Vibration Diagnostic Methods of Automatic Transmission Service Requirement Prediction
Abstract
:1. Introduction
1.1. Automatic Transmissions in Cars, Focusing on Oil Degradation
1.2. General Studies about Transmissions and Their Oils
1.3. Novelty and the Structure of the Current Paper
2. Materials and Methods
- idling;
- acceleration with the gear change;
- 50 km/h vehicle speed in 3rd gear;
- standstill with “D” selected.
3. Results and Discussion
4. Conclusions
- Vibration measurement can be an appropriate method for detecting oil degradation.
- Accelerometers should be placed on the transmission unit itself to be able to detect the changes in the ATF properties.
- Both the time and frequency domains can be applied to detect the change in automatic transmission operation.
- In the measured operating conditions, the difference in vibration with the old and new oil was approximately from 4.3% to 21%.
- To be able to ensure the same conditions for the comparison, the torque, engine speed, vehicle speed, and temperature parameters must be measured.
- Flexible service intervals can be applied due to the vibration of the conventional automatic transmission.
- Vibration-based flexible service intervals can extend the lifetime of the automatic transmission. In addition, compared to fixed intervals, it can reduce costs and be environmentally friendlier, as the ATF is changed only when necessary according to the operational conditions.
- Further studies can be performed on the topic of oil degradation and vibrations: a comparison at different temperatures, oil analysis from the samples, different types of automatic transmissions, and long-term measurement.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Wang, S.; Dong, P.; Xu, X. Dynamic Analysis and Control of an Automatic Transmission for Start-Stop Function and Efficiency Improvement. Math. Probl. Eng. 2015, 2015, 209276. [Google Scholar] [CrossRef]
- American Society for Testing and Materials ASTM D445-21e2–Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids. Available online: https://www.astm.org/standards/d445 (accessed on 14 January 2023).
- American Society for Testing and Materials ASTM D6595-17–Standard Test Method for Determination of Wear Metals and Contaminations in Used Lubricating Oils or Used Hydraulic Fluids by Rotating Disc Electrode Atomic Emission Spectrometry. Available online: https://www.astm.org/d6595-17.html (accessed on 14 January 2023).
- American Society for Testing and Materials ASTM D6304-20–Standard Test Method for Determination of Water in Petroleum Products, Lubricating Oils, and Additives by Coulometric Karl Fischer Titration. Available online: https://www.astm.org/d6304-20.html (accessed on 14 January 2023).
- Kumbár, V.; Glos, J.; Votava, J. Monitoring of Chemical Elements during Lifetime of Engine Oil. Acta Univ. Agric. Et Silvic. Mendel. Brun. 2014, 62, 155–159. [Google Scholar] [CrossRef]
- Guan, L.; Feng, X.L.; Xiong, G.; Xie, J.A. Application of Dielectric Spectroscopy for Engine Lubricating Oil Degradation Monitoring. Sens. Actuators A Phys. 2011, 168, 22–29. [Google Scholar] [CrossRef]
- Farfan-Cabrera, L.I.; Gallardo-Hernández, E.A.; Vite-Torres, M.; Godínez-Salcedo, J.G. Influence of Oxidation of Automatic Transmission Fluids (ATFs) and Sliding Distance on Friction Coefficients of a Wet Clutch in the Running-in Stage. Friction 2021, 9, 401–414. [Google Scholar] [CrossRef]
