Parametric Analysis as a Tool for Hypothesis Generation: A Case Study of the Federal Archive Building in New York City
Abstract
1. Introduction
2. Literature Review
2.1. Inferential Representation: Hypotheses and Meaning-Making
2.2. Critiques of the Model-Building Duality
3. Methodology
3.1. Data Collection and Direct Modeling
3.2. Variability Determinations and Parametric Modeling
4. Discussion
4.1. Key Hypotheses and Insights
4.2. Epistemic Contributions of Parametric Analysis
5. Conclusions
5.1. Limitations and Challenges
5.2. Future Directions
Funding
Data Availability Statement
Conflicts of Interest
References
- Christenson, M. Theories and Practices of Architectural Representation; Routledge: London, UK, 2019. [Google Scholar]
- Blau, E.; Kaufman, E.; Evans, R. Centre Canadien D’Architecture. Architecture and Its Image: Four Centuries of Architectural Representation: Works from the Collection of the Canadian Centre for Architecture; Centre Canadien d’Architecture/Canadian Centre for Architecture: Montreal, QC, Canada, 1989. [Google Scholar]
- Piotrowski, A. On the Practices of Representing and Knowing Architecture. In The Discipline of Architecture; Piotrowski, A., Robinson, J., Eds.; University of Minnesota Press: Minneapolis, MN, USA, 2001. [Google Scholar]
- Lucas, R. Drawing Parallels: Knowledge Production in Axonometric, Isometric, and Oblique Drawings. Arch. Des. 2015, 85, 102–107. [Google Scholar]
- Volk, R.; Stengel, J.; Schultmann, F. Building Information Models (BIM) for Existing Buildings: Literature Review and Future Needs. Autom. Constr. 2014, 38, 109–127. [Google Scholar] [CrossRef]
- Tang, P.; Huber, D.; Akinci, B.; Lipman, R.; Lytle, A. Automatic Reconstruction of As-Built Building Information Models from Laser-Scanned Point Clouds: A Review of Related Techniques. Autom. Constr. 2010, 19, 829–843. [Google Scholar] [CrossRef]
- Reilly, P. Towards a Virtual Archaeology. In Computer Applications and Quantitative Methods in Archaeology 1990; BAR Publishing: Oxford, UK, 1991; pp. 133–139. [Google Scholar]
- Christenson, M. An Emergent Ontology for Digitally Modeling Existing Buildings: Examining Kyoto’s Nishiki Market. Archnet-IJAR Int. J. Archit. Res. 2024, 18, 1–15. [Google Scholar] [CrossRef]
- Christenson, M. Problematizing the Model-Building Duality: Examining the New Sacristy at S. Lorenzo, Florence, Italy. Front. Archit. Res. 2023, 12, 651–663. [Google Scholar] [CrossRef]
- Christenson, M. Parametric Analysis of Existing-Building Geometry: Generative, Dissective, and Morphological Approaches. Int. J. Archit. Comput. 2024, 22, 14780771241310209. [Google Scholar] [CrossRef]
- Tommasi, C.; Achille, C.; Fassi, F. From Point Cloud to BIM: A Modelling Challenge in the Cultural Heritage Field. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 429–436. [Google Scholar] [CrossRef]
- Jabi, W. Parametric Design for Architecture; Laurence King: London, UK, 2013; pp. 196–197. [Google Scholar]
- Sacks, R.; Eastman, C.M.; Lee, G. Parametric 3D Modeling in Building Construction with Examples from Precast Concrete. Autom. Constr. 2004, 13, 291–312. [Google Scholar] [CrossRef]
- Burry, J.; Burry, M. Sharing Hidden Power: Communicating Latency in Digital Models. In Proceedings, 24th International Conference on Education in Computer Aided Architectural Design in Europe; Bourdakis, V., Charitos, D., Eds.; University of Thessaly School of Engineering: Volos, Greece, 2006; pp. 786–793. [Google Scholar] [CrossRef]
