Hybrid AI–FEA Framework for Seismic Assessment of Confined Masonry Walls Using Crack Image-Based Material Property Inference
Abstract
1. Introduction
1.1. Vision-Based Crack Detection and Quantification
1.2. Seismic Behavior and Finite Element Modeling of Masonry Walls
1.3. Hybrid AI–FEA Frameworks for Structural Assessment
1.4. Case Study
2. Materials and Methods
2.1. Framework for Vision-Based Damage Characterization and Property Estimation
2.2. Deep Learning Model
2.3. Assumptions and Limitations
2.4. Zenodo Visual Database and Preprocessing
2.4.1. Photogrammetry Performed with High-Resolution Cell Phones on the Facades of the Homes in the Limatambo Urban Area
2.4.2. Material Property Inference Using the Trained MobileNetV2 Model
2.4.3. Anaconda-Based Reproducible Environment Setup
2.4.4. Numerical Modeling with DIANA FEA
3. Results and Discussion
3.1. Model Performance Evaluation
Model Validation and Comparison with Prior Studies
3.2. Integration of AI-Predicted Parameters into FEA Simulation

4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Afzali, M.; Jamshidian, S.; Hamidia, M.; Safi, M. Residual strength and stiffness estimation for RC columns damaged in earthquake through surface crack texture analysis. Soil Dyn. Earthq. Eng. 2024, 185, 108855. [Google Scholar] [CrossRef]
- Azhari, S.; Hamidia, M. Data-driven crack image-based seismic failure mode identification for damaged RC columns. Eng. Fail. Anal. 2024, 160, 108160. [Google Scholar] [CrossRef]
- Ávila, F.; Puertas, E.; Torrús, C.; Gallego, R. Influence of crack propagation on the seismic behavior of historic rammed earth buildings: The Tower of Muhammad in the Alhambra (Spain). Eng. Struct. 2024, 301, 117365. [Google Scholar] [CrossRef]
- Ban, S.; Shrestha, K.C.; Bastola, S. Seismic performance assessment of stone masonry buildings: Efficacy of various strengthening elements. J. Build. Eng. 2024, 96, 110380. [Google Scholar] [CrossRef]
- Bae, H.; An, Y.-K. Computer vision-based statistical crack quantification for concrete structures. Measurement 2023, 211, 112632. [Google Scholar] [CrossRef]
- Castellanos-Guzmán, S.P.; Maldonado-Noboa, J. Evaluación del Daño Acumulado en la Mamposteria de Ladrillo de la “Basílica de la Santísima Trinidad”. MQRInvestigar 2024, 8, 1413–1438. [Google Scholar] [CrossRef]
- Chen, X.; Hu, G.; Liu, X. Recognition of Earthquake Surface Ruptures Using Deep Learning. Appl. Sci. 2022, 12, 11638. [Google Scholar] [CrossRef]
- Deng, J.; Singh, A.; Zhou, Y.; Lu, Y.; Lee, V.C.-S. Review on Computer Vision-Based Crack Detection and Quantification Methodologies for Civil Structures. Constr. Build. Mater. 2022, 129238. [Google Scholar] [CrossRef]
- Ding, W.; Yang, H.; Yu, K.; Shu, J. Crack detection and quantification for concrete structures using UAV and transformer. Autom. Constr. 2023, 152, 104929. [Google Scholar] [CrossRef]
- Drougkas, A.; Roca, P.; Molins, C. Experimental analysis and detailed micro-modeling of masonry walls subjected to in-plane shear. Eng. Fail. Anal. 2019, 95, 82–95. [Google Scholar] [CrossRef]
- Endo, Y.; Miyoshi, K. Meso-scale numerical simulation of brick masonry in earth mortar. J. Build. Eng. 2023, 74, 106890. [Google Scholar] [CrossRef]
- Fages, J.M.; Tarque, N.; Rodríguez-Mariscal, J.D.; Solís, M. Calibration of a Total Strain Crack Model for Adobe Masonry Based on Compression and Diagonal Compression Tests. Constr. Build. Mater. 2022, 352, 128965. [Google Scholar] [CrossRef]
