# Design of Fast Patrol Boat for Improving Resistance, Stability, and Seakeeping Performance

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Theoritical Backgroud and Method

#### 2.1. Design Method

#### 2.1.1. Regression Method

#### 2.1.2. Scaling Method

#### 2.2. Resistance Calculation

#### 2.2.1. Frictional Resistance

#### 2.2.2. Viscous Resistance

#### 2.2.3. Wave Resistance

#### 2.2.4. Reynolds Number

#### 2.2.5. Froude Number

#### 2.2.6. Savitsky Method

#### 2.3. Stability Calculation

#### 2.3.1. Center of Buoyancy

_{B}point can define the value of the buoyancy according to Equation (11).

#### 2.3.2. Center of Gravity

#### 2.3.3. Metacentric Point

#### 2.4. Seakeeping

#### 2.4.1. Heaving

#### 2.4.2. Rolling

#### 2.4.3. Pitching

#### 2.4.4. Joint North Sea Wave Project (JONSWAP) Spectrum

#### 2.4.5. MSI

#### 2.4.6. Deck Wetness and Slamming

#### 2.4.7. RAO

#### 2.5. MADM (Multi Attribute Decision Making)

## 3. Research Methodology

#### 3.1. Primary Dimensions of Patrol Boat

#### 3.2. Design Variations

#### 3.2.1. Regression Method

#### 3.2.2. Scale Method

#### 3.3. Simulation Analysis

## 4. Data Results

#### 4.1. Analysis of Regression Method vs. Scaling Method

#### 4.1.1. Resistance in Regression Method vs. Scaling Method

#### 4.1.2. Stability in Regression Method vs. Scaling Method

#### 4.1.3. Seakeeping in Regression Method vs. Scaling Method

#### Heaving in Regression Method vs. Scaling Method

#### Rolling in Regression Method vs. Scaling Method

#### Pitching in Regression Method vs. Scaling Method

#### MSI in Regression Method vs. Scaling Method

#### Slamming and Deck Wetness in Regression Method vs. Scaling Method

#### 4.2. Analysis of Regression Method vs. Reference Ship

#### 4.2.1. Resistance in Regression Method vs. Reference Ship

#### 4.2.2. Stability in Regression Method vs. Reference Ship

#### 4.2.3. Seakeeping in Regression Method vs. Reference Ship

#### Heaving in Regression Method vs. Reference Ship

#### Rolling in Regression Method vs. Reference Ship

#### Pitching in Regression Method vs. Reference Ship

#### MSI in Regression Method vs. Reference Ship

^{2}. According to the graph presented in Figure 22, the Aresa model is quite different. According to these data, all the ship models had MSI chart trends that tended to be the same. All the hull models passed the MSI 2% and 5% charts, and so 5% of passengers experienced seasickness. However, they did not pass the MSI 10% and 20% charts, and so the condition of the crew and equipment was still safe.

