. Fatigue performance of bituminous mixes containing reclaimed asphalt pavement (RAP) material. In Proceedings of the 3rd Conference of Transportation Research Group of India (3rd CTRG), Bengal, Índia, 17–20 December 2015. [Google Scholar]
- Nicholls, J.C.; Mchale, M.J.; Griffiths, R.D. Best Practice Guide for Durability of Asphalt Pavements; Transport Research Laboratory: Berkshire, UK, 2008. [Google Scholar]
- Manthos, E.; Nikolaides, A. Stiffness and Fatigue of AC20 Recycled Mixtures with 25% and 50% RAP; Taylor & Francis: London, UK, 2015; p. 10. [Google Scholar] [CrossRef]
- Baldo, N.; Manthos, E.; Pasetto, M.; Nikolaides, A.F. Comparative Analysis of Stiffness Modulus and Fatigue Resistance of Asphalt Concretes Containing RAP Materials. In Proceedings of the 8th RILEM International Symposium on Testing and Characterization of Sustainable and Innovative Bituminous Materials, Ancona, Italy, 7–9 October 2015; Springer: Dordrecht, The Netherlands, 2016; p. 12. [Google Scholar]
- Hu, H.; Vizzari, D.; Zha, X.; Mantalovas, K. A comparison of solar and conventional pavements via life cycle assessment. Transp. Res. D Transp. Environ. 2023, 119, 103750. [Google Scholar] [CrossRef]
- Abed, A.; Godoi Bizarro, D.E.; Neves, L.; Parry, T.; Keijzer, E.; Kalman, B.; Del Barco Carrion, A.J.; Mantalovas, K.; Buttitta, G.; Lo Presti, D.; et al. Uncertainty analysis of life cycle assessment of asphalt surfacings. Road Mater. Pavement Des. 2023, 24, 1–20. [Google Scholar] [CrossRef]
NR | N | NR/N |
---|---|---|
4375 | 1000 | 4.38 |
10,000 | 6500 | 1.54 |
10,000 | 1200 | 8.33 |
2000 | 2000 | 1 |
120 | 120 | 1 |
30,000 | 32,000 | 0.94 |
118,537 | 83,032 | 1.43 |
206,556 | 99,123 | 2.08 |
409,366 | 409,265 | 1 |
409,324 | 409,190 | 1 |
58,590 | 23,270 | 2.52 |
61,495 | 26,495 | 2.32 |
9320 | 19,510 | 0.48 |
12,295 | 10,785 | 1.14 |
11,000 | 10,000 | 1.1 |
14,000 | 11,000 | 1.27 |
1387 | 1033 | 1.34 |
1651 | 1033 | 1.6 |
1387 | 1156 | 1.2 |
1651 | 1156 | 1.43 |
167,803 | 112,763 | 1.49 |
3641 | 4461 | 0.82 |
Germany | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | |
HWMA production [Mt] | 50.0 | 41.0 | 41.0 | 39.0 | 39.0 | 41.0 | 42.0 | 41.0 | 40.0 | 38.0 | 38.0 |
Available RA [Mt] | 14.0 | 11.5 | 11.5 | 10.9 | 11.0 | 12.0 | 13.0 | 13.0 | 13.4 | 13.8 | 13.8 |
Used RA [Mt] | 11.8 | 10.0 | 10.4 | 9.8 | 9.9 | 10.4 | 10.9 | 10.7 | 11.0 | 9.7 | 9.7 |
St [Mt] | 64.0 | 52.5 | 52.5 | 49.9 | 50.0 | 53.0 | 55.0 | 54.0 | 53.4 | 51.8 | 51.8 |
Dt [Mt] | 61.8 | 51.0 | 51.4 | 48.8 | 48.9 | 51.4 | 52.9 | 51.7 | 51.0 | 47.7 | 47.7 |
Δ [Mt] | 2.2 | 1.5 | 1.2 | 1.1 | 1.1 | 1.6 | 2.1 | 2.3 | 2.4 | 4.1 | 4.1 |
NR/N | 1.79 | ||||||||||
L | 75.5 | 75.5 | 75.5 | 75.5 | 74.5 | 75 | 75.5 | 74.5 | 74 | 74.5 | 74.5 |
Germany | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | |
HWMA production [Mt] | 50 | 41 | 41 | 39 | 39 | 41 | 42 | 41 | 40 | 38 | 38 |
Available RA [Mt] | 14 | 11.5 | 11.5 | 10.9 | 11 | 12 | 13 | 13 | 13.4 | 13.8 | 13.8 |
Used RA [Mt] | 11.8 | 10 | 10.4 | 9.8 | 9.9 | 10.4 | 10.9 | 10.7 | 11 | 9.7 | 9.7 |
St [Mt] | 64 | 52.5 | 52.5 | 49.9 | 50 | 53 | 55 | 54 | 53.4 | 51.8 | 51.8 |
Dt [Mt] | 61.8 | 51 | 51.4 | 48.8 | 48.9 | 51.4 | 52.9 | 51.7 | 51 | 47.7 | 47.7 |
Sr-Δ | 11.8 | 10 | 10.4 | 9.8 | 9.9 | 10.4 | 10.9 | 10.7 | 11 | 9.7 | 9.7 |
Δ [Mt] | 2.2 | 1.5 | 1.1 | 1.1 | 1.1 | 1.6 | 2.1 | 2.3 | 2.4 | 4.1 | 4.1 |
NR/N | 1.79 | ||||||||||
L | 75.5 | 75.5 | 75.5 | 75.5 | 74.5 | 75 | 75.5 | 74.5 | 74 | 74.5 | 74.5 |
Circularity potential [Ω] | 1.43 | 1.48 | 1.55 | 1.54 | 1.54 | 1.47 | 1.42 | 1.40 | 1.39 | 1.25 | 1.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mantalovas, K.; Dunn, I.P.; Acuto, F.; Vijayan, V.; Inzerillo, L.; Di Mino, G. A Top-Down Approach Based on the Circularity Potential to Increase the Use of Reclaimed Asphalt. Infrastructures 2023, 8, 83. https://doi.org/10.3390/infrastructures8050083
Mantalovas K, Dunn IP, Acuto F, Vijayan V, Inzerillo L, Di Mino G. A Top-Down Approach Based on the Circularity Potential to Increase the Use of Reclaimed Asphalt. Infrastructures. 2023; 8(5):83. https://doi.org/10.3390/infrastructures8050083
Chicago/Turabian StyleMantalovas, Konstantinos, Iain Peter Dunn, Francesco Acuto, Vineesh Vijayan, Laura Inzerillo, and Gaetano Di Mino. 2023. "A Top-Down Approach Based on the Circularity Potential to Increase the Use of Reclaimed Asphalt" Infrastructures 8, no. 5: 83. https://doi.org/10.3390/infrastructures8050083
APA StyleMantalovas, K., Dunn, I. P., Acuto, F., Vijayan, V., Inzerillo, L., & Di Mino, G. (2023). A Top-Down Approach Based on the Circularity Potential to Increase the Use of Reclaimed Asphalt. Infrastructures, 8(5), 83. https://doi.org/10.3390/infrastructures8050083