Cross-Border Cascading Hazard Scenarios and Vulnerability Assessment of Levees and Bridges in the Sava River Basin
Abstract
1. Introduction
2. Materials and Methods
2.1. Case Study Area
2.2. Concept of the Event Tree of Cascading Hazard Scenarios
2.3. Selection and Hydraulic Modelling of Flood Scenarios
2.4. Selection and Seismic Modelling of Earthquake Scenarios
3. Methodology of Vulnerability Assessment
3.1. Methodology of Vulnerability Assessment of Levees
3.2. Methodology of Vulnerability Assessment of the Selected Bridge
Bridge Geometry and Materials
4. Results and Discussion
4.1. Results of Hydraulic Simulations
4.2. Results of Seismic Simulations
4.3. Results of Vulnerability Assessment of Levees
4.4. Results of Vulnerability Assessment of the Selected Bridge
4.4.1. Input Data from Hydraulic Simulations
4.4.2. Input Data from Seismic Simulations
4.4.3. Numerical Modelling of the Bridge
4.4.4. Results of Numerical Modelling of the Bridge
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HPP | hydropower plant |
DTM | digital terrain model |
GM | ground motion |
GMPE | ground motion prediction equation |
PGA | peak ground acceleration |
LE | limit equilibrium |
FS | factor of safety |
S1–S5 | scenario 1 to scenario 5 |
PEM | point estimate method |
pf | probability of failure |
Appendix A
Limit State Definition for Vulnerability Assessment of the Selected Bridge
- –
- yielding of piers at their ends according to EC8-3 rotation (CEN, 2005);
- –
- yielding of piers within elements (verification of moment capacity);
- –
- exceedance of 75% of the pier’s shear capacity according to EC8-3 (CEN, 2005);
- –
- exceedance of 75% of shear keys’ sliding shear capacity according to EC8-1 (CEN, 2004b);
- –
- shear deformation in the elastomeric bearings exceeds 100% [68];
- –
- exceedance of 75% of shear capacity of fixed bearings;
- –
- scour exceeds 50% of the foundation depth;
- –
- yielding of piles (verification of moment capacity).
- –
- ultimate (near collapse) rotation of piers according to EC8-3 (CEN, 2005) is exceeded;
- –
- pier moment capacity within the elements is exceeded (verification of moment capacity);
- –
- shear failure of the piers according to EC8-3 (CEN, 2005);
- –
- sliding shear failure of shear keys according to EC8-1 (CEN, 2004b);
- –
- shear deformation in the elastomeric bearings exceeds 300% [68];
- –
- shear failure of the fixed bearings;
- –
- scour exceeds the foundation depth;
- –
- pile moment capacity within the elements is exceeded (verification of moment capacity).
References
- Adrot, A.; Fiedrich, F.; Lotter, A.; Münzberg, T.; Rigaud, E.; Wiens, M.; Raskob, W.; Schultmann, F. Challenges in establishing cross-border resilience. In Urban Disaster Resilience and Security: Addressing Risks in Societies; Fekete, A., Fiedrich, F., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 429–457. ISBN 978-3-319-68606-6. [Google Scholar]
- Markušić, S.; Stanko, D.; Korbar, T.; Belić, N.; Penava, D.; Kordić, B. The Zagreb (Croatia) M5.5 Earthquake on 22 March 2020. Geosciences 2020, 10, 252. [Google Scholar] [CrossRef]
- Pollak, D.; Gulam, V.; Novosel, T.; Avanić, R.; Tomljenović, B.; Hećej, N.; Terzić, J.; Stipčević, J.; Bačić, M.; Kurečić, T.; et al. The Preliminary Inventory of Coseismic Ground Failures Related to December 2020–January 2021 Petrinja Earthquake Series. Geol. Croat. 2021, 74, 189–208. [Google Scholar] [CrossRef]
- Bezak, N.; Panagos, P.; Liakos, L.; Mikoš, M. Brief Communication: A First Hydrological Investigation of Extreme August 2023 Floods in Slovenia, Europe. Nat. Hazards Earth Syst. Sci. 2023, 23, 3885–3893. [Google Scholar] [CrossRef]
