Stabilization of Recycled Concrete Aggregate Using High Calcium Fly Ash Geopolymer as Pavement Base Material
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation and Testing
3. Results and Discussion
3.1. Compaction of RCA-FAG
3.2. Unconfined Compressive Strength of RCA-FAG
3.3. UCS Development in RCA-FAG
3.4. SEM Images of RCA-FAG
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verian, K.P.; Ashraf, W.; Cao, Y. Properties of recycled concrete aggregate and their in fluence in new concrete production. Resour. Conserv. Recycl. 2018, 133, 30–49. [Google Scholar] [CrossRef]
- Rahman, S.S.; Khattak, M.J. Roller compacted geopolymer concrete using recycled concrete aggregate. Constr. Build. Mater. 2021, 283, 122624. [Google Scholar] [CrossRef]
- Pawluczuk, E.; Kalinowska-Wichrowska, K.; Jiménez, J.R.; Fernández-Rodríguez, J.M.; Suescum-Morales, D. Geopolymer concrete with treated recycled aggregates: Macro and microstructural behavior. J. Build. Eng. 2021, 44, 103317. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Advancing Sustainable Materials Management. 2015 Fact Sheet; 2018; p. 22. Available online: https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/advancing-sustainable-materials-management (accessed on 7 August 2022).
- Pickin, J.; Randell, P. Australian National Waste Report 2017; Department of the Environment and Energy, 2016; p. 82. Available online: https://www.dcceew.gov.au/sites/default/files/documents/national-waste-report-2016.pdf (accessed on 7 August 2022).
- Lu, W.S.; Webster, C.; Peng, Y.; Chen, X.; Zhang, X.L. Estimating and calibrating the amount of building-related construction and demolition waste in urban China. Int. J. Constr. Manag. 2017, 17, 13–24. [Google Scholar] [CrossRef]
- Kofoworola, O.F.; Gheewala, S.H. Environmental life cycle assessment of a commercial office building in Thailand. Int. J. Life Cycle Assess. 2008, 13, 498–511. [Google Scholar] [CrossRef]
- Mohammadinia, A.; Arulrajah, A.; D’Amico, A.; Horpibulsuk, S. Alkali-activation of fly ash and cement kiln dust mixtures for stabilization of demolition aggregates. Constr. Build. Mater. 2018, 186, 71–78. [Google Scholar] [CrossRef]
- Arulrajah, A.; Mohammadinia, A.; Phummiphan, I.; Horpibulsuk, S.; Samingthong, W. Stabilization of Recycled Demolition Aggregates by Geopolymers comprising Calcium Carbide Residue, Fly Ash and Slag precursors. Constr. Build. Mater. 2016, 114, 864–873. [Google Scholar] [CrossRef]
- Ding, Y.; Li, H.; Zhang, H.; Li, S.; Zhang, X.; Hua, S.; Zhao, J.; Tong, Y. Shrinkage and durability of waste brick and recycled concrete aggregate stabilized by cement and fly ash. Materials 2022, 15, 3684. [Google Scholar] [CrossRef]
- Mohammadinia, A.; Arulrajah, A.; Sanjayan, J.; Disfani, M.M.; Bo, M.W.; Darmawan, S. Stabilization of demolition materials for pavement base/subbase applications using fly ash and slag geopolymers: Laboratory investigation. J. Mater. Civ. Eng. 2016, 28, 04016033. [Google Scholar] [CrossRef]
- Kavussi, A.; Hassani, A.; Kazemian, F.; Taghipoor, M. Laboratory evaluation of treated recycled concrete aggregate in asphalt mixtures. Int. J. Pavement Res. Technol. 2019, 12, 26–32. [Google Scholar] [CrossRef]
- Xing, W.; Tam, V.W.Y.; Le, K.N.; Hao, J.L.; Wang, J. Life cycle assessment of recycled aggregate concrete on its environmental impacts: A critical review. Constr. Build. Mater. 2022, 317, 125950. [Google Scholar] [CrossRef]
- Sereewatthanawut, I.; Prasittisopin, L. Environmental evaluation of pavement system incorporating recycled concrete aggregate. Int. J. Pavement Res. Technol. 2020, 13, 455–465. [Google Scholar] [CrossRef]
- Tabyang, W.; Suksiripattanapong, C.; Phetchuay, C.; Laksanakit, C.; Chusilp, N. Evaluation of municipal solid waste incineration fly ash based geopolymer for stabilised recycled concrete aggregate as road material. Road Mater. Pavement Des. 2021, 23, 2178–2189. [Google Scholar] [CrossRef]
- Arulrajah, A.; Disfani, M.M.; Horpibulsuk, S.; Suksiripattanapong, C.; Prongmanee, N. Physical properties and shear strength responses of recycled construction and demolition materials in unbound pavement base/subbase applications. Constr. Build. Mater. 2014, 58, 245–257. [Google Scholar] [CrossRef]
- Kou, S.C.; Poon, C.S. Long-term mechanical and durability properties of recycled aggregate concrete prepared with the incorporation of fly ash. Cem. Concrete. Compos. 2013, 37, 12–19. [Google Scholar] [CrossRef]