- Garofano, A.; Ceroni, F.; Pecce, M. Modelling in-plane behaviour of masonry walls strengthened with polymeric grids embedded in cementitious mortar layers. Compos. Part B Eng. 2016, 85, 243–258. [Google Scholar] [CrossRef]
- Gooch, L.J.; Masia, M.J.; Stewart, M.G. Application of Stochastic Numerical Analyses in the Assessment of Spatially Variable Unreinforced Masonry Walls Subjected to In-Plane Shear Loading. Eng. Struct. 2021, 235, 112095. [Google Scholar] [CrossRef]
- Güneş, N. Effects of near-fault pulse-like ground motions on seismically isolated buildings. J. Build. Eng. 2022, 52, 104508. [Google Scholar] [CrossRef]
- Howlader, M.K.; Masia, M.J.; Griffith, M.C. Numerical analysis and parametric study of unreinforced masonry walls with arch openings under lateral in-plane loading. Eng. Struct. 2020, 208, 110337. [Google Scholar] [CrossRef]
- Kassem, M.M.; Nazri, F.M.; Farsangi, E.N.; Tan, C.G. Comparative seismic RISK assessment of existing RC buildings using seismic vulnerability index approach. Structures 2021, 33, 1782–1794. [Google Scholar] [CrossRef]
- Katsigiannis, S.; Seyedzadeh, S.; Agapiou, A.; Ramzan, N. Deep learning for crack detection on masonry façades using limited data and transfer learning. J. Build. Eng. 2023, 76, 107105. [Google Scholar] [CrossRef]
- Kodali, R.; Wani, F.M.; Aquib, T.A.; Vemuri, J. Numerical Modelling of an Unreinforced Masonry Wall with Central Window Opening. Lect. Notes Civ. Eng. 2023, 269, 61–71. [Google Scholar] [CrossRef]
- Korswagen, P.A.; Longo, M.; Rots, J.G. High-resolution monitoring of the initial development of cracks in experimental masonry shear walls and their reproduction in finite element models. Eng. Struct. 2020, 211, 110365. [Google Scholar] [CrossRef]
- Loa, G.; Tarque, N.; Condori, C. Experimental and numerical modelling studies of slender reinforced concrete walls with single-layer reinforcement in Peru. Eng. Struct. 2022, 115029. [Google Scholar] [CrossRef]
- Marcos-Romero, A.C.; Mendoza-Cerezo, L.; Macías-García, A.; Rebollo Muñoz, N.; Rodríguez-Rego, J.M. Innovative device for crack monitoring and deflection analysis in structures: Improved accuracy, safety and efficiency. Results Eng. 2024, 24, 102866. [Google Scholar] [CrossRef]
- Muhit, I.B.; Masia, M.J.; Stewart, M.G.; Isfeld, A.C. Spatial variability and stochastic finite element model of unreinforced masonry veneer wall system under Out-of-plane loading. Eng. Struct. 2022, 267, 114674. [Google Scholar] [CrossRef]
- Munawar, H.S.; Hammad, A.W.A.; Haddad, A.; Soares, C.A.P.; Waller, S.T. Image-Based Crack Detection Methods: A Review. Infrastructures 2021, 6, 115. [Google Scholar] [CrossRef]
- Murano, A.; Mehrotra, A.; Ortega, J.; Rodrigues, H.; Vasconcelos, G. Comparison of Different Numerical Modelling Approaches for the Assessment of the Out-of-Plane Behaviour of Two-Leaf Stone Masonry Walls. Eng. Struct. 2023, 291, 116466. [Google Scholar] [CrossRef]
- Ni, T.; Zhou, R.; Gu, C.; Yang, Y. Measurement of Concrete Crack Feature with Android Smartphone APP Based on Digital Image Processing Techniques. Measurement 2020, 166, 107093. [Google Scholar] [CrossRef]
- Palhares, R.A.; Medeiros, K.A.S.; Parsekian, G.A.; Shrive, N.G.; Marques, R. A Unified Modeling Approach for Concrete Masonry Shear Walls: Conception, Validation and Insights. Eng. Struct. 2024, 321, 119016. [Google Scholar] [CrossRef]
