Operational Performance Analysis of the Public Transport System over Time
Abstract
:1. Introduction
- To obtain the number of passengers by fare type, which enables the measurement of the network load by the type of user and the assessment of the economic viability of the route;
- To share revenues between operators;
- To consult stop-wise distribution of passengers boarding and alighting, by fare type;
- To compute origin–destination matrices for each route, subset of routes, or the entire network.
2. Literature Review
2.1. DEA
- and is free
- m: total number of inputs;
- s: total number of outputs;
- n: total number of DMUs;
- : ith input for ;
- : rth output for ;
- j = 1, 2, …, n;
- : weight vector of input x;
- : weight vector of output y.
2.2. Malmquist Index
- : Malmquist index between period t e ;
- : Inputs and outputs for period t;
- : Inputs and outputs for period ;
- : Efficiency for period t;
- : Efficiency for period .
2.3. Selection of Variables
3. Materials and Methods
3.1. Data Envelopment Analysis and the Malmquist Index
3.2. Data Set—Case Study
- OperatorID: Code of the company responsible for the vehicle;
- VehicleID: Vehicle identification;
- RouteID: Route identification;
- TripDepTime: Departure date and time of the trip;
- TripFinishTime: Finish date and time of the trip;
- Fee: Fee paid by the user.
- Total operating time: Sum of the operating time of each trip per route for the entire year. The operating time was obtained by subtracting the arrival time and the departure time, provided by the ticketing system. This variable allows for analyzing temporal aspects of each route operation;
- Fleet age: Sum of the age of the vehicle used per trip and per route throughout the year. The age of the vehicle was obtained through the vehicle register provided by ARCE and the vehicle used in each trip was included in the ticketing system. This variable is related to the maintenance and comfort of the vehicles;
- Mileage traveled: Sum of the distance traveled for each trip per route for the whole year. The length of the route was obtained through the registration of the routes provided by ARCE and the number of trips was obtained by the ticketing system. This variable allows for analyzing the availability and the service offered;
- Fare revenue: Total fare revenue per trip for each route for the entire year. The fare revenue is the sum of the amount paid by the user and is provided by the ticketing system. This variable reflects the economic and financial viability of the route and service provided;
- Number of passengers: Total number of passengers per trip for each route for the whole year. The number of passengers is the sum of the number of records in the ticketing system. The variable allows for analyzing the demand of each route.
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AFC | automated fare collection |
ATMS | automated transit management system |
CRS | constant returns to scale |
DEA | data envelopment analysis |
DMU | decision-making units |
GIS | geographic information system |
MRF | Metropolitan Region of Fortaleza |
TOD | transit-oriented development |
VRS | variable returns to scale |
References
- Belwal, R.; Belwal, S. Public transportation services in Oman: A study of public perceptions. J. Public Transp. 2010, 13, 1–21. [Google Scholar] [CrossRef]
- Booysen, M.; Abraham, C.; Rix, A.; Ndibatya, I. Walking on sunshine: Pairing electric vehicles with solar energy for sustainable informal public transport in Uganda. Energy Res. Soc. Sci. 2022, 85, 102403. [Google Scholar] [CrossRef]
