Toward Positive Energy Districts by Urban–Industrial Energy Exchange
Abstract
:1. Introduction
2. Materials and Methods
2.1. Heat Exchanger Variables
2.2. Connection Variables
2.3. PV Panel
2.4. Financial Analysis
- Initial investment cost: this is the money required to invest.
- Cash inflows: this is the amount of cash the investment is expected to generate over its useful life.
- Discounted cash inflows: this involves discounting each cash inflow from the investment by the appropriate discount rate.
- Calculate the cumulative discounted cash inflows: this involves adding the “number 3” until they equal the initial investment cost.
- Determine the discounted payback period: this is the time it takes for the cumulative discounted cash inflows to equal the initial investment cost.
2.5. Environmental Analysis
3. Case Study
3.1. Unit Selection and Sizing
3.2. Heating System Sizing
3.2.1. Scenario 0, Present Condition
3.2.2. Scenario 1, PV Installation
3.2.3. Scenario 2, Direct Heating
3.2.4. Scenario 3, Heat Pump
3.2.5. Scenario 4, Heat Pump without PV Panels
3.3. Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dong, F.; Wang, Y.; Su, B.; Hua, Y.; Zhang, Y. The Process of Peak CO2 Emissions in Developed Economies: A Perspective of Industrialization and Urbanization. Resour. Conserv. Recycl. 2019, 141, 61–75. [Google Scholar] [CrossRef]
- Guan, Y.; Huang, G.; Liu, L.; Zhai, M.; Zheng, B. Dynamic Analysis of Industrial Solid Waste Metabolism at Aggregated and Disaggregated Levels. J. Clean. Prod. 2019, 221, 817–827. [Google Scholar] [CrossRef]
- Haraguchi, N.; Martorano, B.; Sanfilippo, M. What Factors Drive Successful Industrialization? Evidence and Implications for Developing Countries. Struct. Chang. Econ. Dyn. 2019, 49, 266–276. [Google Scholar] [CrossRef]
- Feldstein, M. Underestimating the Real Growth of GDP, Personal Income, and Productivity. J. Econ. Perspect. 2017, 31, 145–164. [Google Scholar] [CrossRef]
- Directorate-General for Energy (European Commission). Clean Energy for All Europeans; Publications Office of the European Union: Luxembourg, 2019; ISBN 978-92-79-99835-5. [Google Scholar]
- Hedman, Å.; Rehman, H.U.; Gabaldón, A.; Bisello, A.; Albert-Seifried, V.; Zhang, X.; Guarino, F.; Grynning, S.; Eicker, U.; Neumann, H.-M.; et al. IEA EBC Annex83 Positive Energy Districts. Buildings 2021, 11, 130. [Google Scholar] [CrossRef]
- Afshari, H.; Tosarkani, B.M.; Jaber, M.Y.; Searcy, C. The Effect of Environmental and Social Value Objectives on Optimal Design in Industrial Energy Symbiosis: A Multi-Objective Approach. Resour. Conserv. Recycl. 2020, 158, 104825. [Google Scholar] [CrossRef]
- Fan, Y.; Qiao, Q.; Fang, L.; Yao, Y. Emergy Analysis on Industrial Symbiosis of an Industrial Park—A Case Study of Hefei Economic and Technological Development Area. J. Clean. Prod. 2017, 141, 791–798. [Google Scholar] [CrossRef]
- Chertow, M.R. Industrial Symbiosis: Literature and Taxonomy. Annu. Rev. Energy. Environ. 2000, 25, 313–337. [Google Scholar] [CrossRef]
- Envision2030: 17 Goals to Transform the World for Persons with Disabilities|United Nations Enable. Available online: https://www.un.org/development/desa/disabilities/%20envision2030.html (accessed on 5 March 2023).