- Bačić, M.; Andačić, K.; Gavin, K.; Urumović, K. Soil Investigations As A Cornerstone For Geotechnical Design of Liquefaction Mitigation Measures Below Levees. In Proceedings of the 4th European Regional Conference of IAEG (EUROENGEO 2024), Dubrovnik, Croatia, 8 October 2024; pp. 218–227. [Google Scholar] [CrossRef]
- European Commission. Strengthening the Resilience of EU Border Regions; Publications Office of the European Union: Luxembourg, 2024; ISBN 9789268162132. [Google Scholar]
- Joint Research Centre. Cross-Border and Emerging Risks in Europe; Publications Office of the European Union: Luxembourg, 2024; ISBN 9789268164594. [Google Scholar]
- Borghetti, F.; Marchionni, G. Cross-Border Critical Transportation Infrastructure: A Multi-Level Index for Resilience Assessment. Transp. Res. Procedia 2023, 69, 77–84. [Google Scholar] [CrossRef]
- Sheshov, V.; Apostolska, R.; Salic, R.; Vitanova, M.; Bojadzieva, J.; Edip, K.; Stojmanovska, M.; Bogdanovic, A.; Jekic, G.; Borzi, B.; et al. Multi-Hazard Risk Assessment of Basic Services and Transport Infrastructure in RN Macedonia, Greece and Albania Cross-Border Region–CRISIS Project. In Building for the Future: Durable, Sustainable, Resilient, Proceedings of the fib Symposium 2023, Istanbul, Turkey, 5–7 June 2023; Ilki, A., Çavunt, D., Çavunt, Y.S., Eds.; Springer Nature: Cham, Switzerland, 2023; pp. 1754–1764. [Google Scholar]
- Lousada, S.; Gómez, J.M.N.; Vilčekova, S.; Delehan, S. Integrating Resilient Water Infrastructure and Environmental Impact Assessment in Borderland River Basins. Water 2025, 17, 1205. [Google Scholar] [CrossRef]
- CROSSCade Project. Available online: https://civil-protection-knowledge-network.europa.eu/projects/crosscade (accessed on 3 August 2025).
- Internatioinal Sava River Basin Commisssion. Sava River Basin Management Plan; Internatioinal Sava River Basin Commisssion: Zagreb, Croatia, 2014. [Google Scholar]
- Associated Press. Slovenia Suffers Worst-Ever Floods, Damage May Top 500 Million Euros. Available online: www.apnews.com (accessed on 29 May 2025).
- Zuccaro, G.; De Gregorio, D.; Leone, M.F. Theoretical model for cascading effects analyses. Int. J. Disaster Risk Reduct. 2018, 30, 199–215. [Google Scholar] [CrossRef]
- Rak, G.; Müller, M.; Šantl, S.; Steinman, F. Use of Hybrid Hidraulic Models in the Process of Hydropower Plants Design on the Lower Sava. Acta Hydrotech. 2012, 25, 59–70. [Google Scholar]
- Rak, G.; Kozelj, D.; Steinman, F. The Impact of Floodplain Land Use on Flood Wave Propagation. Nat. Hazards 2016, 83, 425–443. [Google Scholar] [CrossRef]
- Liu, Q.; Qin, Y.; Zhang, Y.; Li, Z. A Coupled 1D–2D Hydrodynamic Model for Flood Simulation in Flood Detention Basin. Nat. Hazards 2015, 75, 1303–1325. [Google Scholar] [CrossRef]
- Jamali, B.; Löwe, R.; Bach, P.M.; Urich, C.; Arnbjerg-Nielsen, K.; Deletic, A. A Rapid Urban Flood Inundation and Damage Assessment Model. J. Hydrol. 2018, 564, 1085–1098. [Google Scholar] [CrossRef]
- Patro, S.; Chatterjee, C.; Mohanty, S.; Singh, R.; Raghuwanshi, N.S. Flood Inundation Modeling Using MIKE FLOOD and Remote Sensing Data. J. Indian Soc. Remote Sens. 2009, 37, 107–118. [Google Scholar] [CrossRef]
- Vanderkimpen, P.; Melger, E.; Peeters, P. Flood Modeling for Risk Evaluation: A MIKE FLOOD vs. SOBEK 1D2D Benchmark Study. In Proceedings of the European Conference on Flood Risk Management Research into Practice (FLOODRISK 2008), Oxford, UK, 30 September–2 October 2008; pp. 77–84. [Google Scholar]
- Jongman, B.; Kreibich, H.; Apel, H.; Barredo, J.I.; Bates, P.D.; Feyen, L.; Gericke, A.; Neal, J.; Aerts, J.C.J.H.; Ward, P.J. Comparative Flood Damage Model Assessment: Towards a European Approach. Nat. Hazards Earth Syst. Sci. 2012, 12, 3733–3752. [Google Scholar] [CrossRef]
- Samantaray, D.; Chatterjee, C.; Singh, R.; Gupta, P.K.; Panigrahy, S. Flood Risk Modeling for Optimal Rice Planning for Delta Region of Mahanadi River Basin in India. Nat. Hazards 2015, 76, 347–372. [Google Scholar] [CrossRef]
