Impact of the Height of Buildings on the Maintainability of Natural Stone Claddings
Abstract
:1. Introduction
2. Background: Variation of the Environmental Exposure Conditions According to Buildings’ Height
3. Materials and Methods
3.1. Natural Stone Cladding
3.2. Classification System
3.3. Maintenance Model
3.3.1. Degradation Process
3.3.2. Impact of the Maintenance Activities
3.3.3. Output of the Maintenance Model
4. Results
4.1. Degradation Condition of NSC According to the Façade’s Height and the Environmental Exposure Conditions
4.2. Probabilistic Analysis of the Degradation Process
4.3. Comparison of the Different Maintenance Strategies
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sandak, A.; Sandak, J.; Brzezicki, M.; Kutnar, A. Bio-Based Building Skin; Springer International Publishing: Singapore, 2019. [Google Scholar]
- Freitas, S.S.; de Freitas, V.P. Cracks on ETICS along thermal insulation joints: Case study and a pathology catalogue. Struct. Surv. 2016, 34, 57–72. [Google Scholar] [CrossRef]
- Phillipson, M.C.; Emmanuel, R.; Baker, P.H. The durability of building materials under a changing climate. Wiley Interdiscip. Rev. Clim. Chang. 2016, 7, 590–599. [Google Scholar] [CrossRef] [Green Version]
- Silva, C.M.; Flores-Colen, I.; Coelho, A. Green roofs in Mediterranean areas—Survey and maintenance planning. Build. Environ. 2015, 94, 131–143. [Google Scholar] [CrossRef]
- Silva, A.; de Brito, J.; Thomsen, A.; Straub, A.; Prieto, A.J.; Lacasse, M.A. Causal effects between criteria that establish the end of service life of buildings and components. Buildings 2022, 12, 88. [Google Scholar]
- Silva, A.; de Brito, J. Service life of building envelopes: A critical literature review. J. Build. Eng. 2021, 44, 102646. [Google Scholar] [CrossRef]
- Sun Moon, K. Dynamic interrelationship between the evolution of structural systems and façade design in tall buildings: From the home insurance building in Chicago to the present. Int. J. High-Rise Build. 2018, 30, 1–16. [Google Scholar]
- Logan, J.M.; Hastedt, M.; Lehnert, D.; Denton, M. A case study of the properties of marble as building veneer. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1993, 7, 1531–1537. [Google Scholar] [CrossRef]
- Rudnicki, J.W. Geomechanics. Int. J. Solids Struct. 2000, 37, 349–358. [Google Scholar] [CrossRef]
- Grelk, B.; Christiansen, C.; Schouenborg, B.; Malaga, K. Durability of marble cladding—A comprehensive literature review. J. ASTM Int. 2006, 4, 1–19. [Google Scholar]
- Loughran, P. Failed Stone: Problems and Solutions with Concrete and Masonry; Birkhäuser: Basel, Switzerland, 2006. [Google Scholar]
- Westberg, K.; Norén, J.; Kus, H. On using available environmental data in service life estimations. Build. Res. Inf. 2001, 29, 428–439. [Google Scholar] [CrossRef]
- Newlin, J.; Jimenez, G.A.; Hester, D.; Blank, L.M. Thin marble facades: History, evaluation, and maintenance. In Proceedings of the 2010 Structure Congress, Orlando, FL, USA, 12–15 May 2010. [Google Scholar]
- Straube, J.F.; Burnett, E.F.P. Simplified prediction of driving rain on buildings. In Proceedings of the International Building Physics Conference, Eindhoven, The Netherlands, 18–21 September 2000. [Google Scholar]
- Moghtadernejad, S.; Mirza, M.S.; Chouinard, L.E. Facade design stages: Issues and considerations. J. Archit. Eng. 2019, 25, 04018033. [Google Scholar] [CrossRef]
- Fu, X.; Liu, J.; Ban-Weiss, G.A.; Zhang, J.; Huang, X.; Ouyang, B.; Popoola, O.; Tao, S. Effects of canyon geometry on the distribution of traffic-related air pollution in a large urban area: Implications of a multi-canyon air pollution dispersion model. Atmos. Environ. 2017, 165, 111–121. [Google Scholar] [CrossRef]