- Javid, M.A.; Saif Al-Khatri, H.; Said Al-Abri, S.; Ali, N.; Chaiyasarn, K.; Joyklad, P. Travelers’ Perceptions on Significance of Travel Time Saving Attributes in Travel Behavior: A Case Study in Oman. Infrastructures 2022, 7, 78. [Google Scholar] [CrossRef]
- Wang, Z.; Li, X.; Bobylev, N.; Li, S.; Liu, J. Coupling Coordination of “Urban Rail Transit—Social Economy” Composite System. Infrastructures 2022, 7, 56. [Google Scholar] [CrossRef]
- Debnath, P. A QGIS-Based Road Network Analysis for Sustainable Road Network Infrastructure: An Application to the Cachar District in Assam, India. Infrastructures 2022, 7, 114. [Google Scholar] [CrossRef]
- Alonso, F.; Faus, M.; Cendales, B.; Useche, S.A. Citizens’ perceptions in relation to transport systems and infrastructures: A nationwide study in the dominican republic. Infrastructures 2021, 6, 153. [Google Scholar] [CrossRef]
- Hanumappa, D.; Ramachandran, P.; Sitharam, T.; Lakshmana, S. Performance evaluation of Bangalore metropolitan transport corporation: An application of data envelopment analysis. J. Public Transp. 2015, 18, 1–19. [Google Scholar] [CrossRef]
- OECD. Competition and Regulation in the Provision of Local Transportation Services, OECD Competition Policy Roundtable Background Note; OECD: Paris, France, 2022; p. 44. [Google Scholar]
- Sun, D.; Chen, S.; Zhang, C.; Shen, S. A bus route evaluation model based on GIS and super-efficient data envelopment analysis. Transp. Plan. Technol. 2016, 39, 407–423. [Google Scholar] [CrossRef]
- Wei, R.; Liu, X.; Mu, Y.; Wang, L.; Golub, A.; Farber, S. Evaluating public transit services for operational efficiency and access equity. J. Transp. Geogr. 2017, 65, 70–79. [Google Scholar] [CrossRef]
- Bertini, R.L.; El-Geneidy, A. Generating transit performance measures with archived data. Transp. Res. Rec. 2003, 1841, 109–119. [Google Scholar] [CrossRef]
- Hassan, M.N.; Hawas, Y.E.; Ahmed, K. A multi-dimensional framework for evaluating the transit service performance. Transp. Res. Part A Policy Pract. 2013, 50, 47–61. [Google Scholar] [CrossRef]
- De Carvalho, G.S.D.; Marques, R.C. Strategies to foster competition for the market in the urban bus sector in developing countries. Infrastructures 2020, 5, 115. [Google Scholar] [CrossRef]
- Zhou, J.; Sipe, N.; Ma, Z.; Mateo-Babiano, D.; Darchen, S. Monitoring transit-served areas with smartcard data: A Brisbane case study. J. Transp. Geogr. 2019, 76, 265–275. [Google Scholar] [CrossRef]
- Qureshi, K.N.; Abdullah, A.H. A survey on intelligent transportation systems. Middle-East J. Sci. Res. 2013, 15, 629–642. [Google Scholar]
- Gkiotsalitis, K.; Cats, O.; Liu, T. A review of public transport transfer synchronisation at the real-time control phase. Transp. Rev. 2023, 43, 88–107. [Google Scholar] [CrossRef]
- Jarboui, S.; Forget, P.; Boujelbene, Y. Public road transport efficiency: A literature review via the classification scheme. Public Transp. 2012, 4, 101–128. [Google Scholar] [CrossRef]
- Litman, T. Evaluating Public Transit Benefits and Costs; Victoria Transport Policy Institute: Victoria, BC, Canada, 2015. [Google Scholar]
- Kurauchi, F.; Schmöcker, J.D. Public Transport Planning with Smart Card Data; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Arbex, R.O.; da Cunha, C.B. Estimaç ao da matriz origem-destino e da distribuiç ao espacial da lotaç ao em um sistema de transporte sobre trilhos a partir de dados de bilhetagem eletrônica. Rev. Transp. 2017, 25, 166. [Google Scholar]
- Liu, X.; Zhou, Y.; Rau, A. Smart card data-centric replication of the multi-modal public transport system in Singapore. J. Transp. Geogr. 2019, 76, 254–264. [Google Scholar] [CrossRef]
