Effect of Sea Level Rise and Access Channel Deepening on Future Tidal Power Plants in Buenaventura Colombia
Abstract
:1. Introduction
2. Materials and Methods
Model Setup and Data Inputs
- Natural conditions of the bay during 2021.
- Extra deepening of 5 m in the access channel.
- Sea level rise of 0.44 m after 200 years with 2.2 mm/year rate.
- Sea level rise of 0.22 m after 100 years with 2.2 mm/year rate.
- Sea level rise of 0.11 m after 50 years with 2.2 mm/year rate.
3. Results
3.1. Tidal Harmonics Analysis
3.2. Model Calibration
3.3. Effect of Sea Level Rise and Access Channel Deepening
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cabello, J.J.; Balbis, M.; Sagastume, A.; Pardo, A.; Cabello, M.J.; Rey, F.J.; Rueda-Bayona, J.G. A Look to the Electricity Generation from Non-Conventional Renewable Energy Sources in Colombia. Int. J. Energy Econ. Policy 2019, 9, 15–25. [Google Scholar] [CrossRef]
- Rueda-Bayona, J.G.; Guzmán, A.; Eras, J.J.C.; Silva-Casarín, R.; Bastidas-Arteaga, E.; Horrillo-Caraballo, J. Renewables Energies in Colombia and the Opportunity for the Offshore Wind Technology. J. Clean. Prod. 2019, 220, 529–543. [Google Scholar] [CrossRef]
- Rueda-Bayona, J.G.; Cabello Eras, J.J.; Chaparro, T.R. Impacts Generated by the Materials Used in Offshore Wind Technology on Human Health, Natural Environment and Resources. Energy 2022, 261, 125223. [Google Scholar] [CrossRef]
- Shetty, C.; Priyam, A. A Review on Tidal Energy Technologies. Mater. Today Proc. 2022, 56, 2774–2779. [Google Scholar] [CrossRef]
- Chowdhury, M.S.; Rahman, K.S.; Selvanathan, V.; Nuthammachot, N.; Suklueng, M.; Mostafaeipour, A.; Habib, A.; Akhtaruzzaman, M.; Amin, N.; Techato, K. Current Trends and Prospects of Tidal Energy Technology. Environ. Dev. Sustain. 2021, 23, 8179–8194. [Google Scholar] [CrossRef]
- Vogel, C.R.; Taira, D.T.; Carmo, B.S.; Assi, G.R.S.; Willden, R.H.J.; Meneghini, J.R. Prospects for Tidal Stream Energy in the UK and South America: A Review of Challenges and Opportunities. Polytechnica 2019, 2, 97–109. [Google Scholar] [CrossRef]
- IRENA. Ocean Energy Technologies Patents Deployment Status and Outlook; IRENA: Masdar City, United Arab Emirates, 2014. [Google Scholar]
- Khan, N.; Kalair, A.; Abas, N.; Haider, A. Review of Ocean Tidal, Wave and Thermal Energy Technologies. Renew. Sustain. Energy Rev. 2017, 72, 590–604. [Google Scholar] [CrossRef]
- Quintero, G.; Rueda-Bayona, J.G. Tidal Energy Potential in the Center Zone of the Colombian Pacific Coast. INGECUC 2021, 17. [Google Scholar] [CrossRef]
- Yuce, M.I.; Muratoglu, A. Hydrokinetic Energy Conversion Systems: A Technology Status Review. Renew. Sustain. Energy Rev. 2015, 43, 72–82. [Google Scholar] [CrossRef]
- Lewis, M.; Neill, S.P.; Robins, P.E.; Hashemi, M.R. Resource Assessment for Future Generations of Tidal-Stream Energy Arrays. Energy 2015, 83, 403–415. [Google Scholar] [CrossRef] [Green Version]
- Neill, S.P.; Hemmer, M.; Robins, P.E.; Griffiths, A.; Furnish, A.; Angeloudis, A. Tidal Range Resource of Australia. Renew. Energy 2021, 170, 683–692. [Google Scholar] [CrossRef]