- Suksiripattanapong, C.; Horpibulsuk, S.; Phetchuay, C.; Suebsuk, J.; Phoo-ngernkham, T.; Arulrajah, A. Water treatment sludge–calcium carbide residue geopolymers as nonbearing masonry units. J. Mater. Civ. Eng. 2017, 29, 04017095. [Google Scholar] [CrossRef]
- Suksiripattanapong, C.; Phetprapai, T.; Singsang, W.; Phetchuay, C.; Thumrongvut, J.; Tabyang, W. Utilization of recycled plastic waste in fiber reinforced concrete for eco-friendly footpath and pavement applications. Sustainability 2022, 14, 6839. [Google Scholar] [CrossRef]
- Suksiripattanapong, C.; Jenpiyapong, K.; Tiyasangthong, S.; Krittacom, B.; Phetchuay, C.; Tabyang, W. Mechanical and thermal properties of lateritic soil mixed with cement and polymers as a non-bearing masonry unit. Case Stud. Constr. Mater. 2022, 16, e00962. [Google Scholar] [CrossRef]
- Song, H.; Ahmad, A.; Farooq, F.; Ostrowski, K.A.; Maślak, M.; Czarnecki, S.; Aslam, F. Predicting the compressive strength of concrete with fly ash admixture using machine learning algorithms. Constr. Build. Mater. 2021, 308, 125021. [Google Scholar] [CrossRef]
- Tabyang, W.; Suksiripattanapong, C.; Wonglakorn, N.; Laksanakit, C.; Chusilp, N. Utilization of municipal solid waste incineration fly ash for non-bearing masonry units containing coconut fiber. J. Nat. Fibers 2022, 1–14. [Google Scholar] [CrossRef]
- Yoosuk, P.; Suksiripattanapong, C.; Sukontasukkul, P.; Chindaprasirt, P. Properties of polypropylene fiber reinforced cellular lightweight high calcium fly ash geopolymer Mortar. Case Stud. Constr. Mater. 2021, 15, e00730. [Google Scholar] [CrossRef]
- Suksiripattanapong, C.; Sakdinakorn, R.; Tiyasangthong, S.; Wonglakorn, N.; Phetchuay, C.; Tabyang, W. Properties of soft Bangkok clay stabilized with cement and fly ash geopolymer for deep mixing application. Case Stud. Constr. Mater. 2022, 16, e01081. [Google Scholar] [CrossRef]
- Sukmak, P.; Horppibulsuk, S.; Shen, S.L.; Chindaprasirt, P.; Suksiripattqanapong, C. Factors influencing strength development in clay-fly ash geopolymer. Constr. Build. Mater. 2013, 40, 1125–1136. [Google Scholar] [CrossRef]
- Azad, N.M.; Samarakoon, S.S.M. Utilization of industrial by-products/waste to manufacture geopolymer cement/concrete. Sustainability 2021, 13, 873. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Jaturapitakkul, C.; Chalee, W.; Rattanasak, U. Comparative study on the characteristics of fly ash and bottom ash geopolymers. Waste Manag. 2009, 29, 539–543. [Google Scholar] [CrossRef]
- Phetchuay, C.; Horpibulsuk, S.; Suksiripattanpong, C.; Chinkulkijniwat, A.; Arulrajah, A.; Disfani, M.M. Calcium carbide residue: Alkaline activator for clay-fly ash geopolymer. Constr. Build. Mater. 2014, 69, 285–294. [Google Scholar] [CrossRef]
- Arulrajah, A.; Kua, T.A.; Suksiripattanapong, C.; Horpibulsuk, S. Stiffness and strength properties of spent coffee grounds-recycled glass geopolymers. Road Mater. Pavement Des. 2017, 20, 623–638. [Google Scholar] [CrossRef]
- Nuaklong, P.; Wongsa, A.; Sata, V.; Boonserm, K.; Sanjayan, J.; Chindaprasirt, P. Properties of high-calcium and low-calcium fly ash combination geopolymer mortar containing recycled aggregate. Heliyon 2019, 5, e02513. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; De Silva, P.; Sagoe-Crentsil, K.; Hanjitsuwan, S. Effect of SiO2 and Al2O3 on the setting and hardening of high calcium fly ash-based geopolymer systems. J. Mater. Sci. 2012, 47, 4876–4883. [Google Scholar] [CrossRef]
- Ismail, I.; Bernal, S.A.; Provis, J.L.; San Nicolas, R.; Brice, D.G.; Kilcullen, A.R.; Hamdan, S.; van Deventer, J.S. Influence of fly ash on the water and chloride permeability of alkali-activated slag mortars and concretes. Constr. Build. Mater. 2013, 48, 1187–1201. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Sriopas, B.; Phosri, P.; Yoddumrong, P.; Anantakarn, K.; Kroehong, W. Hybrid high calcium fly ash alkali-activated repair material for concrete exposed to sulfate environment. J. Build. Eng. 2022, 45, 103590. [Google Scholar] [CrossRef]
- Phetchuay, C.; Horpibulsuk, S.; Arulrajah, A.; Suksiripattanpong, C.; Udomchai, A. Development in soft marine clay stabilized by fly ash and calcium carbide residue based geopolymer. Appl. Clay Sci. 2016, 127–128, 134–142. [Google Scholar] [CrossRef]
- Poltue, T.; Suddeepong, A.; Horpibulsuk, S.; Samingthong, W.; Arulrajah, A.; Rashid, A.S.A. Strength development of recycled concrete aggregate stabilized with fly ash-rice husk ash based geopolymer as pavement base material. Road Mater. Pavement Des. 2019, 21, 2344–2355. [Google Scholar] [CrossRef]
- DH-S 203/2556; Standard for Cement Modified Crushed Rock Base. Department of Highways (DOH): Bangkok, Thailand, 2013.