- Ferreira, C.; Neves, L.C.; Silva, A.; de Brito, J. Stochastic maintenance models for ceramic claddings. Struct. Infrastruct. Eng. 2020, 16, 247–265. [Google Scholar] [CrossRef]
- Khalid, E.I.; Abdullah, S.; Hanafi, M.H.; Said, S.Y.; Hasim, M.S. The consideration of building maintenance at design stage in public buildings: The current scenario in Malaysia. Facilities 2019, 37, 942–960. [Google Scholar] [CrossRef]
- British Standards Institution. Code of Practice for the Design and Installation of Natural Stone Cladding and Lining—Part 1: General; Technical Report No. 8298-1; British Standards Institution (BSI): London, UK, 2010. [Google Scholar]
- Farahani, A.; Wallbaum, H.; Dalenbäck, J.O. Optimized maintenance and renovation scheduling in multifamily buildings—A systematic approach based on condition state and life cycle cost of building components. Constr. Manag. Econ. 2019, 37, 139–155. [Google Scholar] [CrossRef] [Green Version]
- Ruparathna, R.; Hewage, K.; Sadiq, R. Multi-period maintenance planning for public buildings: A risk based approach for climate conscious operation. J. Clean. Prod. 2018, 170, 1338–1353. [Google Scholar] [CrossRef]
- Barrelas, J.; Dias, I.S.; Silva, A.; de Brito, J.; Flores-Colen, I.; Tadeu, A. Impact of Environmental Exposure on the Service Life of Façade Claddings—A Statistical Analysis. Buildings 2021, 11, 615. [Google Scholar] [CrossRef]
- Ferreira, C.; Barrelas, J.; Silva, A.; de Brito, J.; Dias, I.S.; Flores-Colen, I. Impact of Environmental Exposure Conditions on the Maintenance of Facades’ Claddings. Buildings 2021, 11, 138. [Google Scholar] [CrossRef]
- Elshaer, A.; Gairola, A.; Adamek, K.; Bitsuamlak, G. Variations in wind load on tall buildings due to urban development. Sustain. Cities Soc. 2017, 34, 264–277. [Google Scholar] [CrossRef]
- Azimi, P.; Zhao, H.; Fazli, T.; Zhao, D.; Faramarzi, A.; Leung, L.; Stephens, B. Pilot study of the vertical variations in outdoor pollutant concentrations and environmental conditions along the height of a tall building. Build. Environ. 2018, 138, 124–134. [Google Scholar] [CrossRef]
- Makhelouf, A. Impact assessment of the construction of tall buildings in a big town on the urban climate and the air pollution. E3 J. Environ. Res. Manag. 2012, 3, 64–74. [Google Scholar]
- Villena, G.; Kleffmann, J.; Kurtenbach, R.; Wiesen, P.; Lissi, E.; Rubio, M.A.; Croxatto, G.; Rappenglück, B. Vertical gradients of HONO, NOx and O3 in Santiago de Chile. Atmos. Environ. 2011, 45, 3867–3873. [Google Scholar] [CrossRef]
- Baedecker, P.A.; Reddy, M.M.; Reimann, K.J.; Sciammarella, C.A. Effects of acidic deposition on the erosion of carbonate stone—Experimental results from the US National Acid Precipitation Assessment Program (NAPAP). Atmos. Environ. B Urban Atmos. 1992, 26, 147–158. [Google Scholar] [CrossRef]
- Haneef, S.J.; Johnson, J.B.; Dickinson, C.; Thompson, G.E.; Wood, G.C. Effect of dry deposition of NOx and SO2 gaseous pollutants on the degradation of calcareous building stones. Atmos. Environ. A Gen. Top. 1992, 26, 2963–2974. [Google Scholar] [CrossRef]
- Blocken, B.; Dezsö, G.; van Beeck, J.P.A.J.; Carmeliet, J. Comparison of calculation models for wind-driven rain deposition on building facades. Atmos. Environ. 2010, 44, 1714–1725. [Google Scholar] [CrossRef]
- Ge, H.; Nath, U.D.; Chiu, V. Field measurements of wind-driven rain on mid-and high-rise buildings in three Canadian regions. Build. Environ. 2017, 116, 228–245. [Google Scholar] [CrossRef]