- Yu, C.; de Jong, M.; Dijkema, G.P.J. Process Analysis of Eco-Industrial Park Development—The Case of Tianjin, China. J. Clean. Prod. 2014, 64, 464–477. [Google Scholar] [CrossRef]
- Chen, X.; Fujita, T.; Ohnishi, S.; Fujii, M.; Geng, Y. The Impact of Scale, Recycling Boundary, and Type of Waste on Symbiosis and Recycling. J. Ind. Ecol. 2012, 16, 129–141. [Google Scholar] [CrossRef]
- Berkel, R.V.; Fujita, T.; Hashimoto, S.; Fujii, M. Quantitative Assessment of Urban and Industrial Symbiosis in Kawasaki, Japan. Environ. Sci. Technol. 2009, 43, 1271–1281. [Google Scholar] [CrossRef]
- Rehfeldt, M.; Fleiter, T.; Toro, F. A Bottom-up Estimation of the Heating and Cooling Demand in European Industry. Energy Effic. 2018, 11, 1057–1082. [Google Scholar] [CrossRef]
- Xu, Z.Y.; Wang, R.Z.; Yang, C. Perspectives for Low-Temperature Waste Heat Recovery. Energy 2019, 176, 1037–1043. [Google Scholar] [CrossRef]
- Kantor, I.; Robineau, J.-L.; Bütün, H.; Maréchal, F. A Mixed-Integer Linear Programming Formulation for Optimizing Multi-Scale Material and Energy Integration. Front. Energy Res. 2020, 8, 49. [Google Scholar] [CrossRef]
- Cunha, J.M.; Faria, A.S.; Soares, T.; Mourão, Z.; Nereu, J. Decarbonization Potential of Integrating Industrial Excess Heat in a District Heating Network: The Portuguese Case. Clean. Energy Syst. 2022, 1, 100005. [Google Scholar] [CrossRef]
- Simeoni, P.; Ciotti, G.; Cottes, M.; Meneghetti, A. Integrating Industrial Waste Heat Recovery into Sustainable Smart Energy Systems. Energy 2019, 175, 941–951. [Google Scholar] [CrossRef]
- Ciotti, G.; Cottes, M.; Mazzolini, M.; Sappa, A.; Simeoni, P. A decision Support System for Industrial Waste Heat Recovery: The CE-HEAT Project. In Proceedings of the Summer School F. Turco—Industrial Systems Engineering, Brescia, Italy, 11–13 September 2019. [Google Scholar]
- Nakama, C.S.M.; Knudsen, B.R.; Tysland, A.C.; Jäschke, J. A Simple Dynamic Optimization-Based Approach for Sizing Thermal Energy Storage Using Process Data. Energy 2023, 268, 126671. [Google Scholar] [CrossRef]
- Pan, M.; Sikorski, J.; Akroyd, J.; Mosbach, S.; Lau, R.; Kraft, M. Design Technologies for Eco-Industrial Parks: From Unit Operations to Processes, Plants and Industrial Networks. Appl. Energy 2016, 175, 305–323. [Google Scholar] [CrossRef]
- Pang, K.Y.; Liew, P.Y.; Woon, K.S.; Ho, W.S.; Wan Alwi, S.R.; Klemeš, J.J. Multi-Period Multi-Objective Optimisation Model for Multi-Energy Urban-Industrial Symbiosis with Heat, Cooling, Power and Hydrogen Demands. Energy 2023, 262, 125201. [Google Scholar] [CrossRef]
- Kim, H.-W.; Dong, L.; Choi, A.E.S.; Fujii, M.; Fujita, T.; Park, H.-S. Co-Benefit Potential of Industrial and Urban Symbiosis Using Waste Heat from Industrial Park in Ulsan, Korea. Resour. Conserv. Recycl. 2018, 135, 225–234. [Google Scholar] [CrossRef]
- Ates, F.; Ozcan, H. Turkey’s Industrial Waste Heat Recovery Potential with Power and Hydrogen Conversion Technologies: A Techno-Economic Analysis. Int. J. Hydrogen Energy 2022, 47, 3224–3236. [Google Scholar] [CrossRef]
- Yong, W.N.; Liew, P.Y.; Woon, K.S.; Wan Alwi, S.R.; Klemeš, J.J. A Pinch-Based Multi-Energy Targeting Framework for Combined Chilling Heating Power Microgrid of Urban-Industrial Symbiosis. Renew. Sustain. Energy Rev. 2021, 150, 111482. [Google Scholar] [CrossRef]
- Misrol, M.A.; Wan Alwi, S.R.; Lim, J.S.; Manan, Z.A. An Optimal Resource Recovery of Biogas, Water Regeneration, and Reuse Network Integrating Domestic and Industrial Sources. J. Clean. Prod. 2021, 286, 125372. [Google Scholar] [CrossRef]
- US EPA. Scope 1 and Scope 2 Inventory Guidance. Available online: https://www.epa.gov/climateleadership/scope-1-and-scope-2-inventory-guidance (accessed on 8 March 2023).