- Liddell, G.J.; Newingham, T.D. Some Physical Effects of Transmission Fluid Degradation. SAE Tech. Pap. Ser. 1966, 660097. [Google Scholar] [CrossRef]
- Kosiba, J.; Čorňák; Glos, J.; Jablonický, J.; Vozárová, V.; Petrović, A.; Csillag, J. Monitoring Oil Degradation during Operating Tests. Agron. Res. 2016, 14, 1626–1634. [Google Scholar]
- Ingram, M.; Noles, J.; Watts, R.; Harris, S.; Spikes, H.A. Frictional Properties of Automatic Transmission Fluids: Part II—Origins of Friction-Sliding Speed Behavior. Tribol. Trans. 2011, 54, 154–167. [Google Scholar] [CrossRef]
- Rivera, N.; Viesca, J.L.; García, A.; Prado, J.I.; Lugo, L.; Battez, A.H. Cooling Performance of Fresh and Aged Automatic Transmission Fluids for Hybrid Electric Vehicles. Appl. Sci. 2022, 12, 8911. [Google Scholar] [CrossRef]
- García Tuero, A.; Rivera, N.; Rodríguez, E.; Fernández-González, A.; Viesca, J.L.; Hernández Battez, A. Influence of Additives Concentration on the Electrical Properties and the Tribological Behaviour of Three Automatic Transmission Fluids. Lubricants 2022, 10, 276. [Google Scholar] [CrossRef]
- Cameron, T.M.; Tersigni, S.H.; McCombs, T.; Jao, T.C. ATF Effects on Friction Stability in Slip-Controlled Torque Converter Clutches. SAE Tech. Pap. Ser. 2003, 2003-01–3255. [Google Scholar] [CrossRef]
- Cameron, T.M.; McCombs, T.; Devlin, M.; Tersigni, S.; Jao, T.C. ATF Friction Properties and Shift Quality. J. Fuel. Lubr. 2004, 113, 2008–2013. [Google Scholar]
- Cameron, T.M.; Iyer, R.; McCombs, T.; Maelger, H.; Rollin, T.; Tersigni, S.; Jao, T.C. Enhanced Stability of Transmission Clutch Engagement with Temperature-Dependent ATF Friction. In Proceedings of the SAE Technical Paper Series; SAE International: Warrendale, PA, USA, 2007; pp. 828–833. [Google Scholar]
- Randall, R.B. Vibration-Based Condition Monitoring: Industrial, Aerospace and Automotive Applications; John Wiley & Sons Ltd.: Chichester, UK, 2010; ISBN 978-0-470-74785-8. [Google Scholar]
- Kuchak, A.; Marinkovic, D.; Zehn, M. Parametric Investigation of a Rail Damper Design Based on a Lab-Scaled Model. J. Vib. Eng. Technol. 2021, 9, 51–60. [Google Scholar] [CrossRef]
- Macura, D.; Laketić, M.; Pamučar, D.; Marinković, D. Risk Analysis Model with Interval Type-2 Fuzzy FMEA–Case Study of Railway Infrastructure Projects in the Republic of Serbia. Acta Polytech. Hung. 2022, 19, 103–118. [Google Scholar] [CrossRef]
- Kuchak, A.; Marinkovic, D.; Zehn, M. Finite Element Model Updating–Case Study of a Rail Damper. Struct. Eng. Mech. 2020, 73, 27–35. [Google Scholar] [CrossRef]
- Fischer, S.; Kocsis Szürke, S. Detection Process of Energy Loss in Electric Railway Vehicles. Facta Univ. Ser. Mech. Eng. 2023, 11368. [Google Scholar] [CrossRef]
- Zabler, E.; Müller, W.-M.; Bischoff, C.; Pfahler, C.; Weiberle, P.; Papert, U.; Gerhardt, C.; Miekley, K.; Frehoff, R.; Mast, M.; et al. Automotive Sensors. In Automotive Mechatronics. Bosch Professional Automotive Information; Reif, K., Ed.; Springer Vieweg: Wiesbaden, Germany, 2015; pp. 144–167. ISBN 978-3-658-03974-5. [Google Scholar]
- Hiramoto, Y.; Ohtake, S.; Takahashi, H. A Built-In Self-Diagnostic Mechanism for Delay Faults Based on Self-Generation of Expected Signatures. In Proceedings of the 2019 IEEE 28th Asian Test Symposium (ATS), Kolkata, India, 10–13 December 2019; pp. 31–36. [Google Scholar]