- Barrios Hernandez, C.R. Thinking Parametric Design: Introducing Parametric Gaudi. Des. Stud. 2006, 27, 309–324. [Google Scholar] [CrossRef]
- Drucker, J. Graphesis: Visual Forms of Knowledge Production; Harvard University Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Suárez, M. Inference and Representation: A Study in Modeling Science; University of Chicago Press: Chicago, IL, USA, 2020. [Google Scholar]
- Peirce, C.S.; Hartshorne, C.; Weiss, P. Collected Papers of Charles Sanders Peirce; Belknap Press of Harvard University Press: Cambridge, MA, USA, 1965; Volume 2. [Google Scholar]
- Goodman, N. Languages of Art: An Approach to a Theory of Symbols, 2nd ed.; Hackett: Indianapolis, IN, USA, 1976. [Google Scholar]
- Elgin, C.Z. Between the Absolute and the Arbitrary; Cornell University Press: Ithaca, NY, USA, 1997. [Google Scholar]
- Gouvea, J.; Passmore, C. ‘Models of’ versus ‘Models for’: Toward an Agent-Based Conception of Modeling in the Science Classroom. Sci. Educ. 2017, 26, 49–63. [Google Scholar] [CrossRef]
- Suárez, M. An Inferential Conception of Scientific Representation. Philos. Sci. 2004, 71, 767–779. [Google Scholar] [CrossRef]
- Herdeg, K.; Eckstut, S.; Bell, H.K.; Byard, P.; Young, J. Working Paper 1: The New York Federal Archive Building; Columbia University: New York, NY, USA, 1976. [Google Scholar]
- Johnson, D.S. Testing Geometric Authenticity: Standards, Methods, and Criteria for Evaluating the Accuracy and Completeness of Archaeometric Computer Reconstructions. Vis. Resour. 2009, 25, 333–344. [Google Scholar] [CrossRef]
- Radanovic, M.; Khoshelham, K.; Fraser, C. Geometric Accuracy and Semantic Richness in Heritage BIM: A Review. Digit. Appl. Archaeol. Cult. Herit. 2020, 19, e00166. [Google Scholar] [CrossRef]
- Pepe, M.; Costantino, D.; Restuccia Garofalo, A. An Efficient Pipeline to Obtain 3D Model for HBIM and Structural Analysis Purposes from 3D Point Clouds. Appl. Sci. 2020, 10, 1235. [Google Scholar] [CrossRef]
- Bagnolo, V.; Argiolas, R.; Cuccu, A. HBIM for Archaeological Sites: From SFM-Based Survey to Algorithmic Modeling. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 57–63. [Google Scholar] [CrossRef]
- Dore, C.; Murphy, M. Integration of Historic Building Information Modeling (HBIM) and 3D GIS for Recording and Managing Cultural Heritage Sites. In Proceedings of the 2012 18th International Conference on Virtual Systems and Multimedia, Milan, Italy, 2–5 September 2012; pp. 369–376. [Google Scholar] [CrossRef]
- Abualdenien, J.; Borrmann, A. Levels of Detail, Development, Definition, and Information Need: A Critical Literature Review. J. Inf. Technol. Constr. 2022, 27, 363–392. [Google Scholar] [CrossRef]
- Bolognesi, C.; Garagnani, S. From a Point Cloud Survey to a Mass 3D Modeling: Renaissance HBIM in Poggio a Caiano. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 117–123. [Google Scholar] [CrossRef]
- Murphy, M.; McGovern, E.; Pavia, S. Historic Building Information Modelling: Adding Intelligence to Laser and Image-Based Surveys of European Classical Architecture. ISPRS J. Photogramm. Remote Sens. 2013, 76, 89–102. [Google Scholar] [CrossRef]
- Panah, R.S.; Kioumarsi, M. Application of Building Information Modelling (BIM) in the Health Monitoring and Maintenance Process: A Systematic Review. Sensors 2021, 21, 837. [Google Scholar] [CrossRef]
- Wong, J.K.W.; Ge, J.; He, S.X. Digitisation in Facilities Management: A Literature Review and Future Research Directions. Autom. Constr. 2018, 92, 312–326. [Google Scholar] [CrossRef]
