A Study of Factors Affecting GPR Signal Amplitudes in Reinforced Structures Using Deep Belief Networks
Abstract
:1. Introduction
2. Methodology
2.1. Deep Belief Networks Structure
2.2. Performance Metrics
3. Data Description
3.1. Characteristics of the Experimental Data
3.2. Application of the DBN Model to Predict GPR Amplitude
4. Results and Discussion
4.1. Influence Factor Investigation
4.2. Performance of Proposed DBN Model
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- KCI. 2021. Available online: https://www.kci.com/resources-insights/innovator/ground-penetrating-radar-as-part-of-sue-and-damage-prevention/ (accessed on 15 May 2022).
- ASTM D6432-19; Standard Guide for Using the Surface Ground Penetrating Radar Method for Subsurface Investigation. ASTM International: West Conshohocken, PA, USA, 2019. Available online: https://www.astm.org/ (accessed on 15 May 2022).
- Tarussov, A.; Vandry, M.; De La Haza, A. Condition assessment of concrete structures using a new analysis method: Ground-penetrating radar computer-assisted visual interpretation. Constr. Build. Mater. 2013, 38, 1246–1254. [Google Scholar] [CrossRef]
- Zaki, A.; Johari, M.A.M.; Hussin, W.M.A.W.; Jusman, Y. Experimental Assessment of Rebar Corrosion in Concrete Slab Using Ground Penetrating Radar. Int. J. Corros. 2018, 2018, 5389829. [Google Scholar] [CrossRef]
- Dinh, K.; Gucunski, N.; Kim, J.; Duong, T.H. Method for attenuation assessment of GPR data from concrete bridge decks. NDT&E Int. 2017, 92, 50–58. [Google Scholar]
- Morris, I.M.; Kumar, V.; Glisic, B. Predicting material properties of concrete from ground-penetrating radar attributes. Struct. Health Monit. 2020, 1475921720976999. [Google Scholar] [CrossRef]
- Tosti, F.; Ferrante, C. Using Ground Penetrating Radar Methods to Investigate Reinforced Concrete Structures. Surv. Geophys. 2020, 41, 485–530. [Google Scholar] [CrossRef]
- Dinh, K.; Gucunski, N. Factors affecting the detectability of concrete delamination in GPR images. Constr. Build. Mater. 2021, 274, 121837. [Google Scholar] [CrossRef]
- Wiwatrojanagul, P.; Sahamitmongkol, R.; Tangtermsirikul, S.; Khamsemanan, N. A new method to determine locations of rebars and estimate cover thickness of RC structures using GPR data. Constr. Build. Mater. 2017, 140, 257–273. [Google Scholar] [CrossRef]
- Dinh, K.; Pham, T.T.; Nguyen, T.T.; Vu, H.H. Application of Synthetic Aperture Focusing Technique to visualize GPR data from reinforced concrete structures. IOP Conf. Ser. Mater. Sci. Eng. 2020, 869, 052072. [Google Scholar] [CrossRef]
- Chang, C.W.; Lin, C.H.; Lien, H.S. Measurement radius of reinforcing steel bar in concrete using digital image GPR. Constr. Build. Mater. 2009, 23, 1057–1063. [Google Scholar] [CrossRef]
- Dinh, K.; Gucunski, N.; Duong, T.H. An algorithm for automatic localization and detection of rebars from GPR data of concrete bridge decks. Autom. Constr. 2018, 89, 292–298. [Google Scholar] [CrossRef]
- Dinh, K.; Gucunski, N.; Tran, K.; Novo, A.; Nguyen, T. Full-resolution 3D imaging for concrete structures with dual-polarization GPR. Autom. Constr. 2021, 125, 103652. [Google Scholar] [CrossRef]
- Hong, S.; Lai, W.W.-L.; Wilsch, G.; Helmerich, R.; Helmerich, R.; Günther, T.; Wiggenhauser, H. Periodic mapping of reinforcement corrosion in intrusive chloride contaminated concrete with GPR. Constr. Build. Mater. 2014, 66, 671–684. [Google Scholar] [CrossRef]
- Hugenschmidt, J.; Loser, R. Detection of chlorides and moisture in concrete structures with ground penetrating radar. Mater. Struct. 2007, 41, 785–792. [Google Scholar] [CrossRef]