- Singh, A.; Agrawal, M. Acid rain and its ecological consequences. J. Environ. Biol. 2007, 29, 15. [Google Scholar]
- Charisi, S.; Thiis, T.K.; Stefansson, P.; Burud, I. Prediction model of microclimatic surface conditions on building façades. Build. Environ. 2018, 128, 46–54. [Google Scholar] [CrossRef]
- Ito, W.H.; Scussiato, T.; Vagnon, F.; Ferrero, A.M.; Migliazza, M.R.; Ramis, J.; de Queiroz, P.I.B. On the thermal stresses due to weathering in natural stones. Appl. Sci. 2021, 11, 1188. [Google Scholar] [CrossRef]
- Blumthaler, M.; Ambach, W.; Ellinger, R. Increase in solar UV radiation with altitude. J. Photochem. Photobiol. B Biol. 1997, 39, 130–134. [Google Scholar] [CrossRef]
- Careddu, N.; Marras, G. The effects of solar UV radiation on the gloss values of polished stone surfaces. Constr. Build. Mater. 2013, 49, 828–834. [Google Scholar] [CrossRef]
- Määttä, J.; Piispanen, M.; Kymäläinen, H.R.; Uusi-Rauva, A.; Hurme, K.R.; Areva, S.; Sjöberg, A.-M.; Hupa, L. Effects of UV-radiation on the cleanability of titanium dioxide-coated glazed ceramic tiles. J. Eur. Ceram. Soc. 2007, 27, 4569–4574. [Google Scholar] [CrossRef]
- International Organization for Standardization. Buildings and Constructed Assets—Service Life Planning—Part 1: General Principles and Framework; Technical Report No. 15686-1; International Organization for Standardization: Geneva, Switzerland, 2011. [Google Scholar]
- Silva, A.; de Brito, J.; Gaspar, P.L. Methodologies for Service Life Prediction of Buildings: With a Focus on Façade Claddings; Springer International Publishing: Zurich, Switzerland, 2016. [Google Scholar]
- Thai-Ker, L.; Chung-Wan, W. Challenges of external wall tiling in Singapore. In Proceedings of the Qualicer 2006: IX World Congress on Ceramic Tile Quality, Castellón, Spain, 12–15 February 2006. [Google Scholar]
- Farmer, M.C.; Lyons, S.P. Stone cladding failure: The cause and consequences. In Proceedings of the Second Forensic Engineering Congress, San Juan, Puerto Rico, 21–23 May 2000. [Google Scholar]
- Sousa, H.; Sousa, R. Durability of stone cladding in buildings: A case study of marble slabs affected by bowing. Building 2019, 9, 229. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Lu, W.; Günay, S. Shaking table tests of granite cladding with dowel pin connection. Bull. Earthq. Eng. 2020, 18, 1081–1105. [Google Scholar] [CrossRef]
- Huang, B.; Lu, W.; Mosalam, K.M. Shaking table testing of granite cladding with undercut bolt anchorage. Eng. Struct. 2018, 171, 488–499. [Google Scholar] [CrossRef]
- Shohet, I.M.; Puterman, M.; Gilboa, E. Deterioration patterns of building cladding components for maintenance management. Constr. Manag. Econ. 2002, 20, 305–314. [Google Scholar] [CrossRef]
- Veritas, B. Gestion Technique du Patrimoine—Réhabilitation et Maintenance, Guide Veritas du Bâtiment; Bureau Veritas: Paris, France, 1993. [Google Scholar]
- Gaspar, P.; De Brito, J. Service life estimation of cement-rendered facades. Build. Res. Inf. 2008, 36, 44–55. [Google Scholar] [CrossRef]
- Kalbfleisch, J.D.; Lawless, J.F. The analysis of panel data under a Markov assumption. J. Am. Stat. Assoc. 1985, 80, 863–871. [Google Scholar] [CrossRef]
- Ferreira, C.; Silva, A.; de Brito, J.; Dias, I.S.; Flores-Colen, I. The impact of imperfect maintenance actions on the degradation of buildings’ envelope components. J. Build. Eng. 2021, 33, 101571. [Google Scholar] [CrossRef]
- CYPE Price Generator. Available online: http://www.geradordeprecos.info/ (accessed on 14 March 2019).