- Tsolas, I.E. Performance Evaluation of Electric Trolley Bus Routes. A Series Two-Stage DEA Approach. Infrastructures 2021, 6, 44. [Google Scholar] [CrossRef]
- Georgiadis, G.; Politis, I.; Papaioannou, P. Measuring and improving the efficiency and effectiveness of bus public transport systems. Res. Transp. Econ. 2014, 48, 84–91. [Google Scholar] [CrossRef]
- Karim, Z.; Fouad, J. Measuring urban public transport performance on route level: A literature review. In Proceedings of the International Workshop on Transportation and Supply Chain Engineering (IWTSCE’18), Rabat, Morocco, 8–9 May 2018; Volume 200, p. 00021. [Google Scholar]
- Lee, E.H.; Lee, H.; Kho, S.Y.; Kim, D.K. Evaluation of transfer efficiency between bus and subway based on data envelopment analysis using smart card data. KSCE J. Civ. Eng. 2019, 23, 788–799. [Google Scholar] [CrossRef]
- Seiford, L.M.; Zhu, J. An investigation of returns to scale in data envelopment analysis. Omega 1999, 27, 1–11. [Google Scholar] [CrossRef]
- Lovell, C.K.; Rouse, A. Equivalent standard DEA models to provide super-efficiency scores. J. Oper. Res. Soc. 2003, 54, 101–108. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Lindgren, B.; Roos, P. Productivity developments in Swedish hospitals: A Malmquist output index approach. In Data Envelopment Analysis: Theory, Methodology, and Applications; Springer: Berlin/Heidelberg, Germany, 1994; pp. 253–272. [Google Scholar]
- Färe, R.; Grabowski, R.; Grosskopf, S.; Kraft, S. Efficiency of a fixed but allocatable input: A non-parametric approach. Econ. Lett. 1997, 56, 187–193. [Google Scholar] [CrossRef]
- Daraio, C.; Diana, M.; Di Costa, F.; Leporelli, C.; Matteucci, G.; Nastasi, A. Efficiency and effectiveness in the urban public transport sector: A critical review with directions for future research. Eur. J. Oper. Res. 2016, 248, 1–20. [Google Scholar] [CrossRef]
- Kuah, C.T.; Wong, K.Y.; Behrouzi, F. A review on data envelopment analysis (DEA). In Proceedings of the 2010 Fourth Asia International Conference on Mathematical/Analytical Modelling and Computer Simulation, Kota Kinabalu, Malaysia, 26–28 May 2010; pp. 168–173. [Google Scholar]
- Cavaignac, L.; Dumas, A.; Petiot, R. Third-party logistics efficiency: An innovative two-stage DEA analysis of the French market. Int. J. Logist. Res. Appl. 2021, 24, 581–604. [Google Scholar] [CrossRef]
- Caves, D.W.; Christensen, L.R.; Diewert, W.E. The economic theory of index numbers and the measurement of input, output, and productivity. Econom. J. Econom. Soc. 1982, 50, 1393–1414. [Google Scholar] [CrossRef]
- Berger, A.N.; Humphrey, D.B. Megamergers in banking and the use of cost efficiency as an antitrust defense. Antitrust Bull. 1992, 37, 541–600. [Google Scholar] [CrossRef]
- Oliveira, R.; Zanella, A.; Camanho, A.S. A temporal progressive analysis of the social performance of mining firms based on a Malmquist index estimated with a Benefit-of-the-Doubt directional model. J. Clean. Prod. 2020, 267, 121807. [Google Scholar] [CrossRef]
- De Borger, B.; Kerstens, K.; Costa, A. Public transit performance: What does one learn from frontier studies? Transp. Rev. 2002, 22, 1–38. [Google Scholar] [CrossRef]
- Holmgren, J. The effects of using different output measures in efficiency analysis of public transport operations. Res. Transp. Bus. Manag. 2018, 28, 12–22. [Google Scholar] [CrossRef]
- CEN/TC320; Transportation-Logistics and Services-Public Passenger Transport-Service Quality Definition, Targeting and Measurement. CEN: Brussels, Belgium, 2002.