- SDR 244-2556; Standard for Soil Cement Base. Department of Rural Roads (DRR): Bangkok, Thailand, 2013.
- C128-15; Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate. ASTM: West Conshohocken, PA, USA, 2015.
- D1557-12; Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3 (2700 kN-m/m3)). ASTM: West Conshohocken, PA, USA, 2021.
- E1621; Standard Guide for Elemental Analysis by Wavelength Dispersive X-Ray Fluorescence Spectrometry. Annual Book of ASTM Standard. Vol.03.05. ASTM: West Conshohocken, PA, USA, 2013.
- C618-19; Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM: West Conshohocken, PA, USA, 2019.
- C1633; Standard Test Methods for Compressive Strength of Molded Soil-Cement Cylinders. ASTM: West Conshohocken, PA, USA, 2000.
- Suksiripattanapong, C.; Horpibulsuk, S.; Boongrasan, S.; Udomchai, A.; Chinkulkijniwat, A.; Arulrajah, A. Unit weight, strength and microstructure of a water treatment sludge–fly ash lightweight cellular geopolymer. Constr. Build. Mater. 2015, 94, 807–816. [Google Scholar] [CrossRef]
- Suksiripattanapong, C.; Srijumpa, T.; Horpibulsuk, S.; Sukmak, P.; Arulrajah, A.; Du, Y.J. Compressive strengths of water treatment sludge-fly ash geopolymer at various compression energies. Lowl. Technol. Int. 2015, 17, 147–156. [Google Scholar] [CrossRef]
Chemical Compositions | FA (%) |
---|---|
SiO2 | 45.44 |
Al2O3 | 10.53 |
Fe2O3 | 7.44 |
CaO | 31.41 |
SO3 | 2.02 |
K2O | 2.20 |
LOI | 0.96 |
Item | Compaction Test | UCS Test |
---|---|---|
RCA:FA | 100:0, 90:10, 80:20, 70:30 | 100:0, 90:10, 80:20, 70:30 |
L content (% by weight of total) | Between 5–14 | Optimum liquid content |
Na2SiO3:NaOH ratios | 80:20, 60:40, 70:30, 50:50 | 80:20, 60:40, 70:30, 50:50 |
NaOH concentration (molars) | 8 | 8 |
Curing time (days) | - | 7, 14, 28, 60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiyasangthong, S.; Yoosuk, P.; Krosoongnern, K.; Sakdinakorn, R.; Tabyang, W.; Phojan, W.; Suksiripattanapong, C. Stabilization of Recycled Concrete Aggregate Using High Calcium Fly Ash Geopolymer as Pavement Base Material. Infrastructures 2022, 7, 117. https://doi.org/10.3390/infrastructures7090117
Tiyasangthong S, Yoosuk P, Krosoongnern K, Sakdinakorn R, Tabyang W, Phojan W, Suksiripattanapong C. Stabilization of Recycled Concrete Aggregate Using High Calcium Fly Ash Geopolymer as Pavement Base Material. Infrastructures. 2022; 7(9):117. https://doi.org/10.3390/infrastructures7090117
Chicago/Turabian StyleTiyasangthong, Sermsak, Piyathida Yoosuk, Kitsada Krosoongnern, Ratchanon Sakdinakorn, Wisitsak Tabyang, Worawit Phojan, and Cherdsak Suksiripattanapong. 2022. "Stabilization of Recycled Concrete Aggregate Using High Calcium Fly Ash Geopolymer as Pavement Base Material" Infrastructures 7, no. 9: 117. https://doi.org/10.3390/infrastructures7090117
APA StyleTiyasangthong, S., Yoosuk, P., Krosoongnern, K., Sakdinakorn, R., Tabyang, W., Phojan, W., & Suksiripattanapong, C. (2022). Stabilization of Recycled Concrete Aggregate Using High Calcium Fly Ash Geopolymer as Pavement Base Material. Infrastructures, 7(9), 117. https://doi.org/10.3390/infrastructures7090117