- Ferreira, C.; Silva, A.; de Brito, J.; Dias, I.S.; Flores-Colen, I. Definition of a condition-based model for natural stone claddings. J. Build. Eng. 2021, 33, 101643. [Google Scholar] [CrossRef]
- Neto, N.; de Brito, J. Inspection and defect diagnosis system for natural stone cladding. J. Mater. Civ. Eng. 2011, 23, 1433–1443. [Google Scholar] [CrossRef]
- Butt, A.A.; Shahin, M.Y.; Feighan, K.J.; Carpenter, S.H. Pavement performance prediction model using the Markov process. Transp. Res. Rec. 1987, 1123, 12–19. [Google Scholar]
- Hawk, H.; Small, E.P. The BRIDGIT bridge management system. Struct. Eng. Int. 1998, 8, 309–314. [Google Scholar] [CrossRef]
- Thompson, P.D.; Small, E.P.; Johnson, M.; Marshall, A.R. The Pontis bridge management system. Struct. Eng. Int. 1998, 8, 303–308. [Google Scholar] [CrossRef]
Interventions | Cost (EUR/m2) | Application Zone | Impact of the Maintenance Activity (%) | ||
---|---|---|---|---|---|
PA | PB | PC | |||
Inspections | 1.03 | All | - | - | - |
Cleaning operations | 31.37 | B | 15.0 | 85.0 | - |
Minor interventions | 68.80 | C | 0.0 | 80.4 | 19.6 |
Total replacement | 149.51 | D, E | 100.0 | - | - |
Parameters | Low Buildings | High Buildings | |||||||
---|---|---|---|---|---|---|---|---|---|
Markov Chains | Exponential | Weibull | Lognormal | Markov Chains | Exponential | Weibull | Lognormal | ||
Mean value (years) | TA | 5.4 | 5.6 | 4.6 | 4.9 | 6.0 | 5.0 | 4.2 | 6.5 × 103 |
TB | 36.5 | 37.4 | 39.5 | 38.7 | 96.1 | 100.4 | 44.9 | 48.4 | |
TC | 81.7 | 77.1 | 26.2 | 29.0 | 111.1 | 129.8 | 16.8 | 18.6 | |
TD | 111.1 | 1.4 × 104 | 57.7 | 7.8 × 106 | 111.1 | 3.4 × 107 | 35.6 | 1.8 × 107 | |
Standard deviation (years) | SDA | 5.4 | 5.6 | 4.4 | 5.8 | 6.0 | 5.0 | 19.5 | 9.3 × 1010 |
SDB | 36.5 | 37.4 | 12.4 | 14.5 | 96.1 | 100.4 | 7.5 | 11.6 | |
SDC | 81.7 | 77.1 | 2.1 | 0.9 | 111.1 | 129.8 | 0.6 | 0.4 | |
SDD | 111.1 | 1.4 × 104 | 3.2 | 4.9 × 107 | 111.1 | 3.36 × 107 | 1.8 | 1.4 × 108 | |
−log L | 95.06 | 90.48 | 75.98 | 77.09 | 63.80 | 63.26 | 45.47 | 44.15 |
Maintenance Strategy | Case Study | Maintenance Activity | Cost (EUR/m2) | ||
---|---|---|---|---|---|
Cleaning Operation | Minor Intervention | Total Replacement | |||
MS1 | Low | - | - | 1.7 | 6.01 |
High | - | - | 1.9 | 6.67 | |
Complete | - | - | 1.7 | 5.98 | |
MS2 | Low | - | 2.2 | 0.6 | 10.73 |
High | - | 2.1 | 0.5 | 8.40 | |
Complete | - | 2.1 | 0.5 | 9.10 | |
MS3 | Low | 5.7 | 2.0 | 0.3 | 45.85 |
High | 5.6 | 2.0 | 0.3 | 45.04 | |
Complete | 5.6 | 2.0 | 0.3 | 44.65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, C.; Silva, A.; de Brito, J. Impact of the Height of Buildings on the Maintainability of Natural Stone Claddings. Infrastructures 2022, 7, 44. https://doi.org/10.3390/infrastructures7030044
Ferreira C, Silva A, de Brito J. Impact of the Height of Buildings on the Maintainability of Natural Stone Claddings. Infrastructures. 2022; 7(3):44. https://doi.org/10.3390/infrastructures7030044
Chicago/Turabian StyleFerreira, Cláudia, Ana Silva, and Jorge de Brito. 2022. "Impact of the Height of Buildings on the Maintainability of Natural Stone Claddings" Infrastructures 7, no. 3: 44. https://doi.org/10.3390/infrastructures7030044
APA StyleFerreira, C., Silva, A., & de Brito, J. (2022). Impact of the Height of Buildings on the Maintainability of Natural Stone Claddings. Infrastructures, 7(3), 44. https://doi.org/10.3390/infrastructures7030044