- Namara, W.G.; Damisse, T.A.; Tufa, F.G. Application of HEC-RAS and HEC-GeoRAS Model for Flood Inundation Mapping, the Case of Awash Bello Flood Plain, Upper Awash River Basin, Oromiya Regional State, Ethiopia. Model. Earth Syst. Environ. 2022, 8, 1449–1460. [Google Scholar] [CrossRef]
- Afzal, M.A.; Ali, S.; Nazeer, A.; Khan, M.I.; Waqas, M.M.; Aslam, R.A.; Cheema, M.J.M.; Nadeem, M.; Saddique, N.; Muzammil, M.; et al. Flood Inundation Modeling by Integrating HEC–RAS and Satellite Imagery: A Case Study of the Indus River Basin. Water 2022, 14, 2984. [Google Scholar] [CrossRef]
- Burshtynska, K.; Kokhan, S.; Pfeifer, N.; Halochkin, M.; Zayats, I. Hydrological Modeling for Determining Flooded Land from Unmanned Aerial Vehicle Images—Case Study at the Dniester River. Remote Sens. 2023, 15, 1071. [Google Scholar] [CrossRef]
- Šantl, S.; Novak, G.; Rak, G.; Steinman, F. Hybrid Hydraulic Modelling Approach in the Process of Hydropower Plant Design. In Proceedings of the International Symposium on Hydraulic Physical Modelling and Field Investigation, Nanjing, China, 13–15 September 2010; pp. 54–61. [Google Scholar]
- Žižmond, J. Simulations of Ground Motions Field Intensities and Seismic Hazard Curves for the Slovenia and Croatia Cross-Border Area of the River Sava Basin, SPEKTRAL Engineering d.o.o.: Ljubljana, Slovenia, 2023; (Non-public report).
- Atanackov, J.; Jamšek Rupnik, P.; Jež, J.; Celarc, B.; Novak, M.; Milanič, B.; Markelj, A.; Bavec, M.; Kastelic, V. Database of Active Faults in Slovenia: Compiling a New Active Fault Database at the Junction Between the Alps, the Dinarides and the Pannonian Basin Tectonic Domains. Front. Earth Sci. 2021, 9, 604388. [Google Scholar] [CrossRef]
- Danciu, L.; Nandan, S.; Reyes, C.; Basili, R.; Weatherill, G.; Beauval, C.; Rovida, A.N.; Vilanova, S.; Sesetyan, K.; Bard, P.Y.; et al. The 2020 Update of the European Seismic Hazard Model ESHM20: Model Overview; EFEHR Technical Report 001, v1.0.0; EFEHR: Zurich, Switzerland, 2021. [Google Scholar]
- Kotha, S.R.; Weatherill, G.; Bindi, D.; Cotton, F. A Regionally-Adaptable Ground-Motion Model for Shallow Crustal Earthquakes in Europe. Bull. Earthquake Eng. 2020, 18, 4091–4125. [Google Scholar] [CrossRef]
- Weatherill, G.; Kotha, S.R.; Cotton, F. A Regionally-Adaptable “Scaled Backbone” Ground Motion Logic Tree for Shallow Seismicity in Europe: Application to the 2020 European Seismic Hazard Model. Bull. Earthquake Eng. 2020, 18, 5087–5117. [Google Scholar] [CrossRef]
- Christian, J.T.; Baecher, G.B. Point-Estimate Method as Numerical Quadrature. J. Geotech. Geoenviron. Eng. 1999, 125, 779–786. [Google Scholar] [CrossRef]
- Baecher, G.B.; Christian, J.T. Reliability and Statistics in Geotechnical Engineering; Wiley: Hoboken, NJ, USA, 2003. [Google Scholar]
- Takeda, T.; Sozen, M.A.; Nielsen, N.N. Reinforced Concrete Response to Simulated Earthquakes. ASCE J. Struct. Div. 1970, 96, 2557–2573. [Google Scholar] [CrossRef]
- Vamvatsikos, D.; Allin Cornell, C. Incremental Dynamic Analysis. Earthq. Eng. Struct. Dyn. 2002, 31, 491–514. [Google Scholar] [CrossRef]
- Jalayer, F.; Cornell, C.A. Alternative Non-Linear Demand Estimation Methods for Probability-Based Seismic Assessments. Earthq. Eng. Struct. Dyn. 2009, 38, 951–972. [Google Scholar] [CrossRef]
- Oblak, A.; Kosič, M.; Da, F.A.; Logar, J. Fragility Assessment of Traffic Embankments Exposed to Earthquake-Induced Liquefaction. Appl. Sci. 2020, 10, 6832. [Google Scholar] [CrossRef]
- Baker, J.W. Efficient Analytical Fragility Function Fitting Using Dynamic Structural Analysis. Earthq. Spectra. 2015, 31, 579–599. [Google Scholar] [CrossRef]
- Baker, J.W. Baker Research Group—Fragility Function Fitting. Available online: www.jackwbaker.com (accessed on 3 August 2025).