- Transportation Research Board; Kittelson and Associates, Inc. A Guidebook for Developing a Transit Performance-Measurement System; Transportation Research Board: Washington, DC, USA, 2003; Volume 88. [Google Scholar]
- Dyson, R.G.; Allen, R.; Camanho, A.S.; Podinovski, V.V.; Sarrico, C.S.; Shale, E.A. Pitfalls and protocols in DEA. Eur. J. Oper. Res. 2001, 132, 245–259. [Google Scholar] [CrossRef]
- Emrouznejad, A.; Amin, G.R. DEA models for ratio data: Convexity consideration. Appl. Math. Model. 2009, 33, 486–498. [Google Scholar] [CrossRef]
- Sheth, C.; Triantis, K.; Teodorović, D. Performance evaluation of bus routes: A provider and passenger perspective. Transp. Res. Part E Logist. Transp. Rev. 2007, 43, 453–478. [Google Scholar] [CrossRef]
- Güner, S.; Coşkun, E. Determining the best performing benchmarks for transit routes with a multi-objective model: The implementation and a critique of the two-model approach. Public Transp. 2016, 8, 205–224. [Google Scholar] [CrossRef]
- Tran, K.D.; Bhaskar, A.; Bunker, J.; Lee, B. Data Envelopment Analysis (DEA) based transit routes performance evaluation. In Proceedings of the Transportation Research Board (TRB) 96th Annual Meeting, Washington, DC, USA, 8–12 January 2017; pp. 1–23. [Google Scholar]
- Taboada, G.L.; Han, L. Exploratory data analysis and data envelopment analysis of urban rail transit. Electronics 2020, 9, 1270. [Google Scholar] [CrossRef]
- Azambuja, A.M.V.d. Análise de Eficiência na Gest ao do Transporte Urbano por Ônibus em Municípios Brasileiros. Doctorate Thesis, Universidade Federal de Santa Catarina, Florianópolis, Brazil, 2002. [Google Scholar]
- Sampaio, B.R.; Sampaio, Y.; Sampaio, L. Eficiência de Sistemas de Transporte público no Nordeste com Análise Envoltória de Dados (DEA). Rev. Econ. Nordeste 2006, 37, 261–275. [Google Scholar]
- Araújo, C.E.F.; Martins, F.G.D.; Silva, F. Análise Exploratória da Eficiência Operacional de Empresas do Transporte Rodoviário Interestadual de Passageiros por Ônibus no Brasil. In Proceedings of the XXII Congresso de Pesquisa e Ensino em Transportes–XII ANPET, Fortaleza, Brazil, 3–9 November 2008; Panorama Nacional de Pesquisa em Transportes–CD-ROM. Volume 3. [Google Scholar]
- Sun, Y.; Shi, J.; Schonfeld, P.M. Identifying passenger flow characteristics and evaluating travel time reliability by visualizing AFC data: A case study of Shanghai Metro. Public Transp. 2016, 8, 341–363. [Google Scholar] [CrossRef]
- Fitzová, H.; Matulová, M.; Tomeš, Z. Determinants of urban public transport efficiency: Case study of the Czech Republic. Eur. Transp. Res. Rev. 2018, 10, 1–11. [Google Scholar] [CrossRef]
- Fitzová, H.; Matulová, M. Comparison of urban public transport systems in the Czech Republic and Slovakia: Factors underpinning efficiency. Res. Transp. Econ. 2020, 81, 100824. [Google Scholar] [CrossRef]
- Zhu, W.; Yang, X.; Preston, J. Efficiency measurement of bus routes and exogenous operating environment effects on efficiency. Transp. Plan. Technol. 2016, 39, 464–483. [Google Scholar] [CrossRef]
- Zhang, Y.; Martens, K.; Long, Y. Revealing group travel behavior patterns with public transit smart card data. Travel Behav. Soc. 2018, 10, 42–52. [Google Scholar] [CrossRef]
- Barabino, B.; Lai, C.; Olivo, A. Fare evasion in public transport systems: A review of the literature. Public Transp. 2020, 12, 27–88. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Measuring and Managing Fare Evasion; The National Academies Press: Washington, DC, USA, 2022. [Google Scholar]
- Lee, E.H. Exploring Transit Use during COVID-19 Based on XGB and SHAP Using Smart Card Data. J. Adv. Transp. 2022, 2022, 6458371. [Google Scholar] [CrossRef]
- Barry, J.J.; Freimer, R.; Slavin, H. Use of entry-only automatic fare collection data to estimate linked transit trips in New York City. Transp. Res. Rec. 2009, 2112, 53–61. [Google Scholar] [CrossRef]