- Barbarelli, S.; Nastasi, B.; Rusu, E.; Bergillos, R.J. Tides and Tidal Currents—Guidelines for Site and Energy Resource Assessment. Energies 2021, 14, 6123. [Google Scholar] [CrossRef]
- Bae, Y.H.; Kim, K.O.; Choi, B.H. Lake Sihwa Tidal Power Plant Project. Ocean Eng. 2010, 37, 454–463. [Google Scholar] [CrossRef]
- Ferreira, R.M.; Estefen, S.F. Alternative Concept for Tidal Power Plant with Reservoir Restrictions. Renew. Energy 2009, 34, 1151–1157. [Google Scholar] [CrossRef]
- Oh, S.H.; Lee, K.S.; Jeong, W.M. Three-Dimensional Experiment and Numerical Simulation of the Discharge Performance of Sluice Passageway for Tidal Power Plant. Renew. Energy 2016, 92, 462–473. [Google Scholar] [CrossRef]
- Hosseinibalam, F.; Hassanzadeh, S.; Mirmohammadi, M. Simulation of Tidal Energy Extraction by Using FLUENT Model. Iran. J. Sci. Technol. Trans. A Sci. 2019, 43, 2035–2042. [Google Scholar] [CrossRef]
- Espina-Valdés, R.; Álvarez Álvarez, E.; García-Maribona, J.; Trashorras, A.J.G.; González-Caballín, J.M. Tidal Current Energy Potential Assessment in the Avilés Port Using a Three-Dimensional CFD Method. Clean Technol. Environ. Policy 2019, 21, 1367–1380. [Google Scholar] [CrossRef]
- Dai, P.; Zhang, J.; Zheng, J. Tidal Current and Tidal Energy Changes Imposed by a Dynamic Tidal Power System in the Taiwan Strait, China. J. Ocean Univ. China 2017, 16, 953–964. [Google Scholar] [CrossRef]
- Angeloudis, A.; Kramer, S.C.; Hawkins, N.; Piggott, M.D. On the Potential of Linked-Basin Tidal Power Plants: An Operational and Coastal Modelling Assessment. Renew. Energy 2020, 155, 876–888. [Google Scholar] [CrossRef] [Green Version]
- Mohammadian, A.; Morse, B.; Robert, J.L. Assessment of Tidal Stream Energy Resources in a Hypertidal Estuary with Highly Irregular Bathymetry Using 3D Numerical Modelling. J. Ocean Eng. Mar. Energy 2019, 5, 267–281. [Google Scholar] [CrossRef]
- Park, J.S.; Lee, C.Y.; Park, J.S.; Choi, H.W.; Ko, D.H.; Lee, J.L. Assessment of Tidal Stream Energy Resources Using a Numerical Model in Southwestern Sea of Korea. Ocean Sci. J. 2019, 54, 529–541. [Google Scholar] [CrossRef]
- Wu, H.; Yu, H.; Fang, Y.; Zhou, Q.; Zhuo, F.; Kelly, R.M. Assessment of the Tidal Current Energy Resources and the Hydrodynamic Impacts of Energy Extraction at the PuHu Channel in Zhoushan Archipelago, China. J. Ocean Univ. China 2021, 20, 478–488. [Google Scholar] [CrossRef]
- Shariatmadari, D.; Siadatmousavi, S.M.; Ershadi, C. Numerical Study of Power Production from Tidal Energy in the Khuran Channel and Its Feedback on Background Hydrodynamics. Acta Oceanol. Sin. 2022, 41, 173–182. [Google Scholar] [CrossRef]
- Harcourt, F.; Angeloudis, A.; Piggott, M.D. Utilising the Flexible Generation Potential of Tidal Range Power Plants to Optimise Economic Value. Appl. Energy 2019, 237, 873–884. [Google Scholar] [CrossRef] [Green Version]
- Ghaedi, A.; Gorginpour, H. Generated Power Enhancement of the Barrage Type Tidal Power Plants. Ocean Eng. 2021, 226, 108787. [Google Scholar] [CrossRef]
- Angeloudis, A.; Kramer, S.C.; Avdis, A.; Piggott, M.D. Optimising Tidal Range Power Plant Operation. Appl. Energy 2018, 212, 680–690. [Google Scholar] [CrossRef]
