Optimising Lead–Air Battery Performance through Innovative Open-Cell Foam Anodes
Abstract
:1. Introduction
2. Materials and Methods
- The ESR foam electrodes were carefully cut into regular stick shapes before the salt removal (Figure 1).
- The density of the dried foams was measured by Archimedes’s principle and then the porosity P was calculated [41]
- Before and after each test, the ESR foam anode and the dense Pb were weighed.
- Stirring was carried out by the laboratory stirrer (Figure 1) for achieving good distribution of the existing species during the chemical reactions and for better dissolution of oxygen from the air in the electrolyte.
- The last test used the same 25% Sb-Pb-dense alloy (non-porous material) as the anode for comparison.
- A SELECTA CD-2005 Conductivity Meter (Figure 1) for electrolyte conductivity measurement and SELECTA pH-2005 pH Meter (Figure 1) electrochemical experimental apparatus were used simultaneously to measure the electrolyte’s electrical conductivity Km and pH every 1 min for 30 min, timed by a Diamond digital stopwatch (Figure 1).
- The electrical current was measured once the electrodes were immersed in an agitated sulphuric acid H2SO4, with an average pH between 1.11 and 1.28 (Figure 1).
- The entire sample had to be immersed in the sulphuric acid electrolyte to ensure that the properties studied were representative of the totality of the sample’s interactions with the electrolyte.
- The temperature of the 100 mL of sulphuric acid was also measured with a digital thermometer (Figure 1) during every manipulation (T0 before the test and Tf at the end of the test) to explore the thermal stability of the cell.
- Note that the battery cells were named “SbSPb X”, where SbS stands for the anode foams obtained from the ESR process (see [41]); Pb was the non-porous dense lead electrode used for electrical circuit closure. A multimeter was used to check electrical current flow, too, and it will be shown later that this electrode did not contribute to the electrochemical reactions of the cell. X represents the value of the salt grain diameter. Table 1 regroups the measured and calculated parameters of all tested samples.
3. Results and Discussion
3.1. Interpretation of Measured Effective Electrical Conductivity Results
3.2. Advantages of ESR Foams and Electrodes’ Reactions
3.3. Identification of Electrodes’ Chemical Reactivity
3.4. FTIR of SbPb-Dense Electrode
3.5. Effect of Cell Diameter of ESR Foam Anode on Measured Effective Electrical Conductivity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hossain, M.D.; Islam, M.M.; Hossain, M.J.; Yasmin, S.; Shingho, S.R.; Ananna, N.A.; Mustafa, C.M. Effects of additives on the morphology and stability of PbO2 films electrodeposited on nickel substrate for light weight lead-acid battery application. J. Energy Storage 2020, 27, 101108. [Google Scholar] [CrossRef]
- Kaneko, K.; Hori, K.; Noda, S. Nanotubes make battery lighter and safer. Carbon 2020, 167, 596–600. [Google Scholar] [CrossRef]
- Wu, F.; Maier, J.; Yu, Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 2020, 49, 1569–1614. [Google Scholar] [CrossRef]
- Dunlop, J.; Beauchamp, R. Making space nickel/hydrogen batteries lighter and less expensive. NASA STI/Recon Tech. Rep. N 1987, 88, 13530. [Google Scholar]
- Shaffer, B.; Auffhammer, M.; Samaras, C. Make electric vehicles lighter to maximize climate and safety benefits. Nature 2021, 598, 254–256. [Google Scholar] [CrossRef]
- Nyholm, L. Lighter and safer. Nat. Energy 2020, 5, 739–740. [Google Scholar] [CrossRef]
