Testing of Lubricants for DIC Tests to Measure the Forming Limit Diagrams of Aluminum Thin Sheet Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lubricants and Raw Materials Used in the Research
2.1.1. Lubricants and Oils
2.1.2. Teflon Foils
2.1.3. Thin Sheets
2.2. Tools, Equipment, and Measurement Methods Used in this Research
2.2.1. Erichsen Test with DIC Evaluation
2.2.2. Measurement of the Plate Thickness Run-Off
2.2.3. GOM ARAMIS
3. Results and Discussion
3.1. Results of the Erichsen Test
3.2. Recording of Thickness Run-Off Curves from Specimens Made with the Erichsen Test
3.3. Results of the DIC Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ISO 12004-2:2008; Metallic Materials—Sheet and Strip—Determination of Forming-Limit Curves—Part 2: Determination of Forming-Limit Curves in the Laboratory. International Organization for Standardization: Geneva, Switzerland, 2021; p. 27.
- Kumar, N.; Saini, V.; Bijwe, J. Performance Properties of Lithium Greases with PTFE Particles as Additive: Controlling Parameter—Size or Shape? Tribol. Int. 2020, 148, 106302. [Google Scholar] [CrossRef]
- Sun, Z.; Xu, C.M.; Peng, Y.X.; Shi, Y.Y.; Zhang, Y.W. Fretting Tribological Behaviors of Steel Wires under Lubricating Grease with Compound Additives of Graphene and Graphite. Wear 2020, 454–455, 203333. [Google Scholar] [CrossRef]
- Geike, T. Bubble Dynamics-Based Modeling of the Cavitation Dynamics in Lubricated Contacts. Facta Univ. Ser. Mech. Eng. 2021, 19, 115–124. [Google Scholar] [CrossRef]
- Pan, B. Digital Image Correlation for Surface Deformation Measurement: Historical Developments, Recent Advances and Future Goals. Meas. Sci. Technol. 2018, 29, 082001. [Google Scholar] [CrossRef]
- Reddy, M.R.N.; Theja, M.S.; Tilak, M.G. Modified Erichsen Cupping Test for Copper, Brass, Aluminium and Stainless Steel. SIJ Trans. Ind. Financ. Bus. Manag. 2018, 6, 52–57. [Google Scholar] [CrossRef]
- Yoshimura, H.; Torikai, S.; Nishihara, T.; Nonishi, T.; Inouchi, N. Application of Wheat Flour Lubricants to the Press-Forming Process. J. Mater. Process. Technol. 2002, 125–126, 375–378. [Google Scholar] [CrossRef]
- Rao, K.P.; Wei, J.J. Performance of a New Dry Lubricant in the Forming of Aluminum Alloy Sheets. Wear 2001, 249, 85–92. [Google Scholar] [CrossRef]
- Rao, K.P.; Prasad, Y.V.R.K.; Xie, C.L. Further Evaluation of Boric Acid Vis-à-Vis Other Lubricants for Cold Forming Applications. Tribol. Int. 2011, 44, 1118–1126. [Google Scholar] [CrossRef]
- Zareh-Desari, B.; Abaszadeh-Yakhforvazani, M.; Khalilpourazary, S. The Effect of Nanoparticle Additives on Lubrication Performance in Deep Drawing Process: Evaluation of Forming Load, Friction Coefficient and Surface Quality. Int. J. Precis. Eng. Manuf. 2015, 16, 929–936. [Google Scholar] [CrossRef]
- Giuliano, G.; Samani, F. Effect of Lubrication on the Erichsen Test. Appl. Mech. Mater. 2013, 365–366, 425–428. [Google Scholar] [CrossRef]
- Kumar, A. Experimental Analysis of Formability of Commercially Pure Titanium under PTFE Lubricated Conditions. IOP Conf. Ser. Mater. Sci. Eng. 2018, 455, 012052. [Google Scholar] [CrossRef]
- Ramadass, R.; Sambasivam, S.; Nagaraj, V.V. Formability Studies on Titanium Grade 2 Sheet Using Erichsen Cupping Test. Int. J. Mech. Eng. 2022, 6, 974–5823. [Google Scholar]