#### Slamming and Deck Wetness in Regression Method vs. Reference Ship

#### 4.3. Analysis of Scaling Method vs. Reference Ship

#### 4.3.1. Resistance in Scaling Method vs. Reference Ship

#### 4.3.2. Stability in Scaling Method vs. Reference Ship

#### 4.3.3. Seakeeping in Scaling Method vs. Reference Ship

#### Heaving in Scaling Method vs. Reference Ship

#### Rolling in Scaling Method vs. Reference Ship

#### Pitching in Scaling Method vs. Reference Ship

#### MSI in Scaling Method vs. Reference Ship

#### Slamming and Deck Wetness in Scaling Method vs. Reference Ship

## 5. Overall Discussion

#### 5.1. Simulation Result Recapitulation

#### 5.1.1. Resistance Analysis Recapitulation

#### 5.1.2. Stability Analysis Recapitulation

#### 5.1.3. Seakeeping Analysis Recapitulation

#### 5.2. Multi-Attribute Decision Making (MADM)

#### 5.2.1. Weight of Each Criterion

#### 5.2.2. Nomination Matrix

#### 5.2.3. Matrix Normalization

#### 5.2.4. Weighting

#### 5.2.5. Ranking

#### 5.3. Estimated Design Time

## 6. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## Appendix A. Lines Plan of the Reference Ships

## Appendix B. Lines Plan of the Regression Model

## Appendix C. Lines Plan of the Scaling Model

## References

- Saha, P. Indonesia’s potential as a maritime power. Marit. Aff. J. Natl. Marit. Found. India
**2016**, 12, 28–41. [Google Scholar] [CrossRef] - Nugroho, A.; Suharyo, O.S.; Rahman, A. The development of Indonesian maritime potential and prospects towards a world maritime axis. STTAL Postgrad. Int. Conf.
**2020**, 4, 1–8. [Google Scholar] - Dipua, A.; Harahap, N.; Puspitawati, D.; Aminuddin, F.; Prakoso, L.Y. Sea defense strategy the Indonesian navy in dealing with the South China Sea Conflict. Italienisch
**2021**, 11, 120–126. [Google Scholar] - Prabowo, A.R.; Martono, E.; Muttaqie, T.; Tuswan, T.; Bae, D.M. Effect of hull design variations on the resistance profile and wave pattern: A case study of the patrol boat vessel. J. Eng. Sci. Technol.
**2022**, 17, 106–126. [Google Scholar] - Julianto, R.I.; Prabowo, A.R.; Muhayat, N.; Putranto, T.; Adiputra, R. Investigation of hull design to quantify resistance criteria using holtrop’s regression-based method and savitsky’s mathematical model: A study case of fishing vessels. J. Eng. Sci. Technol.
**2021**, 16, 1426–1443. [Google Scholar] - Febrianto, R.A.; Prabowo, A.R.; Baek, S.J.; Adiputra, R. Analysis of monohull design characteristics as supporting vessel for the covid-19 medical treatment and logistic. Transp. Res. Procedia
**2021**, 55, 699–706. [Google Scholar] [CrossRef] - Yusvika, M.; Prabowo, A.R.; Tjahjana, D.D.D.P.; Sohn, J.M. Cavitation Prediction of Ship Propeller Based on Temperature and Fluid Properties of Water. J. Mar. Sci. Eng.
**2020**, 8, 465. [Google Scholar] [CrossRef] - Jeong, S.; Kim, H. Development of an efficient hull form design exploration framework. Math. Probl. Eng.
**2013**, 2013, 12. [Google Scholar] [CrossRef] [Green Version] - Ang, J.H.; Goh, C.; Li, Y. Hull form design optimisation for improved efficiency and hydrodynamic performance of “ship-shaped” offshore vessels. In Proceedings of the International Conference on Computer Applications in Shipbuilding, Bremen, Germany, 29 September–1 October 2015; Royal Institution of Naval Architectsm: London, UK; pp. 71–80. [Google Scholar]
- Julianto, R.I.; Muttaqie, T.; Adiputra, R.; Hadi, S.; Hidajat, R.L.L.G.; Prabowo, A.R. Hydrodynamic and structural investigations of catamaran design. Procedia Struct. Integr.