- Landi, B.J.; Ganter, M.J.; Cress, C.D.; DiLeo, R.A.; Raffaelle, R.P. Carbon nanotubes for lithium ion batteries. Energy Environ. Sci. 2009, 2, 638–654. [Google Scholar] [CrossRef]
- Clemente, A.; Costa-Castelló, R. Redox flow batteries: A literature review oriented to automatic control. Energies 2020, 13, 4514. [Google Scholar] [CrossRef]
- Linden, D.; Reddy, T. Lead acid batteries. In Handbook of Batteries; U.S. Department of Energy: Office of Scientific and Technical Information: Washington, DC, USA, 2002; pp. 1–88. [Google Scholar]
- Logeshkumar, S.; Manoharan, R. Influence of some nanostructured materials additives on the performance of lead acid battery negative electrodes. Electrochim. Acta 2014, 144, 147–153. [Google Scholar] [CrossRef]
- Hao, H.; Chen, K.; Liu, H.; Wang, H.; Liu, J.; Yang, K.; Yan, H. A review of the positive electrode additives in lead-acid batteries. Int. J. Electrochem. Sci. 2018, 13, 2329–2340. [Google Scholar] [CrossRef]
- Pletcher, D.; Wills, R. A novel flow battery—A lead acid battery based on an electrolyte with soluble lead (II): III. The influence of conditions on battery performance. J. Power Sources 2005, 149, 96–102. [Google Scholar] [CrossRef]
- Jullian, E.; Albert, L.; Caillerie, J. New lead alloys for high-performance lead–acid batteries. J. Power Sources 2003, 116, 185–192. [Google Scholar] [CrossRef]
- Osório, W.R.; Rosa, D.M.; Garcia, A. The roles of cellular and dendritic microstructural morphologies on the corrosion resistance of Pb–Sb alloys for lead acid battery grids. J. Power Sources 2008, 175, 595–603. [Google Scholar] [CrossRef]
- Li, A.; Cheni, Y.; Chen, H.; Shu, D.; Li, W.; Wang, H.; Dou, C.; Zhang, W.; Chen, S. Electrochemical behavior and application of lead–lanthanum alloys for positive grids of lead-acid batteries. J. Power Sources 2009, 189, 1204–1211. [Google Scholar] [CrossRef]
- Abdelghani-Idrissi, S. La Charge Rapide D’une Batterie Métal-Air par la Maîtrise de la Fluidique Diphasique. Ph.D. Thesis, Université Paris Sciences et Lettres, Paris, France, 2020. [Google Scholar]
- Hariprakash, B.; Mane, A.; Martha, S.; Gaffoor, S.; Shivashankar, S.; Shukla, A. A low-cost, high energy-density lead/acid battery. Electrochem. Solid-State Lett. 2004, 7, A66. [Google Scholar] [CrossRef]
- Tabaatabaai, S.; Rahmanifar, M.; Mousavi, S.; Shekofteh, S.; Khonsari, J.; Oweisi, A.; Hejabi, M.; Tabrizi, H.; Shirzadi, S.; Cheraghi, B. Lead-acid batteries with foam grids. J. Power Sources 2006, 158, 879–884. [Google Scholar] [CrossRef]
- Bullock, K.R. Lead/acid batteries. J. Power Sources 1994, 51, 1–17. [Google Scholar] [CrossRef]
- Martha, S.; Hariprakash, B.; Gaffoor, S.; Trivedi, D.; Shukla, A. A low-cost lead-acid battery with high specific-energy. J. Chem. Sci. 2006, 118, 93–98. [Google Scholar] [CrossRef]
- Albert, L.; Chabrol, A.; Torcheux, L.; Steyer, P.; Hilger, J. Improved lead alloys for lead/acid positive grids in electric-vehicle applications. J. Power Sources 1997, 67, 257–265. [Google Scholar] [CrossRef]
- Hariprakash, B.; Gaffoor, S. Lead-acid cells with lightweight, corrosion-protected, flexible-graphite grids. J. Power Sources 2007, 173, 565–569. [Google Scholar] [CrossRef]
- LaFollette, R.M. Design and performance of high specific power, pulsed discharge, bipolar lead acid batteries. In Proceedings of the Tenth Annual Battery Conference on Applications and Advances, Long Beach, CA, USA, 10–13 January 1995; pp. 43–47. [Google Scholar]
- Lach, J.; Wróbel, K.; Wróbel, J.; Podsadni, P.; Czerwiński, A. Applications of carbon in lead-acid batteries: A review. J. Solid State Electrochem. 2019, 23, 693–705. [Google Scholar] [CrossRef]