- Senin, S.F.; Hamid, R. Ground penetrating radar wave attenuation models for estimation of moisture and chloride content in concrete slab. Constr. Build. Mater. 2016, 106, 659–669. [Google Scholar] [CrossRef]
- Martino, N.M. Quantifying Reinforced Concrete Bridge Deck Deterioration Using Ground Penetrating Radar. Ph.D. Thesis, Northeastern University, Boston, MA, USA, 2013. [Google Scholar]
- Liu, H.; Zhong, J.; Ding, F.; Meng, X.; Liu, C.; Cui, J. Detection of early-stage rebar corrosion using a polarimetric ground penetrating radar system. Constr. Build. Mater. 2022, 317, 125768. [Google Scholar] [CrossRef]
- Varnavina, A.V.; Khamzin, A.K.; Torgashov, E.V.; Sneed, L.H.; Goodwin, B.T.; Anderson, N.L. Data acquisition and processing parameters for concrete bridge deck condition assessment using ground-coupled ground penetrating radar: Some considerations. J. Appl. Geophys. 2015, 114, 123–133. [Google Scholar] [CrossRef]
- Dinh, K.; Zayed, T.; Romero, F.; Tarussov, A. Method for analyzing time-series GPR data of concrete bridge decks. J. Bridge Eng. 2014, 20, 04014086. [Google Scholar] [CrossRef]
- Prasad, K.; Gorai, A.K.; Goyal, P. Development of ANFIS models for air quality forecasting and input optimization for reducing the computational cost and time. Atmos. Environ. 2016, 128, 246–262. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Dinh, K. Prediction of bridge deck condition rating based on artificial neural networks. J. Sci. Technol. Civ. Eng. (STCE)—NUCE 2019, 13, 15–25. [Google Scholar] [CrossRef]
- Hong, E.; Yeneneh, A.M.; Sen, T.K.; Ang, H.M.; Kayaalp, A. ANFIS based Modelling of dewatering performance and polymer dose optimization in a wastewater treatment plant. J. Environ. Chem. Eng. 2018, 6, 1957–1968. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Dinh, K. An artificial intelligence approach for concrete hardened property estimation. J. Sci. Technol. Civ. Eng. (STCE)—NUCE 2020, 14, 40–52. [Google Scholar] [CrossRef] [Green Version]
- Zatar, W.; Nguyen, T.T.; Nguyen, H. Predicting GPR signals from concrete structures using Artificial Intelligence-based method. Adv. Civ. Eng. 2021, 2021, 6610805. [Google Scholar] [CrossRef]
- Hakim SJ, S.; Razak, H.A. Structural damage detection of steel bridge girder using artificial neural networks and finite element models. Steel Compos. Struct. 2013, 14, 367–377. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Ngoc, L.T.; Vu, H.H.; Thanh, T.P. Machine learning-based model for predicting concrete compressive strength. Int. J. Geomate 2021, 20, 197–204. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Pham, D.H.; Pham, T.T.; Vu, H.H. Compressive strength evaluation of Fiber-Reinforced High Strength Self-Compacting Concrete with artificial intelligence. Adv. Civ. Eng. 2020, 2020, 3012139. [Google Scholar] [CrossRef]
- Pham, T.T.; Nguyen, T.T.; Nguyen, L.N.; Nguyen, P.V. A neural network approach for predicting hardened property of Geopolymer concrete. Int. J. Geomate 2020, 19, 193–201. [Google Scholar] [CrossRef]
- Dinh, K.; Gucunski, N.; Kim, J.; Duong, T.H. Improved GPR-based condition assessment of reinforced concrete bridge decks using artificial neural network. HDKBR INFO Mag. 2015, 5, 3–13. [Google Scholar]
- Liu, T.; Su, Y.; Huang, C. Inversion of Ground Penetrating Radar Data Based on Neural Networks. Remote Sens. 2018, 10, 730. [Google Scholar] [CrossRef]
- Tanaka, M. Deep Neural Network. 2013. Available online: https://www.mathworks.com/matlabcentral/fileexchange/42853-deep-neural-network14 (accessed on 15 May 2022).