- Nunes, A.A.; Dias, T.G.; e Cunha, J.F. Passenger journey destination estimation from automated fare collection system data using spatial validation. IEEE Trans. Intell. Transp. Syst. 2015, 17, 133–142. [Google Scholar] [CrossRef]
- Trépanier, M.; Tranchant, N.; Chapleau, R. Individual trip destination estimation in a transit smart card automated fare collection system. J. Intell. Transp. Syst. 2007, 11, 1–14. [Google Scholar] [CrossRef]
- Pearson, R.K. Exploratory Data Analysis Using R; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
Phases | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
---|---|---|---|---|---|---|---|
Raw data | 1,307,043 | 1,309,493 | 1,220,498 | 1,176,309 | 683,971 | 757,634 | 811,309 |
Exclusion of outliers | 1,079,537 | 1,079,941 | 1,028,157 | 965,857 | 614,075 | 677,839 | 685,941 |
Exclusion of holidays and weekends | 810,479 | 814,921 | 814,892 | 730,367 | 475,067 | 515,687 | 526,602 |
Exclusion of non-regular routes | 806,565 | 805,283 | 753,370 | 720,836 | 429,743 | 501,355 | 516,207 |
Descriptive Statistics | Total Operating Time—In Hours | Fleet Age—In Years | Mileage Traveled—In km | Fare Revenue—In BRL | Number of Passengers |
---|---|---|---|---|---|
Average | 10,024.35 | 40,598.88 | 214,912.55 | 1,332,475.09 | 298,168 |
Median | 4012.46 | 26,428 | 126,000 | 671,289.61 | 99,822 |
Standard deviation | 9785.06 | 37,844.34 | 203,021.42 | 1,353,761.75 | 339,442 |
Minimum | 372.11 | 1401 | 4647.15 | 13,242.15 | 7155 |
Maximum | 37,165.04 | 131,257 | 800,403.70 | 5,445,283.96 | 1,389,964 |
Sum | 591,436.38 | 2,395,334 | 12,679,840.39 | 78,616,030.49 | 17,591,929 |
Description | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
---|---|---|---|---|---|---|---|
Number of routes | 68 | 69 | 68 | 73 | 53 | 62 | 59 |
Efficient routes | 15 | 16 | 12 | 14 | 14 | 17 | 13 |
Average | 0.746 | 0.757 | 0.744 | 0.750 | 0.783 | 0.813 | 0.814 |
Median | 0.762 | 0.793 | 0.784 | 0.758 | 0.810 | 0.842 | 0.852 |
Standard deviation | 0.223 | 0.212 | 0.216 | 0.190 | 0.204 | 0.181 | 0.175 |
Minimum | 0.216 | 0.290 | 0.287 | 0.331 | 0.129 | 0.256 | 0.337 |
Description | 2016/2017 | 2017/2018 | 2018/2019 | 2019/2020 | 2020/2021 | 2021/2022 | 2016/2022 |
---|---|---|---|---|---|---|---|
Number of routes | 66 | 64 | 63 | 49 | 50 | 57 | 45 |
Routes with increasing productivity | 24 | 34 | 24 | 7 | 27 | 32 | 11 |
Average | 1.046 | 0.993 | 1.100 | 0.826 | 1.026 | 1.269 | 0.896 |
Median | 0.912 | 1.013 | 0.956 | 0.805 | 1.027 | 1.036 | 0.751 |
Standard deviation | 0.621 | 0.166 | 0.988 | 0.187 | 0.246 | 1.027 | 0.502 |
Minimum | 0.229 | 0.349 | 0.317 | 0.443 | 0.547 | 0.146 | 0.147 |
Maximum | 3.442 | 1.485 | 8.389 | 1.385 | 1.893 | 6.879 | 2.811 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cazuza de Sousa Júnior, J.N.; Dias, T.G.; Nunes de Azevedo Filho, M.A. Operational Performance Analysis of the Public Transport System over Time. Infrastructures 2023, 8, 82. https://doi.org/10.3390/infrastructures8050082
Cazuza de Sousa Júnior JN, Dias TG, Nunes de Azevedo Filho MA. Operational Performance Analysis of the Public Transport System over Time. Infrastructures. 2023; 8(5):82. https://doi.org/10.3390/infrastructures8050082
Chicago/Turabian StyleCazuza de Sousa Júnior, José Nauri, Teresa Galvão Dias, and Mário Angelo Nunes de Azevedo Filho. 2023. "Operational Performance Analysis of the Public Transport System over Time" Infrastructures 8, no. 5: 82. https://doi.org/10.3390/infrastructures8050082
APA StyleCazuza de Sousa Júnior, J. N., Dias, T. G., & Nunes de Azevedo Filho, M. A. (2023). Operational Performance Analysis of the Public Transport System over Time. Infrastructures, 8(5), 82. https://doi.org/10.3390/infrastructures8050082