**2020**, 27, 93–100. [Google Scholar] [CrossRef] - Radfar, S.; Taherkhani, A.; Panahi, R. Standardization of the main dimensions of design container ships in ports—A case study. World J. Eng. Technol.
**2017**, 5, 51–61. [Google Scholar] [CrossRef] [Green Version] - Kristensen, H.O.H. Determination of Regression Formulas for Main Dimensions of Tankers and Bulk Carriers Based on IHS Fairplay Data; Technical report for Project no. 2010-56, Emissionsbeslutningsstøttesystem Work Package 2; Technical University of Denmark: Lyngby, Denmark, 2012. [Google Scholar]
- Yurdakul, O.; Küçüksu, G.N.; Saydam, A.Z.; Çalışal, M.S. A decision-making process for the selection of better ship main dimensions by a Pareto frontier solution. Ocean Eng.
**2021**, 239, 109908. [Google Scholar] [CrossRef] - Hou, Y.H.; Huang, S.; Wang, W.Q.; Hu, Y.L. Regression Analysis of Ship Principal Dimensions Based on Improved PSO-BP Algorithm. Adv. Mater. Res.
**2011**, 308–310, 1029–1032. [Google Scholar] [CrossRef] - Yang, Y.-S.; Park, C.-K.; Lee, K.-H.; Suh, J.-C. A study on the preliminary ship design method using deterministic approach and probabilistic approach including hull form. Struct. Multidiscip. Optim.
**2006**, 33, 529–539. [Google Scholar] [CrossRef] - Noviyarto, H. Implementation regression and naïve bayes to predict and classify data asset at educational institutions. Int. J. Multidiscip. Res. Publ.
**2020**, 2, 22–25. [Google Scholar] - Dabit, A.S.; Lianto, A.E.; Branta, S.A.; Laksono, F.B.; Prabowo, A.R.; Muhayat, N. Finite element analysis (FEA) on autonomous unmanned surface vehicle feeder boat subjected to static loads. Procedia Struct. Integr.
**2020**, 27, 163–170. [Google Scholar] [CrossRef] - Jiao, J.; Chen, C.; Ren, H. A comprehensive study on ship motion and load responses in short-crested irregular waves. Int. J. Nav. Archit. Ocean Eng.
**2019**, 11, 364–379. [Google Scholar] [CrossRef] - Yusvika, M.; Prabowo, A.R.; Baek, S.J.; Tjahjana, D.D.D.P. Achievements in observation and prediction of cavitation: Effect and damage on the ship propellers. Procedia Struct. Integr.
**2020**, 27, 109–116. [Google Scholar] [CrossRef] - Campbell, R.; Terziev, M.; Tezdogan, T.; Incecik, A. Computational fluid dynamics predictions of draught and trim variations on ship resistance in confined waters. Appl. Ocean Res.
**2022**, 126, 103301. [Google Scholar] [CrossRef] - USNA. Resistance and Powering of Ships. In Resist. Powering Ships; USNA: Vancouver, BC, Canada, 2002; pp. 1–46. [Google Scholar]
- Jang, J.; Choi, S.H.; Ahn, S.-M.; Kim, B.; Seo, J.S. Experimental investigation of frictional resistance reduction with air layer on the hull bottom of a ship. Int. J. Nav. Archit. Ocean Eng.