- Asja, F.; Christian, I. Training restricted Boltzmann machines: An introduction. Pattern Recognit. 2014, 47, 25–39. [Google Scholar]
- Hao, X.; Guo, T.; Huang, G.; Shi, X.; Zhao, Y.; Yang, Y. Energy consumption prediction in cement calcination process: A method of deep belief network with sliding window. Energy 2020, 207, 118256. [Google Scholar] [CrossRef]
- Xu, F.; Fang, Z.; Tang, R.; Li, X.; Tsui, K.L. An unsupervised and enhanced deep belief network for bearing performance degradation assessment. Meas. J. Int. Meas. Confed. 2020, 162, 107902. [Google Scholar] [CrossRef]
- Lv, Z.; Qiao, L. Deep belief network and linear perceptron based cognitive computing for collaborative robots. Appl. Soft Comput. J. 2020, 92, 106300. [Google Scholar] [CrossRef]
- Rafiei, M.H.; Khushefati, W.H.; Demirboga, R.; Adeli, H. Supervised Deep Restricted Boltzmann Machine for Estimation of Concrete. ACI Mater. J. 2017, 114, 237–244. [Google Scholar] [CrossRef]
- Lu, P.; Guo, S.; Zhang, H.; Li, Q.; Wang, Y.; Wang, Y.; Qi, L. Research on Improved Depth Belief Network-Based Prediction of Cardiovascular Diseases. J. Healthc. Eng. 2018, 2018, 8954878. [Google Scholar] [CrossRef]
- Fud, G. Deep belief network based ensemble approach for cooling load forecasting of air-conditioning system. Energy 2018, 148, 269–282. [Google Scholar] [CrossRef]
Temperature (°C) | Relative Humidity (%) | Chloride Level (%) | Corrosion Status |
---|---|---|---|
5 | 55 | 0.00 | 1 |
10 | 70 | 0.02 | 0 |
15 | 85 | 0.04 | |
20 | 0.06 | ||
25 | 0.08 | ||
30 | 0.10 | ||
35 | |||
40 |
Variable | Sym. | Unit | Category | Min | Mean | Max | SD |
---|---|---|---|---|---|---|---|
Temperature | T | °C | Input | 5 | 22.5 | 40 | 11.5 |
Relative humidity | RH | % | Input | 55 | 70 | 85 | 12.3 |
Chloride level | CL | % | Input | 0 | 0.05 | 0.1 | 0.03 |
Corrosion status | CS | - | Input | 0 | 0.5 | 1 | 0.5 |
Signal amplitude | A | dB | Output | −5.17 | −1.63 | 1.04 | 1.35 |
Variable | Low | ML | Mean | MH | High |
---|---|---|---|---|---|
T | 5 | 13.8 | 22.5 | 31.3 | 40 |
RH | 55 | 62.5 | 70 | 77.5 | 85 |
CL | 0 | 0.025 | 0.05 | 0.075 | 0.1 |
CS | 0 | 0.25 | 0.5 | 0.75 | 1 |
Dataset | R2 | RMSE | Records |
---|---|---|---|
Training | 0.9687 | 0.1299 | 244 |
Testing | 0.9634 | 0.1388 | 44 |
Overall | 0.9681 | 0.1274 | 288 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.T.; Tung, P.T.; Tan, N.N.; Linh, N.N.; Luc, T.T. A Study of Factors Affecting GPR Signal Amplitudes in Reinforced Structures Using Deep Belief Networks. Infrastructures 2022, 7, 123. https://doi.org/10.3390/infrastructures7090123
Nguyen TT, Tung PT, Tan NN, Linh NN, Luc TT. A Study of Factors Affecting GPR Signal Amplitudes in Reinforced Structures Using Deep Belief Networks. Infrastructures. 2022; 7(9):123. https://doi.org/10.3390/infrastructures7090123
Chicago/Turabian StyleNguyen, Tu T., Pham Thanh Tung, Nguyen Ngoc Tan, Nguyen Ngoc Linh, and Trinh Tu Luc. 2022. "A Study of Factors Affecting GPR Signal Amplitudes in Reinforced Structures Using Deep Belief Networks" Infrastructures 7, no. 9: 123. https://doi.org/10.3390/infrastructures7090123
APA StyleNguyen, T. T., Tung, P. T., Tan, N. N., Linh, N. N., & Luc, T. T. (2022). A Study of Factors Affecting GPR Signal Amplitudes in Reinforced Structures Using Deep Belief Networks. Infrastructures, 7(9), 123. https://doi.org/10.3390/infrastructures7090123