Spatiotemporal Variability of Lightning Activity over the Railway Network in Sri Lanka with Special Attention to the Proposed Suburban Railway Electrification Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Lightning Data and Population Data
2.3. Methodology
3. Results
3.1. Spatial Variability of Annual Lightning Flash Density over the Existed Railway Network
3.2. Spatial Variability of Lightning Flash Density over the Railway Network in Climate Seasons
3.3. Spatial Variability of Lightning Flash Density over the Proposed Railway Electrification System
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martin, U.A. The Lightning Discharge; Dover: New York, NY, USA, 1997. [Google Scholar]
- Mistovich, J.J.; Krost, W.S.; Limmer, D.D. Beyond the basics: Lightning-strike injuries. EMS Mag. 2008, 37, 82–87, quiz 88–89. [Google Scholar]
- Tong, C. Research and Application of Active Lightning Protection Technology. In Proceedings of the 20th International Lightning Detection Conference, Tucson, AZ, USA, 21–22 April 2008. [Google Scholar]
- Li, Z.; Niu, F.; Fan, J.; Liu, Y.; Rosenfeld, D.; Ding, Y. Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nat. Geosci. 2011, 4, 888–894. [Google Scholar] [CrossRef]
- Traffic Costing Unit. Summary of Operating & Financial Statistics Year 2015; Sri Lanka Railways: Colombo, Sri Lanka, 2016. [Google Scholar]
- Theethayi, N.; Mazloom, Z.; Thottappilli, R.V.; Lindeberg, P.; Schütte, T. Lightning interaction with the Swedish railway network. In Railway Engineering; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Ruifang, M. The Risk Assessment Method of Lightning Disaster on Railway Signal System. Procedia Eng. 2012, 43, 413–418. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Lin, Z.; Cao, X.; Yi, Z. Research on lightning-proof reactor for lightning protection to railway substation feeder side. In Proceedings of the International Conference on Lightning Protection (ICLP), Shanghai, China, 11–18 October 2014; pp. 1169–1172. [Google Scholar] [CrossRef]
- Klimov, N.; Kutsenko, S.; Cheremisin, S.; Shurygin, S. Influence of Lightning on Operation of Railway Transport Devices, Advances in Engineering Research. In Proceedings of the International Conference on Aviamechanical Engineering and Transport, Irkutsk, Russia, 21–26 May 2018; p. 158. [Google Scholar] [CrossRef]
- Fu, L.; Wu, G.; Wang, H.; Li, J. The study on thunderstorm activity and lightning protection principle of Ge-La segment within Qinghai-Tibet railway. In Proceedings of the International Symposium on Electrical Insulating Materials (ISEIM 2005), Kitakyushu, Japan, 3 June 2005; pp. 767–770. [Google Scholar] [CrossRef]
- Wróbel, Z.; Jagiełło, A.S. The Risk of Lightning Losses in a Structure Equipped with RTC Devices According to the Standard EN 62305-2.2008. Energies 2021, 14, 1704. [Google Scholar] [CrossRef]
- Orville, R.E.; Huffines, G.; Gammon, J.N.; Zhang, R.; Ely, B.; Steiger, S.; Phillips, S.; Allen, S.; Read, W. Enhancement of Cloud-to-Ground Lightning over Houston, Texas. Geophys. Res. Lett. 2001, 28, 2597–2600. [Google Scholar] [CrossRef]