- Nurul, M.A.; Syahrullail, S.; Teng, H.W. Alternative Lubricants: Study on Palm Oil-Based Lubricants in Metal Forming Process. J. Oil Palm Res. 2016, 28, 93–103. [Google Scholar] [CrossRef]
- Demazel, N.; Kacem, A.; Thuillier, S.; Laurent, H.; Briend, P.; Masse, J.-P. Performance Evaluation of Lubricants with Swift Cup Drawing. Key Eng. Mater. 2022, 926, 1195–1203. [Google Scholar] [CrossRef]
- Kumar, R.U.; Reddy, G.C. Analysis of Swift Cup Drawing Test. Int. J. Appl. Innov. Eng. Manag. 2014, 3, 104–108. [Google Scholar]
- Pavan Kumar, J.; Uday Kumar, R.; Ramakrishna, B.; Ramu, B.; Baba Saheb, K. Formability of Sheet Metals—A Review. IOP Conf. Ser. Mater. Sci. Eng. 2018, 455, 012081. [Google Scholar] [CrossRef]
- Meiler, M.; Pfestorf, M.; Geiger, M.; Merklein, M. The Use of Dry Film Lubricants in Aluminum Sheet Metal Forming. Wear 2003, 255, 1455–1462. [Google Scholar] [CrossRef]
- Gencturk, B.; Hossain, K.; Kapadia, A.; Labib, E.; Mo, Y.L. Use of Digital Image Correlation Technique in Full-Scale Testing of Prestressed Concrete Structures. Measurement 2014, 47, 505–515. [Google Scholar] [CrossRef]
- Ramos, T.; Furtado, A.; Eslami, S.; Alves, S.; Rodrigues, H.; Arêde, A.; Tavares, P.J.; Moreira, P.M.G.P. 2D and 3D Digital Image Correlation in Civil Engineering—Measurements in a Masonry Wall. Procedia Eng. 2015, 114, 215–222. [Google Scholar] [CrossRef]
- Reddy, K.T.K.; Koniki, S. Digital Image Correlation for Structural Health Monitoring—A Review. E3S Web Conf. 2021, 309, 01176. [Google Scholar] [CrossRef]
- Kuchak, A.T.J.; Marinkovic, D.; Zehn, M. Parametric Investigation of a Rail Damper Design Based on a Lab-Scaled Model. J. Vib. Eng. Technol. 2021, 9, 51–60. [Google Scholar] [CrossRef]
- Kuchak, A.T.J.; Marinkovic, D.; Zehn, M. Finite Element Model Updating—Case Study of a Rail Damper. Struct. Eng. Mech. 2020, 73, 27–35. [Google Scholar] [CrossRef]
- Macura, D.; Laketić, M.; Pamučar, D.; Marinković, D. Risk Analysis Model with Interval Type-2 Fuzzy FMEA—Case Study of Railway Infrastructure Projects in the Republic of Serbia. Acta Polytech. Hung. 2022, 19, 103–118. [Google Scholar] [CrossRef]
- Fischer, S.; Kocsis Szürke, S. Detection Process of Energy Loss in Electric Railway Vehicles. Facta Univ. Ser. Mech. Eng. 2023, 11368. [Google Scholar] [CrossRef]
- Kurhan, D.; Fischer, S. Modeling of the Dynamic Rail Deflection Using Elastic Wave Propagation. J. Appl. Comput. Mech. 2022, 8, 379–387. [Google Scholar] [CrossRef]
- Fischer, S.; Harangozó, D.; Németh, D.; Kocsis, B.; Sysyn, M.; Kurhan, D.; Brautigam, A. Investigation of Heat-Affected Zones of Thermite Rail Weldings. Facta Univ. Ser. Mech. Eng. 2023. [Google Scholar] [CrossRef]
- Jóvér, V.; Sysyn, M.; Liu, J.; Fischer, S. Geometry Variation of Ballasted Railway Tracks Due to Weather Conditions. Nauk. Visnyk Natsionalnoho Hirnychoho Univ. 2023, 2023, 74–79. [Google Scholar] [CrossRef]
- Eller, B.; Szalai, S.; Sysyn, M.; Harrach, D.; Liu, J.; Fischer, S. Inner Shear Resistance Increasing Effect of Concrete Canvas in Ballasted Railway Tracks. Nauk. Visnyk Natsionalnoho Hirnychoho Univ. 2023. [Google Scholar]