- Genić, S.B.; Jaćimović, B.M.; Genić, V.B. Economic Optimization of Pipe Diameter for Complete Turbulence. Energy Build. 2012, 45, 335–338. [Google Scholar] [CrossRef]
- Serghides, T.K. Estimate Friction Factor Accurately. Chem. Eng. 1984, 91, 63–64. [Google Scholar]
- Bahadori, A.; Vuthaluru, H.B. A Simple Correlation for Estimation of Economic Thickness of Thermal Insulation for Process Piping and Equipment. Appl. Therm. Eng. 2010, 30, 254–259. [Google Scholar] [CrossRef]
- Panwar, N.L.; Kaushik, S.C.; Kothari, S. Role of Renewable Energy Sources in Environmental Protection: A Review. Renew. Sustain. Energy Rev. 2011, 15, 1513–1524. [Google Scholar] [CrossRef]
- INSEL—Homepage—INSEL En. Available online: https://www.insel.eu/en/home_en.html (accessed on 5 March 2023).
- Rate D. Available online: https://www.hydroquebec.com/residential/customer-space/rates/rate-d.html (accessed on 9 March 2023).
- Price and Evolution|Énergir. Available online: https://www.energir.com/en/major-industries/natural-gas-price/price-and-evolution/ (accessed on 3 April 2023).
- Policy Interest Rate. Available online: https://www.bankofcanada.ca/core-functions/monetary-policy/key-interest-rate/ (accessed on 3 April 2023).
- Energy Conversion Tables—Canada.Ca. Available online: https://apps.cer-rec.gc.ca/Conversion/conversion-tables.aspx#s1ss2 (accessed on 8 March 2023).
- CSI Solar–Global. Available online: https://www.csisolar.com/ (accessed on 19 April 2023).
- Rowlands, I.H.; Kemery, B.P.; Beausoleil-Morrison, I. Optimal Solar-PV Tilt Angle and Azimuth: An Ontario (Canada) Case-Study. Energy Policy 2011, 39, 1397–1409. [Google Scholar] [CrossRef]
- Ipopt: Documentation. Available online: https://coin-or.github.io/Ipopt/ (accessed on 8 March 2023).
- Bengtsson, C.; Nordman, R.; Berntsson, T. Utilization of Excess Heat in the Pulp and Paper Industry—A Case Study of Technical and Economic Opportunities. Appl. Therm. Eng. 2002, 22, 1069–1081. [Google Scholar] [CrossRef]
- Manz, P.; Kermeli, K.; Persson, U.; Neuwirth, M.; Fleiter, T.; Crijns-Graus, W. Decarbonizing District Heating in EU-27 + UK: How Much Excess Heat Is Available from Industrial Sites? Sustainability 2021, 13, 1439. [Google Scholar] [CrossRef]
- Ovchinnikov, P.; Borodiņecs, A.; Strelets, K. Utilization Potential of Low Temperature Hydronic Space Heating Systems: A Comparative Review. Build. Environ. 2017, 112, 88–98. [Google Scholar] [CrossRef]
- Bergman, T.L. (Ed.) Introduction to Heat Transfer, 6th ed.; Wiley: Hoboken, NJ, USA, 2011; ISBN 978-0-470-50196-2. [Google Scholar]
- Johnson Controls. Available online: https://www.johnsoncontrols.com:443/ (accessed on 9 March 2023).
- Horizontal Close Coupled Centrifugal Water Pump and Standardized F40/125A 2.2 kW. Available online: https://www.tomeiwatersolutions.com/en/home/water-pumps/pedrollo/centrifugal/standard-centrifugal-according-to-en733/horizontal-close-coupled-centrifugal-water-pump-and-standardized-f40-125a-2-2kw.2.5.231.gp.38427.uw (accessed on 3 April 2023).
- Cost of Solar Power In Canada. 2021. Available online: https://www.energyhub.org/cost-solar-power-canada/ (accessed on 3 April 2023).
- Complete Boiler Room Solutions|Cleaver-Brooks. Available online: https://cleaverbrooks.com/ (accessed on 3 April 2023).
- More Positions in Canada. Available online: https://www.alfalaval.ca/ (accessed on 3 April 2023).
- Jossen, A.; Garche, J.; Sauer, D.U. Operation Conditions of Batteries in PV Applications. Solar Energy 2004, 76, 759–769. [Google Scholar] [CrossRef]
- Environment and Climate Change Canada (ECCC). Emission Factors and Reference Values. Available online: https://www.canada.ca/en/environment-climate-change/services/climate-change/pricing-pollution-how-it-will-work/output-based-pricing-system/federal-greenhouse-gas-offset-system/emission-factors-reference-values.html (accessed on 9 March 2023).
- GHG Emissions and Electricity|Hydro-Québec. Available online: https://www.hydroquebec.com/sustainable-development/specialized-documentation/ghg-emissions.html (accessed on 9 March 2023).