- Kar, S.K.; Liou, Y.A.; Ha, K.J. Aerosol effects on the enhancement of cloud-to-ground lightning over major urban areas of South Korea. Atmos. Res. 2009, 92, 80–87. [Google Scholar] [CrossRef]
- Middey, A.; Chaudhuri, S. The reciprocal relation between lightning and pollution and their impact over Kolkata, India. Environ. Sci. Pollut. Res. 2013, 20, 3133–3139. [Google Scholar] [CrossRef]
- Christian, H.J.; Blakeslee, R.J.; Goodman, S.J.; Mach, D.A.; Stewart, M.F.; Buechler, D.E.; Koshak, W.J.; Hall, J.M.; Boeck, W.L.; Driscoll, K.T.; et al. The Lightning Imaging Sensor. In NASA Conference Publication; NASA: Huntsville, AL, USA, 1999; pp. 1–4. [Google Scholar]
- Graves, R.; Conover, S.; Jones, H.; Hardin, S.; Harrison, D.; Drewry, S.; Nair, M.; Goodman, M.; Blakeslee, M. A Ten Year Record of Space Based Lightning Measurements. Am. Geophys. Union 2009, 2009, AE32A-07. [Google Scholar]
- Boccippio, D.J.; Goodman, S.J.; Heckman, S. Regional Differences in Tropical Lightning Distributions. J. Appl. Meteorol. 2000, 39, 2231–2248. [Google Scholar] [CrossRef]
- Jeyanthiran, V.; Edirisinghe, M.; Fernanado, M.; Cooray, V. Study of Lightning Activity over Sri Lanka. In Proceedings of the 29th International Conference on Lightning Protection, Uppsala, Sweden, 23–26 May 2008. [Google Scholar]
- Maduranga, U.G.D.; Edirisinghe, M.; Gamage, L.V. Annual Variation Trend of Lightning Flash Activities over Sri Lanka. World Sci. News 2018, 114, 256–264. Available online: http://www.worldscientificnews.com/wp-content/uploads/2018/09/WSN-114-2018-256-264.pdf (accessed on 1 June 2022).
- Maduranga, U.G.D.; Edirisinghe, M.; Gamage, L.V. Spatiotemporal Variability of Lightning Flash Distribution over Sri Lanka. Int. Lett. Chem. Phys. Astron. 2019, 82, 1–13. [Google Scholar] [CrossRef]
- Edirisinghe, M.; Maduranga, U.G.D. Distribution of Lightning Accidents in Sri Lanka from 1974 to 2019 Using the DesInventar Database. ISPRS Int. J. Geo-Inf. 2021, 10, 117. [Google Scholar] [CrossRef]
- Statistics Department. Sri Lanka Socio Economic Data 2020; Central bank of Sri Lanka: Colombo, Sri Lanka, 2020.
- Sri Lanka Railways, Colombo, Sri Lanka. Available online: http://www.railway.gov.lk/web/index.php?lang=en (accessed on 1 June 2022).
- Maduranga, U.G.D.; Edirisinghe, M. Climatology of Lightning Activities over Bandaranaike International Airport in Sri Lanka. Int. J. Sustain. Dev. Plan. 2021, 16, 1027–1038. [Google Scholar] [CrossRef]
- Maduranga, U.G.D.; Edirisinghe, M. Lightning Climatology and Human Vulnerability to Lightning Hazards in a School Community: A Case Study in Sri Lanka using LIS Data from TRMM Satellite. Int. J. Disaster Manag. 2021, 4, 29–50. [Google Scholar] [CrossRef]
- Department of Railways. Future Plans: Department of Railways; Sri Lanka Railways: Colombo, Sri Lanka. Available online: http://www.railway.gov.lk/web/index.php?option=com_content&view=article&id=126&Itemid=180&lang=en (accessed on 1 July 2021).