- Carbonari, G.; Stravoravdis, S.; Gausden, C. Building Information Model Implementation for Existing Buildings for Facilities Management: A Framework and Two Case Studies. In Building Information Modelling (BIM) in Design, Construction and Operations; Mahdjoubi, L., Brebbia, C.A., Laing, R., Eds.; WIT Press: Southampton, UK, 2015; pp. 395–406. [Google Scholar] [CrossRef]
- Kassem, M.; Kelly, G.; Dawood, N.; Serginson, M.; Lockley, S. BIM in Facilities Management Applications: A Case Study of a Large University Complex. Built Environ. Proj. Asset Manag. 2015, 5, 261–277. [Google Scholar] [CrossRef]
- Froese, T.; Grobler, F.; Ritzenthaler, J.; Yu, K.; Akinci, B.; Akbas, R.; Koo, B.; Barron, A.; Kunz, J.C. Industry Foundation Classes for Project Management: A Trial Implementation. Electron. J. Inf. Technol. Constr. 1999, 4, 17–36. [Google Scholar]
- Fai, S.; Sydor, M. Building Information Modelling and the Documentation of Architectural Heritage: Between the ‘Typical’ and the ‘Specific’. In Proceedings of the 2013 Digital Heritage International Congress (DigitalHeritage), Marseille, France, 28 October–1 November 2013; Volume 1, pp. 731–734. [Google Scholar] [CrossRef]
- Fai, S.; Filippi, M.; Paliaga, S. Parametric Modelling (BIM) for the Documentation of Vernacular Construction Methods: A BIM Model for the Commissariat Building, Ottawa, Canada. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, II-5, 115–120. [Google Scholar] [CrossRef]
- Penttilä, H.; Rajala, M.; Freese, S. Building Information Modelling of Modern Historic Buildings. In Proceedings of the Predicting the Future [25th eCAADe Conference Proceedings, Frankfurt, Germany, 26–29 September 2007; pp. 26–29. [Google Scholar] [CrossRef]
- Jabi, W.; Potamianos, I. Parameterizing the Geometry and Visualizing the Lighting Method of Byzantine Church Domes. In Digital Heritage: Progress in Cultural Heritage: Documentation, Preservation, and Protection: 6th International Conference, EuroMed 2016, Nicosia, Cyprus, 31 October–5 November 2016, Proceedings, Part I; Springer International Publishing: Cham, Switzerland, 2016; pp. 171–183. [Google Scholar]
- Bentkowska-Kafel, A.; Denard, H. Processual Scholia: The Importance of Paradata in Heritage Visualization. In Paradata and Transparency in Virtual Heritage; Bentkowska-Kafel, A., Denard, H., Baker, D., Eds.; Ashgate: Farnham, UK, 2016; pp. 320–335. [Google Scholar]
- London Charter for the Computer-Based Visualization of Cultural Heritage. 2009. Available online: https://londoncharter.org/introduction.html (accessed on 14 March 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christenson, M. Parametric Analysis as a Tool for Hypothesis Generation: A Case Study of the Federal Archive Building in New York City. Infrastructures 2025, 10, 71. https://doi.org/10.3390/infrastructures10040071
Christenson M. Parametric Analysis as a Tool for Hypothesis Generation: A Case Study of the Federal Archive Building in New York City. Infrastructures. 2025; 10(4):71. https://doi.org/10.3390/infrastructures10040071
Chicago/Turabian StyleChristenson, Mike. 2025. "Parametric Analysis as a Tool for Hypothesis Generation: A Case Study of the Federal Archive Building in New York City" Infrastructures 10, no. 4: 71. https://doi.org/10.3390/infrastructures10040071
APA StyleChristenson, M. (2025). Parametric Analysis as a Tool for Hypothesis Generation: A Case Study of the Federal Archive Building in New York City. Infrastructures, 10(4), 71. https://doi.org/10.3390/infrastructures10040071