- Nag, B. A Dynamic Programming Algorithm for Optimal Design of Tidal Power Plants. J. Inst. Eng. Ser. B 2013, 94, 43–51. [Google Scholar] [CrossRef]
- Amoo, L.M. Techno-Economic Assessment of Energy Production Potential from Tidal Streams in Nigeria. Int. J. Energy Environ. Eng. 2018, 9, 81–98. [Google Scholar] [CrossRef] [Green Version]
- Nevermann, H.; Becerra Gomez, J.N.; Fröhle, P.; Shokri, N. Land Loss Implications of Sea Level Rise along the Coastline of Colombia under Different Climate Change Scenarios. Clim. Risk Manag. 2023, 39, 100470. [Google Scholar] [CrossRef]
- Koks, E.E.; Le Bars, D.; Essenfelder, A.H.; Nirandjan, S.; Sayers, P. The Impacts of Coastal Flooding and Sea Level Rise on Critical Infrastructure: A Novel Storyline Approach. Sustain. Resilient Infrastruct. 2022, 8, 237–261. [Google Scholar] [CrossRef]
- Khojasteh, D.; Lewis, M.; Tavakoli, S.; Farzadkhoo, M.; Felder, S.; Iglesias, G.; Glamore, W. Sea Level Rise Will Change Estuarine Tidal Energy: A Review. Renew. Sustain. Energy Rev. 2022, 156, 111855. [Google Scholar] [CrossRef]
- Li, Y.; Pan, D.Z. The Ebb and Flow of Tidal Barrage Development in Zhejiang Province, China. Renew. Sustain. Energy Rev. 2017, 80, 380–389. [Google Scholar] [CrossRef]
- Chen, W.B.; Liu, W.C. Assessing the Influence of Sea Level Rise on Tidal Power Output and Tidal Energy Dissipation near a Channel. Renew. Energy 2017, 101, 603–616. [Google Scholar] [CrossRef]
- Vega, L.; Cantillo, V.; Arellana, J. Assessing the Impact of Major Infrastructure Projects on Port Choice Decision: The Colombian Case. Transp. Res. Part A Policy Pract. 2019, 120, 132–148. [Google Scholar] [CrossRef]
- Deltares Delft3D-FLOW. Simulation of Multi-Dimensional Hydrodynamic Flows and Transport Phenomena, Including Sediments; User Manual: Delft, The Netherlands, 2014. [Google Scholar]
- Waldman, S.; Bastón, S.; Nemalidinne, R.; Chatzirodou, A.; Venugopal, V.; Side, J. Implementation of Tidal Turbines in MIKE 3 and Delft3D Models of Pentland Firth & Orkney Waters. Ocean Coast Manag. 2017, 147, 21–36. [Google Scholar] [CrossRef] [Green Version]
- Rueda-Bayona, J.G.; Osorio, A.F.; Guzmán, A. Set-up and Input Dataset Files of the Delft3d Model for Hydrodynamic Modelling Considering Wind, Waves, Tides and Currents through Multidomain Grids. Data Brief 2020, 28, 10–13. [Google Scholar] [CrossRef]
- Rueda-Bayona, J.G.; Horrillo-Caraballo, J.; Chaparro, T.R. Modelling of Surface River Plume Using Set-up and Input Data Files of Delft-3D Model. Data Brief 2020, 31, 105899. [Google Scholar] [CrossRef]
- Le Provost, C.; Genco, M.L.; Lyard, F.; Vincent, P.; Canceil, P. Spectroscopy of the World Ocean Tides from a Finite Element Hydrodynamic Model. J. Geophys. Res. Ocean 1994, 99, 24777–24797. [Google Scholar] [CrossRef]
- INVEMAR, Diagnóstico y Evaluación de La Calidad de Las Aguas Marinas y Costeras En El Caribe y Pacífico Colombianos; Santa Marta; 2021. Available online: https://observatorio.epacartagena.gov.co/diagnostico-y-evaluacion-de-la-calidad-de-las-aguas-marinas-y-costeras-en-el-caribe-y-pacifico-colombianos/ (accessed on 8 March 2023).