**2014**, 6, 363–379. [Google Scholar] [CrossRef] [Green Version] - Kristensen, H.O.; Lützen, M. Prediction of Resistance and Propulsion Power of Ships; Technical report for Project no. 2010-56, Emissionsbeslutningsstøttesystem Work Package 2; Technical University of Denmark: Lyngby, Denmark, 2013. [Google Scholar]
- Molland, A.F.; Turnock, S.R.; Hudson, D.A. Ship Resistance and Propulsion, 2nd ed.; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Cookson, M.D.; Stirk, P.M.R. Plant Flow Measurement and Control Handbook; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Bahatmaka, A.; Kim, D.-J.; Samuel; Prabowo, A.R.; Zaw, M.-T.; Ariyanto, M.; Munadi; Ismail, R.; Arifin, Z.A. Investigation on the performance of the traditional Indonesian fishing vessel. MATEC Web Conf.
**2018**, 159, 02056. [Google Scholar] [CrossRef] - He, J.; Wu, H.; Ma, C.; Yang, C.J.; Zhu, R.; Li, W.; Noblesse, F. Froude number, hull shape, and convergence of integral representation of ship waves. Eur. J. Mech. B Fluids
**2019**, 78, 216–229. [Google Scholar] [CrossRef] - Savitsky, D.; Brown, P.W. Procedures for hydrodynamic evaluation of planing hulls in smooth and rough water. Mar. Technol. SNAME News
**1976**, 13, 381–400. [Google Scholar] [CrossRef] - Adrian, B.; Ruben Lopez, P. Ship Hydrostatics and Stability, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 2014. [Google Scholar]
- Barrass, C.B.; Derrett, D.R. Ship Stability for Masters and Mates, 6th ed.; Butterworth-Heinemann: Oxford, UK, 2006. [Google Scholar]
- Ruponen, P. Principles of Ship Buoyancy and Stability; Aalto University Publication Series: Aalto, Finland, 2021. [Google Scholar]
- Mégel, J.; Kliava, J. Metacenter and Ship Stability. Am. J. Phys.
**2010**, 78, 738–747. [Google Scholar] [CrossRef] [Green Version] - Prabowo, A.R.; Febrianto, R.A.; Tuswan, T.; Tjahjana, D.D.D.P. Performance evaluation on the designed v-shaped monohull ship models. J. Appl. Eng. Sci.
**2022**, 20, 609–623. [Google Scholar] - Ibrahim, R.A.; Grace, I.M. Modeling of ship roll dynamics and its coupling with heave and pitch. Math. Probl. Eng.
**2010**, 2010, 13–18. [Google Scholar] [CrossRef] [Green Version] - Nurhasanah, N.; Santoso, B.; Romadhoni, R.; Nasutioni, P. Seakeeping Analysis of Hull Rounded Design with Multi-Chine Model on Fishing Vessel. IOP Conf. Series: Earth Environ. Sci.
**2020**, 430, 012041. [Google Scholar] [CrossRef] - Bhattacharyya, R. Dynamics of Marine Vehicles; John Wiley & Sons: New York, NY, USA, 1978. [Google Scholar]
- Code Cogs The JONSWAP Spectra in the Wave-Frequency Domain. Available online: http://www.codecogs.com/library/engineering/fluid_mechanics/waves/spectra/jonswap.php (accessed on 10 June 2022).
- Scamardella, A.; Piscopo, V. Passenger ship seakeeping optimization by the overall motion sickness incidence. Ocean Eng.
**2014**, 76, 86–97. [Google Scholar] [CrossRef] - Nguyen, V.M.; Jeon, M.; Yoon, H.K. Study on the optimal weather routing of a ship considering parametric rolling, slamming and deck wetness. In Proceedings of the International Symposium on Practical Design of Ships and Other Floating Structures, Copenhagen, Denmark, 4–8 September 2016. [Google Scholar]
- Ibinabo, I.; Tamunodukobipi, D.T. Determination of the response amplitude operator(s) of an FPSO. Engineering
**2019**, 11, 541–556. [Google Scholar] [CrossRef] [Green Version] - Xu, Z. On Multi-Period Multi-Attribute Decision Making. Knowl. Based Syst.
**2008**, 21, 164–171. [Google Scholar] [CrossRef] - Zanakis, S.H.; Solomon, A.; Wishart, N.; Dublish, S. Multi-Attribute Decision Making: A Simulation Comparison of Select Methods. Eur. J. Oper. Res.
**1998**, 107, 507–529. [Google Scholar] [CrossRef]