- Pari, M.; Van de Graaf, A.V.; Hendriks, M.A.N.; Rots, J.G. A Multi-Surface Interface Model for Sequentially Linear Methods to Analyse Masonry Structures. Eng. Struct. 2021, 238, 112123. [Google Scholar] [CrossRef]
- Pellegrini, D. Thermo-Mechanical Analyses of Masonry Structures in Fire Conditions. Finite Elem. Anal. Des. 2024, 234, 104128. [Google Scholar] [CrossRef]
- Prakash, P.R.; Azenha, M.; Pereira, J.M.; Lourenço, P.B. Finite Element Based Micro Modelling of Masonry Walls Subjected to Fire Exposure: Framework Validation and Structural Implications. Eng. Struct. 2020, 213, 110545. [Google Scholar] [CrossRef]
- Prosperi, A.; Longo, M.; Korswagen, P.A.; Korff, M.; Rots, J.G. Sensitivity Modelling with Objective Damage Assessment of Unreinforced Masonry Façades Undergoing Different Subsidence Settlement Patterns. Eng. Struct. 2023, 286, 116113. [Google Scholar] [CrossRef]
- Tan, Y.; Yi, W.; Chen, P.; Zou, Y. An Adaptive Crack Inspection Method for Building Surface Based on BIM, UAV and Edge Computing. Autom. Constr. 2024, 157, 105161. [Google Scholar] [CrossRef]
- Wani, F.M.; Kodali, R.; Reddy, V.A.; Sowmya, D.; Bondada, A.; Reddy, S.; Vemuri, J.P.; Khan, M.A. Finite Element Analysis of Unreinforced Masonry Walls with Different Bond Patterns. Sustain. Eng. Innov. 2023, 5, 58–72. [Google Scholar] [CrossRef]
- Yang, L.; Yang, X.; Zhou, Y.; Ren, Q.; Liang, B. Quasi-Static Cyclic Tests and Numerical Study of Seismic Performance of Confined Masonry Walls Reinforced with Horizontal Steel Bars. Structures 2023, 57, 105191. [Google Scholar] [CrossRef]
- Weber, M.; Thoma, K.; Hofmann, J. Finite Element Analysis of Masonry under a Plane Stress State. Eng. Struct. 2021, 226, 111214. [Google Scholar] [CrossRef]
- Xie, Z.; Sousamli, M.; Messali, F.; Rots, J.G. A sub-stepping iterative constitutive model for cyclic cracking–crushing–shearing in masonry interface elements. Comput. Struct. 2021, 257, 106654. [Google Scholar] [CrossRef]
- Zamani, P.; Hamidia, M.; Hassani, N. Probabilistic Post-Earthquake Loss Measurement for RC Framed Buildings Using Crack Image Analysis. Measurement 2024, 198, 115286. [Google Scholar] [CrossRef]
- Şen, F.; Sunca, F.; Altunişik, A.C. Seismic Performance Assessment of a Base-Isolated Hospital Building Subjected to February 6, 2023, Kahramanmaraş, Türkiye Earthquakes (Mw 7.7 Pazarcık and Mw 7.6 Elbistan) and Seismic Fragility Analysis Considering Different Construction Stages. Soil Dyn. Earthq. Eng. 2024, 185, 108876. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, J.; Chan, T.-M. Artificial Intelligence (AI)-Assisted Simulation-Driven Earthquake-Resistant Design Framework: Taking a Strong Back System as an Example. Eng. Struct. 2023, 287, 116892. [Google Scholar] [CrossRef]
- Laxman, K.C.; Tabassum, N.; Ai, L.; Cole, C.; Ziehl, P. Automated Crack Detection and Crack Depth Prediction for Reinforced Concrete Structures Using Deep Learning. Constr. Build. Mater. 2023, 394, 130709. [Google Scholar] [CrossRef]














| Parameter | Description | Value |
|---|---|---|
| Input Size | Image resolution | 224 × 224 px |
| Backbone | MobileNetV2 | |
| Optimizer | Adam | |
| Learning rate | 1 ×10−4 | |
| Batch size | 16 | |
| Epochs | 100 | |
| Loss function | Mean Absolute Error (MAE) | |
| Activation | ReLU | |
| Output | Regression of mechanical parameters | |
| Training time | 5 h | |
| Hardware | NVIDIA RTX 3060 GPU (12 GB VRAM) |
| Type of Crack | E_mod | f_t | f_c | G_t | G_c | c | phi | G_xy | f_r | Filename |