- DIMAR Centro Colombiano de Datos Oceanográficos. Available online: https://cecoldo.dimar.mil.co/web/ (accessed on 1 December 2022).
- Consorcio Dragado Buenaventura Estudio y Diseño Del Dragado de Profundización Del Canal de Acceso al Puerto de Buenaventura. Valle Del Cauca, Buenaventura. 2015. Available online: https://ipt.biodiversidad.co/permisos/resource?r=estudiodedragadobuenaventura&v=1.0&request_locale=en (accessed on 8 March 2023).
- Gallego Perez, B.E.; Selvaraj, J.J. Evaluation of Coastal Vulnerability for the District of Buenaventura, Colombia: A Geospatial Approach. Remote Sens. Appl. 2019, 16, 100263. [Google Scholar] [CrossRef]
- Pawlowicz, R.; Beardsley, B.; Lentz, S. Classical Tidal Harmonic Analysis Including Error Estimates in MATLAB Using T_TIDE. Comput. Geosci. 2002, 28, 929–937. [Google Scholar] [CrossRef]
- Otero, L. Aplicación de un modelo hidrodinámico bidimensional para describir las corrientes y la propagación de la onda de marea en la bahia de buenaventura. Boletín Científico Cent. De Control. De Contam. Del Pac. CERRADO EN 2009 2005, 12, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Otero Díaz, L.J. Determinación Del Régimen Medio y Extremal Del Nivel Del Mar Para La Bahía de Buenaventura. Boletín Científico CCCP 2004, 11, 30–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantera, J.R.; Blanco, J.F. The Estuary Ecosystem of Buenaventura Bay, Colombia. Coast. Mar. Ecosyst. Lat. Am. 2001, 144, 265–280. [Google Scholar] [CrossRef]
- Lucero Rincón, C.H.; Peña Salamanca, E.J.; Cantera Kintz, J.R.; Lizcano, O.V.; Cruz-Quintana, Y.; Neira, R. Assessment of Mercury and Lead Contamination Using the Bivalve Anadara Tuberculosa (Arcidae) in an Estuary of the Colombian Pacific. Mar. Pollut. Bull. 2023, 187, 114519. [Google Scholar] [CrossRef] [PubMed]
- Jena, B.K.; Sivakholundu, K.M.; Rajkumar, J. A Description of Tidal Propagation in Hooghly Estuary Using Numerical and Analytical Solutions. Ocean Eng. 2018, 169, 38–48. [Google Scholar] [CrossRef]
- Kidd, I.M.; Chai, S.; Fischer, A.; Kidd, I.M.; Chai, S.; Fischer, A. Tidal Heights in Hyper-Synchronous Estuaries. Nat. Resour. 2014, 5, 607–615. [Google Scholar] [CrossRef] [Green Version]
- Álvarez, M.; Ramos, V.; Carballo, R.; Arean, N.; Torres, M.; Iglesias, G. The Influence of Dredging for Locating a Tidal Stream Energy Farm. Renew. Energy 2020, 146, 242–253. [Google Scholar] [CrossRef]
- Zhou, S.; Cao, S.; Wang, S. Realisation of a Coastal Zero-Emission Office Building with the Support of Hybrid Ocean Thermal, Floating Photovoltaics, and Tidal Stream Generators. Energy Convers. Manag. 2022, 253, 115135. [Google Scholar] [CrossRef]
- Abdullah, C.; Mad Kaidi, H.; Sarip, S.; Shafie, N. Small Scale Standalone Solar and Tidal Hybrid Power System in Isolated Area. Renew. Energy Focus 2021, 39, 59–71. [Google Scholar] [CrossRef]