- Comite Europeen de Normalisation (CEN). Eurocode 2: Design of Concrete Structures—Part 1-1: General—Common Rules for Building and Civil Engineering Structures (EN 1992-1-1:2004); Comite Europeen de Normalisation (CEN): Brussels, Belgium, 2004. [Google Scholar]
- Comite Europeen de Normalisation (CEN). Eurocode 8: Design of Structures for Earthquake Resistance—Part 1: General Rules Seismic Actions and Rules for Buildings (EN 1998-1:2004); Comite Europeen de Normalisation (CEN): Brussels, Belgium, 2004. [Google Scholar]
- Rak, G.; Novak, G.; Četina, M.; Anžlin, A.; Žižmond, J.; Kosič, M. Cross Border Cascading Hazard Scenarios in Sava River Basin–Results of the Hydraulic and Seismic Simulations of the CROSScade Project. In Proceedings of the 8th IAHR Europe Congress (IAHR, 2024), Lisbon, Portugal, 4–7 June 2024; pp. 567–573. [Google Scholar]
- U.S. Army Corps of Engineers. Engineering and Design Introduction to Probability and Reliability Methods for Use in Geotechnical Engineering; U.S. Army Corps of Engineers: Washington, DC, USA, 1997; pp. 5–15.
- Baker, J.W. Conditional Mean Spectrum: Tool for Ground-Motion Selection. J. Struct. Eng. 2011, 137, 322–331. [Google Scholar] [CrossRef]
- Midas Engineering Software Midas Civil. Available online: https://www.midasuser.com/en/product/civil (accessed on 3 August 2025).
- Zhu, M. The OpenSeesPy, Version 3.7.0. Available online: https://openseespydoc.readthedocs.io/en/latest (accessed on 3 August 2025).
- Giberson, F.M. Two Nonlinear Beams With Definitions of Ductility. J. Struct. Div. 1969, 95, 137–157. [Google Scholar] [CrossRef]
- Michael, S.; Filip, F.; Mazzoni, S. OpenSeesWiki. Available online: https://opensees.berkeley.edu/wiki/index.php/Hysteretic_Material (accessed on 3 August 2025).
- Comite Europeen de Normalisation (CEN). Eurocode 8: Design of Structures for Earthquake Resistance-Part 3: Assessment and Retrofit of Buildings (EN 1998-3:2005); Comite Europeen de Normalisation (CEN): Brussels, Belgium, 2005. [Google Scholar]
- Boulanger, R. OpenSeesWiki—PySimple 1 Material. Available online: https://opensees.berkeley.edu/wiki/index.php/PySimple1_Material (accessed on 3 August 2025).
- Boulanger, R. OpenSeesWiki—TzSimple 1 Material. Available online: https://opensees.berkeley.edu/wiki/index.php/TzSimple1_Material (accessed on 3 August 2025).
- Boulanger, R. OpenSeesWiki—QzSimple 1 Material. Available online: https://opensees.berkeley.edu/wiki/index.php/QzSimple1_Material (accessed on 3 August 2025).
- McGann, C.; Arduino, P. OpenSees Examples: Laterally-Loaded Pile Foundation. Available online: https://opensees.berkeley.edu/wiki/index.php/Laterally-Loaded_Pile_Foundation (accessed on 3 August 2025).