- Edirisinghe, M.; Montaño, R.; Cooray, V. Response of surge protection devices to fast current impulses. In Proceedings of the 27th International Conference on Lightning Protection-ICLP, Avignon, France, 13–16 September 2004. [Google Scholar]
- Montaño, R.; Edirisinghe, M.; Cooray, V.; Roman, F. Varistor models-a comparison between theory and practice. In Proceedings of the 27th International Conference on Lightning Protection, ICLP, Avignon, France, 13–16 September 2004. [Google Scholar]
- Theethayi, N.; Liu, Y.; Montano, R.; Thottappillil, R.; Zitnik, M.; Cooray, V.; Scuka, V. A theoretical study on the consequence of a direct lightning strike to electrified railway system in Sweden. Electr. Power Syst. Res. 2005, 74, 267–280. [Google Scholar] [CrossRef]
- Montaño, R.; Edirisinghe, M.; Cooray, V.; Roman, F. Behavior of low-voltage surge protective devices under high-current derivative impulses. IEEE Trans. Power Deliv. 2007, 22, 2185–2190. [Google Scholar] [CrossRef]
- Hayashiya, H.; Murakami, T.; Nishimura, Y.; Ishida, K.; Yoshino, E.; Matsumoto, M. Investigation and enforcement of comprehensive lightning protection in Tokyo metropolitan area railway system. In Proceedings of the 30th International Conference on Lightning Protection (ICLP), Cagliari, Italy, 13–17 September 2010; pp. 1–7. [Google Scholar] [CrossRef]
- Edirisinghe, M.; Fernando, M.; Cooray, V. Performance and withstand capabilities of low voltage varistors under repetitive current impulse environment. Int. J. Eng. Sci. Res. 2012, 2, 537–548. Available online: http://www.ijesr.org/admin/upload_journal/journal_Dr%20%20edrishinge%20%20%20%20%202jul12.pdf (accessed on 1 June 2022).
- Edirisinghe, M.; Montaño, R.; Cooray, V.; Roman, F. Performance comparison of varistor models under high current derivative impulses. Int. Lett. Chem. Phys. Astron. 2013, 11, 40–53. [Google Scholar] [CrossRef] [Green Version]
- Department of Sri Lanka Railway. Performance Report—2015; Sri Lanka Railways: Colombo, Sri Lanka, 2016.
- Zoro, R.; Pakki, R.R.; Komar, R. Lightning protection for electric railway in Indonesia telecommunication and signalling system. In Proceedings of the International Conference on High Voltage Engineering and Power Systems (ICHVEPS), Denpasar, Indonesia, 2–5 October 2017; pp. 476–478. [Google Scholar] [CrossRef]
- Denov, B.; Zoro, R. Lightning Protection System for Light Rail Transit Case on Palembang, Indonesia. In Proceedings of the Conference on Power Engineering and Renewable Energy(ICPERE), Solo, Indonesia, 29–31 October 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Arai, H.; Fujita, H.; Ono, Y. Effect Evaluation of Lightning Protection Measures on Train Detectors for Level Crossing System. In Proceedings of the 34th International Conference on Lightning Protection (ICLP), Rzeszow, Poland, 2–7 September 2018; pp. 7–17. [Google Scholar] [CrossRef]
- Teramoto, M.; Itoya, S.; Ambe, T.; Kansaku, Y.; Yasumoto, T.; Konno, Y.; Fukuta, Y. Development of a network level crossing system. In Proceedings of the 15th International Conference on Railway Engineering Design and Operation, Madrid, Spain, 19 July 2016; Volume 162, pp. 421–430. [Google Scholar] [CrossRef] [Green Version]