**Figure 5.**Patrol boat 3D hull designs: (

**a**) high-speed rescue craft (12 m); (

**b**) SMIT patrol boat; (

**c**) lightweight rescue craft (13 m); (

**d**) fast police boat (15 m); (

**e**) Aresa 1300 Sentinel RHIB.

**Figure 6.**Graphs of regression results: (

**a**) length vs. DWT; (

**b**) beam vs. DWT; (

**c**) draft vs. DWT; (

**d**) depth vs. DWT.

**Figure 7.**3D hull designs from regression results: (

**a**) Regression I; (

**b**) Regression II; (

**c**) Regression III. The lines plan of regression-based hulls is given in Appendix B.

**Figure 8.**Graphs of reference ship resistance assessment results: (

**a**) speed vs. resistance; (

**b**) speed vs. effective power.

**Figure 9.**3D hull designs that resulted from scaling: (

**a**) Scale I; (

**b**) Scale II; (

**c**) Scale III. The lines plan of scaling-based hulls is given in Appendix C.

**Figure 10.**Comparison between regression and scale models: (

**a**) Froude number and resistance; (

**b**) Froude number and power.

**Figure 17.**Comparison between regression models and reference ships: (

**a**) Froude number with resistance; (

**b**) Froude number with power.

**Figure 18.**Comparison of GZ values with the ship’s tilt angle between regression models and reference ships.

**Figure 23.**Comparison between scaled and reference ship models: (

**a**) Froude number with resistance; (

**b**) Froude number with power.

Parameter | Type of Hull | ||||
---|---|---|---|---|---|

High-Speed Rescue Craft (12 m) | SMIT Patrol Boat | Lightweight Rescue Craft (13 m) | Fast Police Boat (15 m) | Aresa 1300 Sentinel RHIB | |

DWT (t) | 3.200 | 2.300 | 3.000 | 2.500 | 2.100 |

LOA (m) | 11.700 | 13.200 | 13.700 | 14.950 | 13.200 |

Beam (m) | 4.200 | 4.100 | 4.200 | 4.100 | 3.600 |

Depth (m) | 1.600 | 1.600 | 1.600 | 1.940 | 1.820 |

Draft (m) | 0.700 | 0.700 | 0.700 | 0.850 | 0.800 |

LWL (m) | 11.296 | 11.490 | 12.840 | 13.702 | 11.921 |

Cb (-) | 0.435 | 0.530 | 0.435 | 0.421 | 0.454 |

Displacement (t) | 10.910 | 17.270 | 13.010 | 18.930 | 14.560 |

Parameter | Value |
---|---|

DWT (t) | 2.60 |

LOA (m) | 13.37 |

Beam (m) | 4.032 |

Depth (m) | 1.715 |

Draft (m) | 0.751 |

Parameter | Model | ||
---|---|---|---|

Regression I | Regression II | Regression III | |

DWT (t) | 2.600 | 2.600 | 2.600 |

LOA (m) | 13.370 | 13.370 | 13.370 |

Beam (m) | 4.031 | 4.031 | 4.031 |

Depth (m) | 1.715 | 1.715 | 1.715 |

Draft (m) | 0.751 | 0.751 | 0.751 |

LWL (m) | 11.967 | 12.042 | 12.393 |

Cb (-) | 0.451 | 0.459 | 0.461 |

Displacement (t) | 13.120 | 14.700 | 14.170 |

Froude Number | Resistance (kN) | Effective Power (kW) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|

Aresa | FPB | HSRC | LWRC | SMIT | Aresa | FPB | HSRC | LWRC | SMIT | |

0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

1 | 28.44 | 31.86 | 15.26 | 18.90 | 19.60 | 363.65 | 436.30 | 189.30 | 214.15 | 249.07 |

1.5 | 26.59 | 31.38 | 18.22 | 21.60 | 26.52 | 507.71 | 645.75 | 339.06 | 363.24 | 497.49 |

2 | 28.44 | 35.49 | 22.39 | 26.40 | 34.65 | 725.00 | 971.91 | 555.61 | 593.96 | 870.22 |

2.5 | 33.82 | 43.95 | 28.93 | 34.10 | 45.80 | 1077.20 | 1502.97 | 897.49 | 959.23 | 1434.57 |

3 | 41.85 | 56.08 | 37.46 | 44.30 | 60.09 | 1598.98 | 2308.20 | 1391.57 | 1492.36 | 2254.81 |