Parameter | Method/Value |
---|---|
Bottom roughness | Chezy/65 |
Horizontal eddy viscosity | 1 m2/s |
Horizontal eddy diffusivity | 10 m2/s |
Turbulence | 3D/k-epsilon |
Time step | 0.5 min |
Water density | 1023 kg/m3 |
Air density | 1 kg/m3 |
Depth at grid cell faces | Mean |
Threshold depth | 0.1 m |
Marginal depth | −7 m |
Smoothing time | 60 min |
Advection scheme for momentum-transport | Cyclic |
Wind drag coefficients | Breakpoint A/0.000063, 0 m/s Breakpoint B/0.000723, 10 m/s Breakpoint C/0.000723, 20 m/s |
Harmonic | Period (h) | Frequency (cph) | Amplitude (m) | Phase (°) | SNR |
---|---|---|---|---|---|
SA | 8766.23148 | 0.000114074 | 0.120153074 | 234.8465377 | 54.82042061 |
SSA | 4382.9063 | 0.000228159 | 0.070128659 | 139.2832099 | 20.75563454 |
O1 | 25.81934166 | 0.038730654 | 0.022875503 | 2.017207422 | 65.44156092 |
P1 | 24.06589023 | 0.041552587 | 0.035745417 | 342.142001 | 119.3355136 |
S1 | 23.99999686 | 0.041666672 | 0.016676698 | 260.1614375 | 22.69151675 |
K1 | 23.93446959 | 0.041780746 | 0.104467627 | 347.8688574 | 1534.331354 |
J1 | 23.0984767 | 0.043292898 | 0.01004813 | 21.27610552 | 10.33498298 |
EPS2 | 13.12726743 | 0.076177316 | 0.015830933 | 93.69213311 | 14.98524996 |
2N2 | 12.90537447 | 0.077487097 | 0.03795249 | 60.73369937 | 81.64286494 |
MU2 | 12.8717576 | 0.077689468 | 0.049905025 | 94.47466275 | 148.6021144 |
N2 | 12.65834823 | 0.078999249 | 0.316093425 | 83.74429212 | 5371.587782 |
NU2 | 12.62600437 | 0.07920162 | 0.057155105 | 87.07549121 | 237.119084 |
M2 | 12.4206012 | 0.080511401 | 1.506794911 | 109.5253561 | 131116.1652 |
LDA2 | 12.22177416 | 0.081821181 | 0.017621982 | 86.4619221 | 13.45786245 |
L2 | 12.19162018 | 0.082023553 | 0.041684396 | 114.8169503 | 80.83575438 |
T2 | 12.01644919 | 0.083219259 | 0.029581004 | 160.8067384 | 49.3869777 |
S2 | 12 | 0.083333333 | 0.401177467 | 163.2452598 | 9879.122904 |
K2 | 11.9672348 | 0.083561492 | 0.089005163 | 161.782011 | 474.3902567 |
MO3 | 8.386302962 | 0.119242055 | 0.004550463 | 25.77655677 | 11.73695878 |
M3 | 8.280400802 | 0.120767101 | 0.006672359 | 171.4722701 | 20.37783732 |
SK3 | 7.992705566 | 0.12511408 | 0.010186052 | 298.6079344 | 52.31519474 |
MN4 | 6.269173901 | 0.159510649 | 0.027602629 | 267.5590126 | 252.6433172 |
M4 | 6.210300601 | 0.161022801 | 0.06734016 | 286.8913267 | 1359.285599 |
SN4 | 6.160192781 | 0.162332582 | 0.011716516 | 2.774502908 | 51.27938999 |
MS4 | 6.103339275 | 0.163844734 | 0.04394011 | 351.7890852 | 819.7642463 |
MK4 | 6.094851995 | 0.164072893 | 0.010045556 | 347.8552665 | 32.82585007 |
S4 | 6 | 0.166666667 | 0.008064286 | 66.99382076 | 24.90401384 |
2MK5 | 4.930880214 | 0.202803548 | 0.002693228 | 45.23875797 | 11.18939991 |
2MS6 | 4.092387536 | 0.244356135 | 0.00661569 | 336.4132609 | 42.50528221 |
2SM6 | 4.045666393 | 0.247178067 | 0.004248617 | 13.99209813 | 17.06704416 |