- Guan, J.J.; Willermet, P.A.; Carter, R.O.; Melotik, D.J. Interaction between ATFs and Friction Material for Modulated Torque Converter Clutches. SAE Tech. Pap. Ser. 1998, 981098, 1636–1643. [Google Scholar] [CrossRef]
- Newcomb, T.; Sparrow, M.; Ciupak, B.; Hadad, Y.; Hassert, J. The Effect of Lower Viscosity Automatic Transmission Fluid on Glaze Chemistry. SAE Int. J. Fuels. Lubr. 2009, 1, 1469–1479. [Google Scholar] [CrossRef]
- Marty, S.; Carpenter, B. Intricacies of SAE #2 Computerized Clutch Friction Durability Testing. SAE Tech. Pap. Ser. 1993, 932847. [Google Scholar] [CrossRef]
- Haviland, M.L.; Davison, E.D. Automatic Transmission Fluid Viscosity Requirements. SAE Tech. Pap. Ser. 1971, 710838, 2771–2781. [Google Scholar] [CrossRef]
- Tang, P.; Wang, S.; Liu, Y.; Xu, X. Analysis of the Oil Pressure Rule during the Shift Process of Automatic Transmission. In Proceedings of the 2010 7th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2010), Yantai, China, 10–12 August 2010; Volume 1, pp. 109–113. [Google Scholar]
- Dong, P.; Liu, Y.; Jiang, E.; Xu, X.; Shui, L.; Zhang, G. Oil Pressure Characteristic of Automatic Transmission’s Shift Control Unit and Clutch Failure Analysis. In Proceedings of the ICCASM 2010—2010 International Conference on Computer Application and System Modeling, Taiyuan, China, 22–24 October 2010; Volume 3, pp. 42–46. [Google Scholar]
- Kučera, M.; Aleš, Z.; Pavlů, J.; Hnilicová, M. Applying of Automatic Laser Particle Counter as Technique to Morphology Assessment and Distribution of Wear Particles during Lifetime of Transmission Oils. Key Eng. Mater. 2016, 669, 417–425. [Google Scholar] [CrossRef]
- Liu, Y.F.; Dong, P.; Liu, Y.; Xu, X.Y. Design and Application of Electric Oil Pump in Automatic Transmission for Efficiency Improvement and Start–Stop Function. J. Cent. S. Univ. 2016, 23, 570–580. [Google Scholar] [CrossRef]
- Kim, Y.; Song, M.; Kim, J.; Lee, H.; Kim, H. Power-Based Control of an Electric Oil Pump for an Automatic-Transmission- Based Hybrid Electric Vehicle. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2012, 226, 1088–1099. [Google Scholar] [CrossRef]
- Song, M.; Oh, J.; Kim, J.; Kim, Y.; Yi, J.; Kim, Y.; Kim, H. Development of an Electric Oil Pump Control Algorithm for an Automatic-Transmission-Based Hybrid Electric Vehicle Considering the Gear Shift Characteristics. Proc. Inst. Mech. Eng. Part D: J. Automob. Eng. 2014, 228, 21–36. [Google Scholar] [CrossRef]
- Seo, Y.; Sungdo, H. A Study on the Development of Remanufacturing Process of Oil Pumps for 7-Speed Automatic Transmissions. Trans. Korean Soc. Automot. Eng. 2021, 29, 675–681. [Google Scholar] [CrossRef]
- Farfán-Cabrera, L.I.; Gallardo-Hernández, E.A.; Vite-Torres, M.; Laguna-Camacho, J.R. Frictional Behavior of a Wet Clutch Using Blends of Automatic Transmission Fluid (ATF) and Biolubricant (Jatropha Oil) in a Pin-on-Disk Tester. Tribol. Trans. 2015, 58, 941–946. [Google Scholar] [CrossRef]
- Cahyadi, D.; Susilowati, E.; Puspita, D.F.; Ilham, I. Analysis of The Preliminary Anti-Wear Testing for Automatic Transmission Lubricating Oil Using The Four-Ball Method. In Proceedings of the 1st International Conference on Standardization and Metrology (ICONSTAM 2021), Tangerang Selatan, Virtual, 20 October 2021; p. 020009. [Google Scholar]
- Wang, W.; Li, W. Experimental Study of Performance of Automatic Transmission Oil Based on Pao. Pet. Process. Petrochem. 2019, 50, 90–94. [Google Scholar]