- API RP 2A-WSD; Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms-Working Stress Design. American Petroleum Institute: Washington, DC, USA, 2003.
- Reese, L.C.; Impe, W.F.V. Single Piles and Pile Groups Under Lateral Loading-2nd Edition; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Boca Raton, FL, USA, 2011; ISBN 9781439894309. [Google Scholar]
- Mosher, R.L. Load-Transfer Criteria for Numerical Analysis of Axially Loaded Piles in Sand—Final Report; U.S. Army Engineer Waterways Experiment Station: Vicksburg, MS, USA, 1984. [Google Scholar]
- API RP 2A-WSD; RP2A: Recommended Practice for Planning, Designing and Constructing Offshore Platforms-Working Stress Design. American Petroleum Institute: Washington, DC, USA, 2007.
- Vijayvergiya, V.N. Load-Movement Characteristics of Piles. In Proceedings of the 4th Annual Symposium of the Waterway, Port, Coastal, and Ocean Division of ASCE, Los Angeles, CA, USA, 9–11 March 1977; pp. 269–284. [Google Scholar]
- Meyerhof, G.G. Bearing Capacity and Settlement of Pile Foundations. Found. J. Geotech. Engrg. Div. 1976, 102, 197–228. [Google Scholar] [CrossRef]
- Kosič, M.; Anžlin, A. Overflow Project Deliverable D4.2: Report on Vulnerability Assessment Methodology-Fragility Curves for Bridges Subjected to Flooding. 2022. Available online: https://projectoverflow.eu. (accessed on 3 August 2025).
- Kosič, M.; Anžlin, A.; Bau’, V. Flood Vulnerability Study of a Roadway Bridge Subjected to Hydrodynamic Actions, Local Scour and Wood Debris Accumulation. Water 2023, 15, 129. [Google Scholar] [CrossRef]
- Kosič, M.; Prendergast, L.J.; Anžlin, A. Analysis of the Response of a Roadway Bridge under Extreme Flooding-Related Events: Scour and Debris-Loading. Eng. Struct. 2023, 279, 115607. [Google Scholar] [CrossRef]
- Kosič, M.; Bačić, M.; Skokandić, D.; Kovačević, G.H.; Ivanković, A.M.; Anžlin, A. Rapid Flood Vulnerability Assessment of Bridge Networks: The CROSScade Project Case. In Proceedings of the 8th International Conference on Road and Rail Infrastructure (CETRA 2024), Cavtat, Croatia, 15–17 May 2024; pp. 1181–1187. [Google Scholar]
- AS-5100-2; Bridge Desing-Part 2: Design Loads. Standards Australia: Sydney, Australia, 2004.
- Panici, D.; de Almeida, G.A.M. Formation, Growth, and Failure of Debris Jams at Bridge Piers. Water Resour. Res. 2018, 54, 6226–6241. [Google Scholar] [CrossRef]
- Arneson, L.A.; Zevenbergen, L.W.; Lagasse, P.F.; Clopper, P.E. Evaluating Scour at Bridges. Hydraulic Engineering Circular No. 18 (HEC-18), 5th ed.; U.S. Department of Transportation, Federal Highway Administration (FHWA): Washington, DC, USA, 2012.