- Gáspár, L.; Bencze, Z. Increasing Life Expectancy of Road Pavements. Gradjevinar 2020, 72, 515–522. [Google Scholar] [CrossRef]
- He, L.; Cai, H.; Huang, Y.; Ma, Y.; van den Bergh, W.; Gaspar, L.; Valentin, J.; Vasiliev, Y.E.; Kowalski, K.J.; Zhang, J. Research on the Properties of Rubber Concrete Containing Surface-Modified Rubber Powders. J. Build. Eng. 2021, 35, 101991. [Google Scholar] [CrossRef]
- Tóth, C.; Primusz, P. Development of a Road Pavement Structure Diagnostic. Coatings 2022, 12, 1944. [Google Scholar] [CrossRef]
- Király, T.; Primusz, P.; Tóth, C. Simulation of Static Tyre–Pavement Interaction Using Two FE Models of Different Complexity. Appl. Sci. 2022, 12, 2388. [Google Scholar] [CrossRef]
- Lipski, A. Change of Specimen Temperature during the Monotonic Tensile Test and Correlation between the Yield Strength and Thermoelasto-Plastic Limit Stress on the Example of Aluminum Alloys. Materials 2021, 14, 13. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Sheikholeslami, G.; Dearden, G.; Edwardson, S.P. Reverse Analysis of Scan Strategies for Controlled 3D Laser Forming of Sheet Metal. Procedia Eng. 2017, 183, 369–374. [Google Scholar] [CrossRef]
- Sych, O.V.; Korotovskaya, S.V.; Khlusova, E.I.; Motovilina, G.D.; Nikitina, V.R.; Sych, O.V.; Korotovskaya, S.V.; Khlusova, E.I.; Motovilina, G.D.; Nikitina, V.R. Heterogeneity of Structure and Mechanical Properties Studied in Thickness up to 100 Mm of Low-Alloy Shipbuilding Steel Sheets with a Yield Strength Not Less Th. Inorg. Mater. Appl. Res. 2022, 13, 1477–1489. [Google Scholar] [CrossRef]
- Ajay, C.V.; Elangovan, S.; Pratheesh Kumar, S.; Manisekar, K. Multi-Objective Optimization in Incremental Sheet Forming of Ti-6Al-4V Alloy Using Grey Relational Analysis Method. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2022, 236, 1467–1476. [Google Scholar] [CrossRef]
- Shunmugesh, K.; Raphel, A.; Unnikrishnan, T.G.; Akhil, K.T. Finite Element Modelling of Carbon Fiber Reinforced with Vespel and Honey-Comb Structure. Mater. Today Proc. 2022, 72, 2163–2168. [Google Scholar] [CrossRef]
- Szabó, V.A.; Dogossy, G. Structure and Properties of Closed-Cell Foam Prepared from RPET. In Proceedings of the 11th Hungarian Conference on Materials Science, IOP Conference Series: Materials Science and Engineering, Balatonkenese, Hungary, 15–17 October 2017; Volume 426, p. 012043. [Google Scholar]
- Dogossy, G.; Morauszki, T.; Ronkay, F. Experimental Investigation and Applicability of Multi-Stage Simulations in the Case of a Thick-Walled Injection-Moulded Composite. Appl. Sci. 2022, 12, 8415. [Google Scholar] [CrossRef]
- Szalai, S.; Szívós, B.F.; Kurhan, D.; Németh, A.; Sysyn, M.; Fischer, S. Optimization of Surface Preparation and Painting Processes for Railway and Automotive Steel Sheets. Infrastructures 2023, 8, 28. [Google Scholar] [CrossRef]
- Szalai, S.; Fehér, V.; Kurhan, D.; Németh, A.; Sysyn, M.; Fischer, S. Optimization of Surface Cleaning and Painting Methods for DIC Measurements on Automotive and Railway Aluminum Materials. Infrastructures 2023, 8, 27. [Google Scholar] [CrossRef]
- Nugymanova, G.; Nurgaliyeva, M.; Zhanbirov, Z.; Naumov, V.; Taran, I. Choosing a Servicing Company’s Strategy While Interacting with Freight Owners at the Road Transport Market. Nauk. Visnyk Natsionalnoho Hirnychoho Univ. 2021, 1, 204–210. [Google Scholar] [CrossRef]