M8 | 3.105150301 | 0.322045603 | 0.009453122 | 260.3789437 | 207.6626631 |
Harmonic | Period (h) | Amplitude (m) | Phase (°) |
---|---|---|---|
1 | 12 | 0.015 | 0.785531 |
2 | 24 | 0.015 | 0.785531 |
3 | 12.42 | 0.25 | 0.785531 |
Quadrature (Lowest Tides) | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Normal conditions | Channel deepening | Sea level rise (200 yr) | Sea level rise (100 yr) | Sea level rise (50 yr) | |||||||||||||||
Point | mean | min | max | mean | min | max | % variation | mean | min | max | % variation | mean | min | max | % variation | mean | min | max | % variation |
A | 0.91 | 0.01 | 1.72 | 0.93 | 0.19 | 1.65 | 1.55 | 1.05 | 0.05 | 1.77 | 14.66 | 1.00 | 0.38 | 1.80 | 9.29 | 0.97 | 0.32 | 1.78 | 6.06 |
B | 0.15 | 0.01 | 0.42 | 0.12 | 0.02 | 0.32 | −18.96 | 0.17 | 0.01 | 0.49 | 9.85 | 0.17 | 0.03 | 0.50 | 8.97 | 0.16 | 0.01 | 0.46 | 4.59 |
C | 0.39 | 0.03 | 0.79 | 0.31 | 0.01 | 1.72 | −20.74 | 0.42 | 0.02 | 0.80 | 7.92 | 0.44 | 0.03 | 1.78 | 11.93 | 0.43 | 0.04 | 1.76 | 9.81 |
Syzygy (lowest tides) | |||||||||||||||||||
Normal conditions | Channel deepening | Sea level rise (200 yr) | Sea level rise (100 yr) | Sea level rise (50 yr) | |||||||||||||||
mean | min | max | mean | min | max | % variation | mean | min | max | % variation | mean | min | max | % variation | mean | min | max | % variation | |
A | 1.07 | 0.11 | 2.13 | 1.07 | 0.36 | 2.05 | 0.10 | 1.20 | 0.18 | 2.31 | 12.05 | 1.07 | 0.09 | 2.11 | −0.28 | 1.03 | 0.09 | 2.12 | −3.83 |
B | 0.20 | 0.00 | 0.53 | 0.15 | 0.00 | 0.52 | −22.77 | 0.23 | 0.00 | 0.54 | 17.13 | 0.22 | 0.01 | 0.50 | 8.25 | 0.21 | 0.01 | 0.48 | 3.39 |
C | 0.57 | 0.01 | 1.16 | 0.41 | 0.04 | 0.97 | −28.69 | 0.60 | 0.01 | 1.27 | 5.01 | 0.57 | 0.03 | 1.05 | −0.48 | 0.56 | 0.04 | 1.04 | −1.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rueda-Bayona, J.G.; García Vélez, J.L.; Parrado-Vallejo, D.M. Effect of Sea Level Rise and Access Channel Deepening on Future Tidal Power Plants in Buenaventura Colombia. Infrastructures 2023, 8, 51. https://doi.org/10.3390/infrastructures8030051
Rueda-Bayona JG, García Vélez JL, Parrado-Vallejo DM. Effect of Sea Level Rise and Access Channel Deepening on Future Tidal Power Plants in Buenaventura Colombia. Infrastructures. 2023; 8(3):51. https://doi.org/10.3390/infrastructures8030051
Chicago/Turabian StyleRueda-Bayona, Juan Gabriel, José Luis García Vélez, and Daniel Mateo Parrado-Vallejo. 2023. "Effect of Sea Level Rise and Access Channel Deepening on Future Tidal Power Plants in Buenaventura Colombia" Infrastructures 8, no. 3: 51. https://doi.org/10.3390/infrastructures8030051
APA StyleRueda-Bayona, J. G., García Vélez, J. L., & Parrado-Vallejo, D. M. (2023). Effect of Sea Level Rise and Access Channel Deepening on Future Tidal Power Plants in Buenaventura Colombia. Infrastructures, 8(3), 51. https://doi.org/10.3390/infrastructures8030051