- Climate Change Division of the Ministry of Environment and Renewable Energy. Technology Needs Assessment and Technology Action Plans for Climate Change Mitigation. In Project Ideas Reports, Ministry of Environment and Renewable Energy; Ministry of Environment and Renewable Energy: Battaramulla, Sri Lanka, 2012; pp. 70–75. [Google Scholar]
- Douglas, H.; Roberts, C.; Hillmansen, S.; Schmid, F. An assessment of available measures to reduce traction energy use in railway networks. Energy Convers. Manag. 2015, 106, 1149–1165. [Google Scholar] [CrossRef]
- Franco, I.G.; Álvarez, A.G. Can high-speed trains run faster and reduce energy consumption? Procedia Soc. Behav. Sci. 2012, 48, 827–837. [Google Scholar] [CrossRef] [Green Version]
- Blakeslee, R.J.; Lang, T.J.; Koshak, W.J.; Buechler, D.; Gatlin, P.; Mach, D.M.; Stano, G.T.; Virts, K.S.; Walker, T.D.; Cecil, D.J.; et al. Three Years of the Lightning Imaging Sensor Onboard the International Space Station: Expanded Global Coverage and Enhanced Applications. J. Geophys. Res. Atmos. 2020, 125, e2020JD032918. [Google Scholar] [CrossRef]
- Erdmann, F.; Defer, E.; Caumont, O.; Blakeslee, R.J.; Pedeboy, S.; Coquilat, S. Concurrent satellite and ground-based lightning observations from the Optical Lightning Imaging Sensor (ISS-LIS), the low-frequency network Meteorage and the SAETTA Lightning Mapping Array (LMA) in the northwestern Mediterranean region. Atmos. Meas. Tech. 2020, 13, 853–875. [Google Scholar] [CrossRef] [Green Version]
Railway Line | Maximum Flash Density * | Location (N/E) | Nearest Station |
---|---|---|---|
Batticaloa line | 10.82 | 7°49′41″/80°17′52″ | Maho junction |
Coastal line | 12.19 | 8°56′01″/79°51′01″ | Colombo-Fort |
Kelani Valley line | 24.13 | 6°56′41″80°12′00″ | Avissawella |
Northern line | 17.32 | 7°20′24″/80°18′01″ | Polgahawela |
Mannar line | 7.85 | 8°40′15″/80°18′17″ | Cheddikulam |
Matale line | 8.80 | 7°26′26″/80°37′44″ | Matale |
Puttalam line | 22.82 | 7°02′09″/79°54′43″ | Ragama |
Trincomalee line | 8.80 | 8°09′55″/80°53′12″ | Galoya |
Mainline | 22.27 | 7°02′06″/79°55′12″ | Ragama |
Railway Line | Average Density | Maximum Density | Minimum Density | STD | ||||
---|---|---|---|---|---|---|---|---|
Flash * | Population ** | Flash * | Population ** | Flash * | Population ** | Flash * | Population ** | |
Batticaloa line | 7.59 | 326 | 12.02 | 15,342 | 2.89 | 0 | 2.13 | 831 |
Coastal line | 8.24 | 2369 | 12.82 | 18,111 | 1.81 | 24 | 3.13 | 2453 |
Kelani Valley line | 16.58 | 731 | 28.05 | 9245 | 10.13 | 4 | 4.34 | 828 |
Northern line | 7.66 | 324 | 20.11 | 13,997 | 1.31 | 0 | 4.09 | 725 |
Mannar line | 5.08 | 134 | 8.27 | 7886 | 1.37 | 0 | 2.29 | 358 |
Matale line | 7.80 | 1805 | 9.26 | 8128 | 5.31 | 29 | 1.04 | 1522 |
Puttalam line | 7.23 | 830 | 22.85 | 10,504 | 3.09 | 0 | 4.61 | 1259 |
Trincomalee line | 7.02 | 360 | 8.94 | 11,521 | 4.23 | 1 | 1.36 | 385 |
Mainline | 11.03 | 1548 | 22.94 | 32,657 | 3.30 | 72 | 5.18 | 2828 |
Railway Line | Relative Percentage Distribution to the Annual Average Flash Density of Sri Lanka (8.26 flashes/(km2⋅Year)) | ||||
---|---|---|---|---|---|
50% | 50–100% | 100–150% | 150–200% | >200% | |
Batticaloa line | 11.37 | 29.86 | 58.77 | 0.00 | 0.00 |