- Lagasse, P.F.; Zevenbergen, L.W.; Clopper, P.E. Impacts of Debris on Bridge Pier Scour. In Proceedings of the 5th International Conference on Scour and Erosion (ICSE-5), San Francisco, CA, USA, 7–10 November 2010; pp. 854–863. [Google Scholar]
- Stefanidou, S.P.; Kappos, A.J. Methodology for the Development of Bridge-Specific Fragility Curves. Earthq. Eng. Struct. Dyn. 2017, 46, 73–93. [Google Scholar] [CrossRef]
Scenario Number | Description | Natural Inflow into the Brežice HPP Reservoir (m3/s) | Peak Discharge Downstream of Brežice HPP (m3/s) |
---|---|---|---|
S1 | instantaneous breakage of one gate at Brežice HPP | 1200 | 1500 |
S2 | the opening of all 5 gates at Brežice HPP at maximum speed 27 cm/min | 1200 | 4100 |
S3 | the opening of all 7 gates of highwater spillways of Brežice HPP at maximum speed 27 cm/min | 1200 | 1300 |
S4 | successive breakage of one gate on each of the HPPs in the chain from Vrhovo to Krško | 1200 | 900 |
S5 | breaching of the Brežice HPP embankment on the right bank, directly upstream of the dam, where the crest is the highest | 2500 | 3500 |
SD | S0 | S1 | S2 | S3 | S4 | S5 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Z | B | Z | B | Z | B | Z | B | Z | B | Z | B | |
S1R | 72.7 | 99.1 | 73.1 | 99.1 | 76.5 | 99.1 | 74.1 | 99.1 | 71.0 | 98.9 | 89.9 | 99.7 |
S2L | 1.80 | 69.7 | - | - | 3.90 | 77.1 | - | - | - | - | 10.2 | 87.3 |
S3R | 98.0 | 94.1 | 98.8 | 94.2 | 98.5 | 96.0 | 97.8 | 94.4 | 98.9 | 94.5 | 99.0 | 96.8 |
S4R | 40.7 | 1.61 | 59.0 | 6.62 | 58.6 | 6.24 | 64.0 | 9.80 | 58.9 | 6.39 | 59.0 | 6.76 |
S5R | 34.7 | 0.30 | 35.7 | 0.51 | 35.0 | 0.50 | - | - | - | - | 35.6 | 0.40 |
S6R | 58.5 | 0.05 | - | - | - | - | - | - | - | - | - | - |
S7R | 43.1 | <0.01 | - | - | - | - | - | - | - | - | - | - |
S8L | 55.5 | 0.05 | - | - | - | - | - | - | - | - | 67.5 | 0.33 |
ST1 | 1.51 | 8.14 | - | - | - | - | - | - | 1.51 | 8.14 | 3.67 | 15.7 |
ST2 | 24.9 | 19.1 | - | - | - | - | - | - | - | - | 27.6 | 21.5 |
ST3 | 82.2 | 19.5 | 83.6 | 21.3 | 84.3 | 23.3 | - | - | - | - | 87.0 | 26.8 |
ST4 | 71.8 | 0.71 | - | - | 77.5 | 1.07 | - | - | - | - | 78.3 | 1.17 |
ST5 | 27.2 | ≪0.01 | - | - | - | - | - | - | - | - | 45.9 | <0.01 |
ST6 | 77.7 | 0.51 | - | - | - | - | - | - | - | - | 77.7 | 0.51 |
Scenario | Q (m3/s) | H (m) | v (m/s) |
---|---|---|---|
SC1 | 1493 | 6.33 | 2.51 |
SC2 | 2841 | 8.17 | 3.49 |
SC3 | 1274 | 5.85 | 2.36 |
SC4 | 1355 | 6.06 | 2.4 |
SC5 | 2887 | 8.73 | 3.25 |
P(SLS) | P(ULS) | |
---|---|---|
Earthquake in SLO | 0.57 | 0.33 |
Earthquake in CRO | 0.02 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rak, G.; Novak, G.; Četina, M.; Kosič, M.; Anžlin, A.; Rossi, N.; Kovačević, M.S.; Bačić, M. Cross-Border Cascading Hazard Scenarios and Vulnerability Assessment of Levees and Bridges in the Sava River Basin. Infrastructures 2025, 10, 214. https://doi.org/10.3390/infrastructures10080214
Rak G, Novak G, Četina M, Kosič M, Anžlin A, Rossi N, Kovačević MS, Bačić M. Cross-Border Cascading Hazard Scenarios and Vulnerability Assessment of Levees and Bridges in the Sava River Basin. Infrastructures. 2025; 10(8):214. https://doi.org/10.3390/infrastructures10080214
Chicago/Turabian StyleRak, Gašper, Gorazd Novak, Matjaž Četina, Mirko Kosič, Andrej Anžlin, Nicola Rossi, Meho Saša Kovačević, and Mario Bačić. 2025. "Cross-Border Cascading Hazard Scenarios and Vulnerability Assessment of Levees and Bridges in the Sava River Basin" Infrastructures 10, no. 8: 214. https://doi.org/10.3390/infrastructures10080214
APA StyleRak, G., Novak, G., Četina, M., Kosič, M., Anžlin, A., Rossi, N., Kovačević, M. S., & Bačić, M. (2025). Cross-Border Cascading Hazard Scenarios and Vulnerability Assessment of Levees and Bridges in the Sava River Basin. Infrastructures, 10(8), 214. https://doi.org/10.3390/infrastructures10080214