- Ramazan, B.; Mussaliyeva, R.; Bitileuova, Z.; Naumov, V.; Taran, I. Choosing the Logistics Chain Structure for Deliveries of Bulk Loads: Case Study of the Republic Kazakhstan. Nauk. Visnyk Natsionalnoho Hirnychoho Univ. 2021, 3, 142–147. [Google Scholar] [CrossRef]
- Jóvér, V.; Major, Z.; Németh, A.; Kurhan, D.; Sysyn, M.; Fischer, S. Investigation of “Open” Superstructure Tramway Tracks in Budapest. Infrastructures 2023, 8, 33. [Google Scholar] [CrossRef]
- Szalai, S.; Dogossy, G. Speckle Pattern Optimization for DIC Technologies. Acta Tech. Jaurinensis 2021, 14, 228–243. [Google Scholar] [CrossRef]
- Őri, P.; Kocsis Szürke, S.; Kurhan, D.; Sysyn, M.; Lakatos, I.; Fischer, S. Vibration Diagnostic Methods of Automatic Transmission Service Requirement Prediction. Infrastructures 2023, 8, 31. [Google Scholar] [CrossRef]
- Polák, J.; Lakatos, I. Efficiency Optimization of Electric Permanent Magnet Motor Driven Vehicle. Mach. Des. 2015, 7, 11–14. [Google Scholar]
- Pup, D.; Szakallas, G.; Polák, J. Research of Vehicle Parameter and Sensor Systems Necessary to Control Autonomous Vehicles. In Proceedings of the 2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, MESA 2018, Oulu, Finland, 2–4 July 2018; p. 8449146. [Google Scholar] [CrossRef]
- ISO 20482:2013; Metallic Materials—Sheet and Strip—Erichsen Cupping Test. International Organization for Standardization: Geneva, Switzerland, 2013.
- ISO 11531:2022; Metallic Materials—Sheet and Strip—Earing Test. International Organization for Standardization: Geneva, Switzerland, 2022; p. 6.
- Pankow, M.; Riosbass, M.; Justusson, B.; Zhang, D.; Waas, A.M.; Yen, C.F. Effect of Fiber Hybridization on Tensile Fracture of 3D Woven Textile Composites. Compos. Part A Appl. Sci. Manuf. 2023, 165, 107306. [Google Scholar] [CrossRef]
- Balokhonov, R.; Romanova, V.; Schwab, E.; Zemlianov, A.; Evtushenko, E. Computational Microstructure-Based Analysis of Residual Stress Evolution in Metal-Matrix Composite Materials during Thermomechanical Loading. Facta Univ. Ser. Mech. Eng. 2021, 19, 241–252. [Google Scholar] [CrossRef]
- Lionello, G.; Cristofolini, L. A Practical Approach to Optimizing the Preparation of Speckle Patterns for Digital-Image Correlation. Meas. Sci. Technol. 2014, 25, 107001. [Google Scholar] [CrossRef]
- Haring, M.; Grotli, E.I.; Riemer-Sorensen, S.; Seel, K.; Hanssen, K.G. A Levenberg-Marquardt Algorithm for Sparse Identification of Dynamical Systems. IEEE Trans. Neural Netw. Learn. Syst. 2022, 1–14. [Google Scholar] [CrossRef]
- Christou, V.; Arjmand, A.; Dimopoulos, D.; Varvarousis, D.; Tsoulos, I.; Tzallas, A.T.; Gogos, C.; Tsipouras, M.G.; Glavas, E.; Ploumis, A.; et al. Automatic Hemiplegia Type Detection (Right or Left) Using the Levenberg-Marquardt Backpropagation Method. Information 2022, 13, 101. [Google Scholar] [CrossRef]
- Zheng, L.; Chen, L.; Ma, Y. A Variant of the Levenberg-Marquardt Method with Adaptive Parameters for Systems of Nonlinear Equations. AIMS Math. 2022, 7, 1241–1256. [Google Scholar] [CrossRef]
ID. | Name | Manufacturer (Brand) | Additives |
---|---|---|---|
L1 | Polimet EDM 3 | MOL | encrypted by manufacturer |