Coastal line | 16.94 | 17.49 | 65.57 | 0.00 | 0.00 |
Kelani Valley line | 0.00 | 0.00 | 14.55 | 41.82 | 43.64 |
Northern line | 27.54 | 29.04 | 30.24 | 12.28 | 0.90 |
Mannar line | 39.05 | 60.95 | 0.00 | 0.00 | 0.00 |
Matale line | 0.00 | 61.76 | 38.24 | 0.00 | 0.00 |
Puttalam line | 16.22 | 65.54 | 5.41 | 6.08 | 6.76 |
Trincomalee line | 0.00 | 76.06 | 23.94 | 0.00 | 0.00 |
Mainline | 3.07 | 48.81 | 11.60 | 6.83 | 29.69 |
Flash Density * | ||||
---|---|---|---|---|
Average | Maximum | Minimum | STD | |
Annual | 8.23 | 28.04 | 1.26 | 4.33 |
FIM | 24.80 | 85.88 | 0.79 | 16.00 |
SWM | 4.46 | 12.48 | 0.39 | 2.58 |
SIM | 8.94 | 32.58 | 0.40 | 6.12 |
NEM | 3.23 | 26.27 | 0.26 | 3.72 |
Railway Line | Average Density | Maximum Density | Minimum Density | STD | ||||
---|---|---|---|---|---|---|---|---|
Flash * | Flash * | Flash * | Flash * | Flash * | Population ** | Flash * | Population ** | |
Colombo to Veyangoda | 16.53 | 22.85 | 9.69 | 2.94 | 2.94 | 4,704 | 2.94 | 3107 |
Ragama to Negombo | 15.58 | 22.84 | 8.65 | 3.55 | 3.55 | 2,712 | 3.55 | 1767 |
Colombo to Kalutara | 10.55 | 13.48 | 7.28 | 1.24 | 1.24 | 4,142 | 1.24 | 4425 |
Railway Line | Number of Trains | Number of Stations, Main Stations, Substations | Flash Density * | Population Density ** | ||
---|---|---|---|---|---|---|
Average | Maximum | Minimum | Average | |||
Batticaloa line | 10 | 28 | 7.59 | 12.02 | 2.89 | 326 |
Coastal line | 113 | 67 | 8.24 | 12.82 | 1.81 | 2369 |
Kelani Valley line | 20 | 30 | 16.58 | 28.05 | 10.13 | 731 |
Northern line | 40 | 56 | 7.66 | 20.11 | 1.31 | 324 |
Mannar line | 4 | 12 | 5.08 | 8.27 | 1.37 | 134 |
Puttalam line | 42 | 45 | 7.80 | 9.26 | 5.31 | 1805 |
Trincomalee | 6 | 6 | 7.23 | 22.85 | 3.09 | 830 |
Matale line & Mainline | 148 | 12 | 7.02 | 8.94 | 4.23 | 360 |
78 | 11.03 | 22.94 | 3.30 | 1548 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maduranga, U.G.D.; Edirisinghe, M.; Alahacoon, N.; Ranagalage, M. Spatiotemporal Variability of Lightning Activity over the Railway Network in Sri Lanka with Special Attention to the Proposed Suburban Railway Electrification Network. Infrastructures 2022, 7, 92. https://doi.org/10.3390/infrastructures7070092
Maduranga UGD, Edirisinghe M, Alahacoon N, Ranagalage M. Spatiotemporal Variability of Lightning Activity over the Railway Network in Sri Lanka with Special Attention to the Proposed Suburban Railway Electrification Network. Infrastructures. 2022; 7(7):92. https://doi.org/10.3390/infrastructures7070092
Chicago/Turabian StyleMaduranga, Uruvitiya Gamage Dilaj, Mahesh Edirisinghe, Niranga Alahacoon, and Manjula Ranagalage. 2022. "Spatiotemporal Variability of Lightning Activity over the Railway Network in Sri Lanka with Special Attention to the Proposed Suburban Railway Electrification Network" Infrastructures 7, no. 7: 92. https://doi.org/10.3390/infrastructures7070092
APA StyleMaduranga, U. G. D., Edirisinghe, M., Alahacoon, N., & Ranagalage, M. (2022). Spatiotemporal Variability of Lightning Activity over the Railway Network in Sri Lanka with Special Attention to the Proposed Suburban Railway Electrification Network. Infrastructures, 7(7), 92. https://doi.org/10.3390/infrastructures7070092