- Wu, H.; Yang, X.; Cao, G.; Zhao, L.; Yang, L. Design and Optimisation of Die Casting Process for Heavy-Duty Automatic Transmission Oil Circuit Board. Int. J. Cast Met. Res. 2021, 34, 88–96. [Google Scholar] [CrossRef]
- Zeng, J.; Liyan, Z.; Guilin, L. The Solution of Test Plateform for Vehicle Automatic Transmission. In Proceedings of the 2006 Chinese Control Conference Proceedings, CCC 2006, Harbin, China, 7–11 August 2006; pp. 1256–1261. [Google Scholar]
- Li, G.; Chen, Y.; Wang, W.; Wu, Y.; Liu, R. Automatic Transmission Bearing Fault Diagnosis Based on Comprehensive Index Method and Convolutional Neural Network. World Electr. Veh. J. 2022, 13, 184. [Google Scholar] [CrossRef]
- Li, C.; Sánchez, R.V.; Zurita, G.; Cerrada, M.; Cabrera, D. Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning. Sensors 2016, 16, 895. [Google Scholar] [CrossRef]
- Kocsis Szürke, S.; Dineva, A.; Szalai, S.; Lakatos, I. Determination of Critical Deformation Regions of a Lithium Polymer Battery by DIC Measurement and WOWA Filter. Acta Polytech. Hung. 2022, 19, 113–134. [Google Scholar] [CrossRef]
- Wei, X.; Feng, Y.; Han, X.; He, Z. Simulation of Flow-Induced Vibration and Dynamic Performance of Circular-Arc Helical Gear Pump under Background of Machine Learning. Int. Trans. Electr. Energy Syst. 2022, 2022, 513357. [Google Scholar] [CrossRef]
- EN 61326-1:2013; Electrical Equipment for Measurement, Control and Laboratory Use. EMC Requirements. Part 1: General Requirements (IEC 61326-1:2012). European Committee for Electrotechnical Standardization: Brussels, Belgium, 2013; pp. 1–23.
NVH Kit Specifications | |
---|---|
Weight (interface/accelerometer/microphone) | 120 g/80 g/20 g |
Dimensions: | |
Sensor interface (inc. BNCs-Bayonet Neill–Concelmans) | 105 mm × 65 mm × 27 mm |
Magnet (inc. fitted grub screw) | 12 mm × ø18 mm |
Sensor extension lead length | 3 m |
Battery (lithium primary cell) | CR123(A) 3 V (user-replaceable) |
Battery life (shelf/vibration mode/microphone mode) | 10 years/6 months/2 months |
Maximum measurable acceleration | ±5 g |
Vibration frequency range (3 dB) | DC to 350 Hz |
Shock survivability (accelerometer head) | 10,000 g |
Operating temperature range (accelerometer head) | –40 °C to 85 °C |
Thread mounting (accelerometer) | ¼″ × 28 UNF |
EMC approvals | CE: Meets EN 61326-1:2006 [43] |
Operating Conditions | Maximum Values in Frequency Domain (mg) | Difference (%) | |
---|---|---|---|
Before Oil Change | After Oil Change | ||
Idling | 271 | 214 | 21 |
Acceleration with the gear change | 894 | 747 | 16.4 |
50 km/h vehicle speed in 3rd gear | 654 | 625 | 4.3 |
Standstill with “D” selected | 297 | 260 | 12.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Őri, P.; Kocsis Szürke, S.; Kurhan, D.; Sysyn, M.; Lakatos, I.; Fischer, S. Vibration Diagnostic Methods of Automatic Transmission Service Requirement Prediction. Infrastructures 2023, 8, 31. https://doi.org/10.3390/infrastructures8020031
Őri P, Kocsis Szürke S, Kurhan D, Sysyn M, Lakatos I, Fischer S. Vibration Diagnostic Methods of Automatic Transmission Service Requirement Prediction. Infrastructures. 2023; 8(2):31. https://doi.org/10.3390/infrastructures8020031
Chicago/Turabian StyleŐri, Péter, Szabolcs Kocsis Szürke, Dmytro Kurhan, Mykola Sysyn, István Lakatos, and Szabolcs Fischer. 2023. "Vibration Diagnostic Methods of Automatic Transmission Service Requirement Prediction" Infrastructures 8, no. 2: 31. https://doi.org/10.3390/infrastructures8020031