L2 | Fortilmo EV 603 | MOL | encrypted by manufacturer |
L3 | Fortilmo ADD 20 | MOL | encrypted by manufacturer |
L4 | PTFE DRY | MOTIP | encrypted by manufacturer |
L5 | PTFE WHITE GREASE | MOTIP | encrypted by manufacturer |
L6 | UNIVERSAL CONTACT SPRAY | WD-40 | encrypted by manufacturer |
L7 | Fortilmo EV 671 | MOL | encrypted by manufacturer |
L8 | Polimet M4 | MOL | encrypted by manufacturer |
L9 | Fortilmo EV 601 | MOL | encrypted by manufacturer |
L10 | OXOL-350 SILICONE OIL | T-SILOX | encrypted by manufacturer |
L11 | GRAPHIT GREASE | PRESSOL | encrypted by manufacturer |
L12 | HEAVY-DUTY GREASE | LINDE | encrypted by manufacturer |
L13 | MY E 603 | MOLYDAL | encrypted by manufacturer |
Si | Fe | Cu | Mn | Cr | Zn | Ti | Other |
---|---|---|---|---|---|---|---|
0.25% | 0.4% | 0.05% | 0.05% | - | 0.07% | 0.05% | 0.03% |
ID. | Name | Manufacturer (Brand) | IE Number |
---|---|---|---|
L12 | HEAVY-DUTY GREASE | LINDE | 27.58 |
L11 | GRAPHIT GREASE | PRESSOL | 27.30 |
L5 | PTFE WHITE GREASE | MOTIP | 27.28 |
L10 | OXOL-350 SILICONE OIL | T-SILOX | 27.20 |
L3 | Fortilmo ADD 20 | MOL | 27.10 |
L8 | Polimet M4 | MOL | 26.83 |
L9 | Fortilmo EV 601 | MOL | 26.80 |
L13 | MY E 603 | MOLYDAL | 26.68 |
L2 | Fortilmo EV 603 | MOL | 26.60 |
L7 | Fortilmo EV 671 | MOL | 26.60 |
L6 | UNIVERSAL CONTACT SPRAY | WD-40 | 26.38 |
L1 | Polimet EDM 3 | MOL | 26.30 |
L4 | PTFE DRY | MOTIP | 26.28 |
ID. | Name | Brand | IE Number—0.08 mm Teflon | IE Number—0.22 mm Teflon |
---|---|---|---|---|
L1 | Polimet EDM 3 | MOL | 27.60 | 26.80 |
L2 | Polimet EV 603 | MOL | 27.40 | 26.90 |
L3 | Fortilmo ADD 20 | MOL | 27.90 | 27.00 |
L4 | PTFE DRY | MOTIP | 27.20 | 27.00 |
L5 | PTFE WHITE GREASE | MOTIP | 27.40 | 27.20 |
L6 | UNIVERSAL CONTACT SPRAY | WD-40 | 26.40 | 27.10 |
L7 | Fortilmo EV 671 | MOL | 27.90 | 27.10 |
L8 | M4 | MOL | 27.90 | 27.40 |
L9 | Fortilmo EV 601 | MOL | 27.60 | 27.00 |
L10 | OXOL-350 SILICONE OIL | T-SILOX | 27.60 | 28.00 |
L11 | GRAPHIT GREASE | PRESSOL | 28.50 | 28.00 |
L12 | HEAVY-DUTY GREASE | LINDE | 29.00 | 28.30 |
L13 | MY E 603 | MOLYDAL | 27.20 | 26.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szalai, S.; Csótár, H.; Kurhan, D.; Németh, A.; Sysyn, M.; Fischer, S. Testing of Lubricants for DIC Tests to Measure the Forming Limit Diagrams of Aluminum Thin Sheet Materials. Infrastructures 2023, 8, 32. https://doi.org/10.3390/infrastructures8020032
Szalai S, Csótár H, Kurhan D, Németh A, Sysyn M, Fischer S. Testing of Lubricants for DIC Tests to Measure the Forming Limit Diagrams of Aluminum Thin Sheet Materials. Infrastructures. 2023; 8(2):32. https://doi.org/10.3390/infrastructures8020032
Chicago/Turabian StyleSzalai, Szabolcs, Hanna Csótár, Dmytro Kurhan, Attila Németh, Mykola Sysyn, and Szabolcs Fischer. 2023. "Testing of Lubricants for DIC Tests to Measure the Forming Limit Diagrams of Aluminum Thin Sheet Materials" Infrastructures 8, no. 2: 32. https://doi.org/10.3390/infrastructures8020032
APA StyleSzalai, S., Csótár, H., Kurhan, D., Németh, A., Sysyn, M., & Fischer, S. (2023). Testing of Lubricants for DIC Tests to Measure the Forming Limit Diagrams of Aluminum Thin Sheet Materials. Infrastructures, 8(2), 32. https://doi.org/10.3390/infrastructures8020032