Design Variable | Unit | Parameter | Unit | ||
---|---|---|---|---|---|
Insulation used | Recovered heat | ||||
Friction factor | - | Required pipe length | |||
Pressure drop along pipes | Soil temperature | ||||
Pressure drop, heat exchanger | Supply temperature | ||||
Heat losses | Return temperature | ||||
Kinematic viscosity | Insulator thickness | ||||
Cross-sectional area of pipe | Viscosity, function of Temperature | ||||
Flow rate | Density | ||||
Reynolds number | - | Specific heat capacity of medium | |||
Pumping efficiency | Insulator conductivity | ||||
Pumping power | Pipe roughness | ||||
Pipe’s hydraulic diameter |
CapEx | OpEx | Revenue |
---|---|---|
Pump | Electricity (Pumping) | Electricity (PV panel) |
PV panel | Electricity (Heat pump) | |
Heat Pump | Electricity (Electric boiler) | |
Electric Boiler | Natural gas (Steam boiler) | |
Heat Exchanger | Annual service cost | |
Heat transmission line |
Description | Unit | |
---|---|---|
Sets and indices: | ||
Installed unit (e.g., PV panels) | - | |
Counter of Year | - | |
Parameters: | ||
Interest rate | ||
Electricity cost at period | ||
Variables: | ||
Capital cost of unit | ||
Operation cost of unit at period | ||
Service cost of unit at period | ||
Excess electricity generaion of PV panels at period |
Parameter | Quantity | Unit | Reference | Parameter | Quantity | Unit | Reference |
---|---|---|---|---|---|---|---|
75 | [40,41] | 40 | [42] | ||||
43 | - | 58 | [42] | ||||
5.3 | [40,41] | 9 | - | ||||
1700 | [43] | 50 | - | ||||
101 (4) | - | 2.5 | - | ||||
63 | [30] | 10.7 | - |
Parameter | Quantity | Unit | Reference | Parameter | Quantity | Unit | Reference |
---|---|---|---|---|---|---|---|
75 | [40,41] | 4 | [44] | ||||
7 | - | 22 | [44] | ||||
5.3 | [40,41] | 19 | - | ||||
1700 | [43] | 50 | - | ||||
148 (6) | - | 4.8 | - | ||||
56 | [30] | 12.4 | - |
Item | Reference | Scenario 0 | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 |
---|---|---|---|---|---|---|
Investment (CapEx) | ||||||
Pump | [45] | - * | - | 11,680 | 17,520 | 17,520 |
PV panel | [46] | - | 1,789,200 | 1,789,200 | 1,789,200 | - |
Heat Pump | [44] | - | - | - | 243,000 | 243,000 |
Electric Boiler | [47] | - | - | 100,000 | 50,000 | 50,000 |
Heat Exchanger | [48] | - | - | 15,000 | 15,000 | 15,000 |
Heat transmission line | - | - | 359,418 | 487,579 | 487,579 | |
Operation (OpEx) | ||||||
Electricity (Pumping) | [33] | - | - | 1453 | 2778 | 2778 |
Electricity (Heat pump) | [33] | - | - | - | 134,142 | 134,142 |
Electricity (Electric boiler) | [33] | - | - | 205,227 | 14,544 | 14,544 |
Natural gas (Steam boiler) | [34] | 249,266 | 249,266 | - | - | - |
Annual service cost | [49] | 9970 | 39,922 | 32,382 | 34,017 | 4065 |
Revenue | ||||||
Electricity (PV panel) | [33] | - | 90,320 | 90,320 | 90,320 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shafiee Roudbari, E.; Menon, R.P.; Kantor, I.; Eicker, U. Toward Positive Energy Districts by Urban–Industrial Energy Exchange. Designs 2023, 7, 73. https://doi.org/10.3390/designs7030073
Shafiee Roudbari E, Menon RP, Kantor I, Eicker U. Toward Positive Energy Districts by Urban–Industrial Energy Exchange. Designs. 2023; 7(3):73. https://doi.org/10.3390/designs7030073
Chicago/Turabian StyleShafiee Roudbari, Erfan, Ramanunni Parakkal Menon, Ivan Kantor, and Ursula Eicker. 2023. "Toward Positive Energy Districts by Urban–Industrial Energy Exchange" Designs 7, no. 3: 73. https://doi.org/10.3390/designs7030073
APA StyleShafiee Roudbari, E., Menon, R. P., Kantor, I., & Eicker, U. (2023). Toward Positive Energy Districts by Urban–Industrial Energy Exchange. Designs, 7(3), 73. https://doi.org/10.3390/designs7030073