- Liu, Q.; Pan, Z.; Wang, E.; An, L.; Sun, G. Aqueous metal-air batteries: Fundamentals and applications. Energy Storage Mater. 2020, 27, 478–505. [Google Scholar] [CrossRef]
- Olabi, A.G.; Sayed, E.T.; Wilberforce, T.; Jamal, A.; Alami, A.H.; Elsaid, K.; Rahman, S.M.A.; Shah, S.K.; Abdelkareem, M.A. Metal-air batteries—A review. Energies 2021, 14, 7373. [Google Scholar] [CrossRef]
- Das, S.K.; Lau, S.; Archer, L.A. Sodium–oxygen batteries: A new class of metal–air batteries. J. Mater. Chem. A 2014, 2, 12623–12629. [Google Scholar] [CrossRef]
- Rahman, M.A.; Wang, X.; Wen, C. High energy density metal-air batteries: A review. J. Electrochem. Soc. 2013, 160, A1759. [Google Scholar] [CrossRef]
- Han, X.; Li, X.; White, J.; Zhong, C.; Deng, Y.; Hu, W.; Ma, T. Metal–air batteries: From static to flow system. Adv. Energy Mater. 2018, 8, 1801396. [Google Scholar] [CrossRef]
- Milusheva, Y.; Popov, I.; Shirov, B.; Banov, K.; Boukoureshtlieva, R.; Obretenov, W.; Naidenov, V. Lead-Air Electrochemical System with Acid Electrolyte. J. Electrochem. Soc. 2021, 168, 060524. [Google Scholar] [CrossRef]
- Pei, P.; Wang, K.; Ma, Z. Technologies for extending zinc–air battery’s cyclelife: A review. Appl. Energy 2014, 128, 315–324. [Google Scholar] [CrossRef]
- Akhtar, N.; Akhtar, W. Prospects, challenges, and latest developments in lithium—Air batteries. Int. J. Energy Res. 2015, 39, 303–316. [Google Scholar] [CrossRef]
- Chang, S.; Hou, M.; Xu, B.; Liang, F.; Qiu, X.; Yao, Y.; Qu, T.; Ma, W.; Yang, B.; Dai, Y.J.A.F.M. High-performance quasi-solid-state Na-air battery via gel cathode by confining moisture. Adv. Funct. Mater. 2021, 31, 2011151. [Google Scholar] [CrossRef]
- Farsak, M.; Kardaş, G. 2.12 Electrolytic Materials; Dincer, I.B.T.-C.E.S., Ed.; Elsevier: Oxford, UK, 2018; pp. 329–367. [Google Scholar]
- Zhao, Y.; Huang, G.; Zhang, C.; Peng, C.; Pan, F. Effect of phosphate and vanadate as electrolyte additives on the performance of Mg-air batteries. Mater. Chem. Phys. 2018, 218, 256–261. [Google Scholar] [CrossRef]
- Sumathi, S.; Sethuprakash, V.; Basirun, W.; Zainol, I.; Sookhakian, M. Polyacrylamide-methanesulfonic acid gel polymer electrolytes for tin-air battery. J. Sol-Gel Sci. Technol. 2014, 69, 480–487. [Google Scholar] [CrossRef]
- Ashby, M.F.; Evans, T.; Fleck, N.; Hutchinson, J.W.; Wadley, H.N.G.; Gibson, L.J. Metal Foams: A Design Guide; Elsevier Science: Amsterdam, The Netherlands, 2000. [Google Scholar]
- Song, M.J.; Kim, I.T.; Kim, Y.B.; Shin, M.W. Self-standing, binder-free electrospun Co3O4/carbon nanofiber composites for non-aqueous Li-air batteries. Electrochim. Acta 2015, 182, 289–296. [Google Scholar] [CrossRef]
- Zhu, G.; Li, X.; Liu, Y.; Mao, Y.; Liang, Z.; Ji, Z.; Shen, X.; Sun, J.; Cheng, X.; Mao, J. Scalable surface engineering of commercial metal foams for defect-rich hydroxides towards improved oxygen evolution. J. Mater. Chem. A 2020, 8, 12603–12612. [Google Scholar] [CrossRef]
- Wang, H.-F.; Xu, Q. Materials Design for Rechargeable Metal-Air Batteries. Matter 2019, 1, 565–595. [Google Scholar] [CrossRef]
- Hassein-Bey, A.H.; Belhadj, A.-E.; Gavrus, A.; Abudura, S. Elaboration and Mechanical-Electrochemical Characterisation of Open Cell Antimonial-lead Foams Made by the “Excess Salt Replication Method” for Eventual Applications in Lead-acid Batteries Manufacturing. Kem. U Ind. Časopis Kemičara I Kem. Inženjera Hrvat. 2020, 69, 387–398. [Google Scholar] [CrossRef]
- Prengaman, R.D. SECONDARY BATTERIES—LEAD—ACID SYSTEMS|Lead Alloys. In Encyclopedia of Electrochemical Power Sources; Garche, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 648–654. [Google Scholar]