|---|---|---|---|---|---|---|---|---|---|---|
| slight bending | 9.49816 | 0.001951 | 0.014928 | 8 × 10−5 | 0.02156 | 0.000131 | 0.611617 | 2.866176 | 0.00032 | crack546.jpg |
| slight bending | 10.83229 | 0.001021 | 0.01588 | 9.2 × 10−5 | 0.022123 | 0.000136 | 0.636681 | 2.304242 | 0.000305 | crack547_r.jpg |
| slight bending | 9.72778 | 0.001291 | 0.014447 | 5.7 × 10−5 | 0.022921 | 0.000173 | 0.691214 | 2.785176 | 0.00024 | crack548.jpg |
| slight shear | 10.056938 | 0.001592 | 0.012186 | 8 × 10−5 | 0.021705 | 0.000113 | 0.789777 | 2.965632 | 0.000362 | crack549_r.jpg |
| slight shear | 10.650089 | 0.001312 | 0.01408 | 7.2 × 10−5 | 0.02122 | 0.000199 | 0.606878 | 2.90932 | 0.000252 | crack550.jpg |
| Element | Value |
|---|---|
| Framework | TensorFlow + Keras |
| Network Architecture | Modified MobileNetV2 (CNN) |
| Input | Images 224 × 224 px |
| Output | 9 Structural Parameters |
| Optimizer | Adam |
| Loss | Mean Squared Error (MSE) |
| Metric | Mean Absolute Error (MAE) |
| Times | 50 |
| Batch size | 16 |
| Parameter | Symbol | Value | Unit |
|---|---|---|---|
| Modulus of Elasticity | Eq | 4.65400 | kN/mm2 |
| Tensile strength | Ft | 0.001 | kN/mm2 |
| Compressive Strength | fc | 0.00997 | kN/mm2 |
| Fracture energy (traction) | Gt | 3 × 10−5 | kN/mm |
| Fracture energy (compression) | Gc | 0.0016 | kN/mm |
| Cohesion | c | 0.00025 | kN/mm2 |
| Internal friction angle | F | 0.75 | Rad |
| Shear Resistance (Gxy) | Gxy | 2.628 | kN/mm2 |
| Post-crack residual strength | fr | 0.0004 | kN/mm2 |
| Metric | Description | Value |
|---|---|---|
| MAE | Mean Absolute Error | 0.21 MPa |
| RMSE | Root Mean Square Error | 0.28 MPa |
| R2 | Coefficient of determination | 0.91 |
| Accuracy | 78% |
| Spectrum | T. Return (Years) | PGA (g) | Distortion (%) | Performance Level |
|---|---|---|---|---|
| UHS-I1 | 34.853 | 0.136 | 0.046 | Operating (O) |
| UHS-I2 | 98.267 | 0.278 | 0.0931 | Operating (O) |
| UHS-I3 | 279.904 | 0.395 | 0.167 | Life Safety (LS) |
| UHS-I4 | 583.060 | 0.495 | 0.242 | Life Safety (LS) |
| UHS-I5 | 1038.454 | 0.579 | 0.304 | Collapse Prevention (CP) |
| UHS-I6 | 1849.044 | 0.677 | 0.417 | Collapse Prevention (CP) |
| UHS-I7 | 2844.660 | 0.755 | 0.468 | Collapse Prevention (CP) |
| UHS-I8 | 4376.363 | 0.836 | 0.578 | Collapse (C) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yupanqui, P.R.; Orihuela, J.L.; Delgadillo, R.M. Hybrid AI–FEA Framework for Seismic Assessment of Confined Masonry Walls Using Crack Image-Based Material Property Inference. Infrastructures 2025, 10, 323. https://doi.org/10.3390/infrastructures10120323
Yupanqui PR, Orihuela JL, Delgadillo RM. Hybrid AI–FEA Framework for Seismic Assessment of Confined Masonry Walls Using Crack Image-Based Material Property Inference. Infrastructures. 2025; 10(12):323. https://doi.org/10.3390/infrastructures10120323
Chicago/Turabian StyleYupanqui, Piero R., Jeferson L. Orihuela, and Rick M. Delgadillo. 2025. "Hybrid AI–FEA Framework for Seismic Assessment of Confined Masonry Walls Using Crack Image-Based Material Property Inference" Infrastructures 10, no. 12: 323. https://doi.org/10.3390/infrastructures10120323
APA StyleYupanqui, P. R., Orihuela, J. L., & Delgadillo, R. M. (2025). Hybrid AI–FEA Framework for Seismic Assessment of Confined Masonry Walls Using Crack Image-Based Material Property Inference. Infrastructures, 10(12), 323. https://doi.org/10.3390/infrastructures10120323