- Hill, R.J. Structure of PbSb2O6 and its relationship to the crystal chemistry of PbO2 in antimonial lead-acid batteries. J. Solid State Chem. 1987, 71, 12–18. [Google Scholar] [CrossRef]
- Dharmasena, K.; Wadley, H. Electrical conductivity of open-cell metal foams. J. Mater. Res. 2002, 17, 625–631. [Google Scholar] [CrossRef]
- Ashby, M.F.; Evans, A.G.; Fleck, N.A.; Gibson, L.J.; Hutchinson, J.W.; Wadley, H.N.G. Metal Foams: A Design Guide; Butterworth-Heinemann: Oxford, UK, 2000; p. 263. [Google Scholar]
- Liu, P.; Li, T.; Fu, C. Relationship between electrical resistivity and porosity for porous metals. Mater. Sci. Eng. A 1999, 268, 208–215. [Google Scholar] [CrossRef]
- Majima, H.; Peters, E.; Awakura, Y.; Park, S.K. Electrical conductivity of acidic sulfate solution. Metall. Trans. B 1987, 18, 41–47. [Google Scholar] [CrossRef]
- BIAGETTI, R. Fabrication of Lead-Acid Batteries. U.S. Patent No. 3,765,943, 16 October 1973. [Google Scholar]
- Newman, J.; Tiedemann, W. Porous-electrode theory with battery applications. AIChE J. 1975, 21, 25–41. [Google Scholar] [CrossRef]
- Mai, T.T.T.; Phan, T.B.; Pham, T.T.; Vu, H.H. Nanostructured PbO2-PANi composite materials for electrocatalytic oxidation of methanol in acidic sulfuric medium. Adv. Nat. Sci. Nanosci. Nanotechnol. 2014, 5, 025004. [Google Scholar] [CrossRef]
- Ma, X.; Peyton, A.; Zhao, Y. Measurement of the electrical conductivity of open-celled aluminium foam using non-contact eddy current techniques. NDT E Int. 2005, 38, 359–367. [Google Scholar]
mF0 (g) | mD0 (g) | mFf (g) | mDf (g) | ΔmF (g) | ΔmD (g) | Dc (mm) | P (%) | T0–Tf (°C) | Km (µS/cm) | pH0–pHf | |
---|---|---|---|---|---|---|---|---|---|---|---|
sbspb20 | 5.780 | 3.696 | 5.777 | 3.695 | 0.003 | 0.001 | 2.000 | 46 | 19.6–19.7 | 689.00 | 1.16–1.18 |
sbspb30 | 2.350 | 3.664 | 2.345 | 3.663 | 0.005 | 0.001 | 3.000 | 66 | 17.9–17.5 | 704.05 | 1.25–1.29 |
sbspb35 | 6.311 | 3.374 | 6.303 | 3.373 | 0.008 | 0.001 | 3.500 | 48 | 19.7–19.9 | 721.42 | 1.11–1.13 |
sbspb40 | 8.068 | 3.752 | 8.066 | 3.750 | 0.002 | 0.001 | 4.000 | 56 | 17.8–17.7 | 713.53 | 1.13–1.11 |
sbspb50 | 3.458 | 3.734 | 3.458 | 3.732 | 0.000 | 0.002 | 5.000 | 60 | 17–16.7 | 735.16 | 1.25–1.26 |
sbpb-dense | 3.695 | 3.869 | 3.698 | 3.871 | −0.003 | −0.002 | - | 0 | 17.3 | 678.36 | 1.15–1.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassein-Bey, A.H.; Belhadj, A.-E.; Toumi, S.; Tahraoui, H.; Kebir, M.; Amrane, A.; Chebli, D.; Bouguettoucha, A.; Zamouche, M.; Zhang, J. Optimising Lead–Air Battery Performance through Innovative Open-Cell Foam Anodes. Designs 2024, 8, 61. https://doi.org/10.3390/designs8040061
Hassein-Bey AH, Belhadj A-E, Toumi S, Tahraoui H, Kebir M, Amrane A, Chebli D, Bouguettoucha A, Zamouche M, Zhang J. Optimising Lead–Air Battery Performance through Innovative Open-Cell Foam Anodes. Designs. 2024; 8(4):61. https://doi.org/10.3390/designs8040061
Chicago/Turabian StyleHassein-Bey, Amel Hind, Abd-Elmouneïm Belhadj, Selma Toumi, Hichem Tahraoui, Mohammed Kebir, Abdeltif Amrane, Derradji Chebli, Abdallah Bouguettoucha, Meriem Zamouche, and Jie Zhang. 2024. "Optimising Lead–Air Battery Performance through Innovative Open-Cell Foam Anodes" Designs 8, no. 4: 61. https://doi.org/10.3390/designs8040061
APA StyleHassein-Bey, A. H., Belhadj, A. -E., Toumi, S., Tahraoui, H., Kebir, M., Amrane, A., Chebli, D., Bouguettoucha, A., Zamouche, M., & Zhang, J. (2024). Optimising Lead–Air Battery Performance through Innovative Open-Cell Foam Anodes. Designs, 8(4), 61. https://doi.org/10.3390/designs8040061