Parameter | Model | ||
---|---|---|---|

Scale I | Scale II | Scale III | |

DWT (t) | 2.600 | 2.600 | 2.600 |

LOA (m) | 13.370 | 13.370 | 13.370 |

Beam (m) | 4.031 | 4.031 | 4.031 |

Depth (m) | 1.715 | 1.715 | 1.715 |

Draft (m) | 0.751 | 0.751 | 0.751 |

LWL (m) | 12.027 | 12.909 | 12.535 |

Cb (-) | 0.454 | 0.436 | 0.435 |

Displacement (t) | 15.040 | 12.810 | 13.120 |

Froude Number | Resistance (kN) | |||||
---|---|---|---|---|---|---|

Regression I | Regression II | Regression III | Scale I | Scale II | Scale III | |

0 | 0 | 0 | 0 | 0 | 0 | 0 |

0.5 | 0 | 0 | 0 | 0 | 8.70 | 11.50 |

1 | 23.62 | 22.96 | 23.57 | 23.90 | 16.70 | 19.60 |

1.5 | 22.05 | 23.02 | 23.10 | 25.50 | 22.30 | 22.20 |

2 | 23.96 | 26.13 | 25.73 | 29.90 | 28.30 | 26.40 |

2.5 | 28.97 | 32.67 | 31.60 | 37.40 | 36.90 | 33.50 |

3 | 36.29 | 41.63 | 39.98 | 47.80 | 48.00 | 43.10 |

Froude Number | Power (kW) | |||||
---|---|---|---|---|---|---|

Regression I | Regression II | Regression III | Scale I | Scale II | Scale III | |

0 | 0 | 0 | 0 | 0 | 0 | 0 |

0.5 | 0 | 0 | 0 | 0 | 49.88 | 64.32 |

1 | 303.72 | 295.26 | 306.74 | 264.79 | 189.14 | 219.43 |

1.5 | 423.79 | 442.28 | 450.94 | 416.81 | 376.61 | 370.75 |

2 | 612.77 | 668.17 | 669.67 | 653.59 | 636.48 | 588,13 |

2.5 | 924.89 | 1048.07 | 1028.11 | 1018.44 | 1040.17 | 931.76 |

3 | 1389.25 | 1600.05 | 1560.83 | 1558.96 | 1619.79 | 1435.34 |

Model | Stability | |||
---|---|---|---|---|

GZ (m) | Max Heel Angle (deg) | Area Under GZ Curve (m.deg) | Angle of Vanishing Point (deg) | |

Regression I | 0.533 | 44.500 | 30.280 | 91.834 |

Regression II | 0.587 | 41.800 | 33.780 | 90.856 |

Regression III | 0.479 | 43.600 | 26.590 | 90.978 |

Scale I | 0.547 | 33.600 | 30.650 | 89.020 |

Scale II | 0.554 | 43.600 | 31.350 | 92.549 |

Scale III | 0.478 | 44.500 | 26.570 | 91.765 |

No. | Criteria | Regression I | Regression II | Regression III | Scale I | Scale II | Scale III |
---|---|---|---|---|---|---|---|

1 | Deck Wetness (MII/h) | 0.114 | 0.073 | 0.150 | 0.329 | 0.158 | 0.150 |

2 | Slamming (MII/h) | 0.536 | 0.426 | 0.570 | 0.455 | 0.502 | 0.450 |

Froude Number | Resistance (kN) | |||||||
---|---|---|---|---|---|---|---|---|

Aresa | FPB | HSRC | LWRC | SMIT | Regression I | Regression II | Regression III | |

0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

1 | 28.44 | 31.86 | 15.26 | 18.90 | 19.60 | 23.62 | 22.96 | 23.57 |

1.5 | 26.59 | 31.38 | 18.22 | 21.60 | 26.52 | 22.05 | 23.02 | 23.10 |

2 | 28.44 | 35.49 | 22.39 | 26.40 | 34.65 | 23.96 | 26.13 | 25.73 |

2.5 | 33.82 | 43.95 | 28.93 | 34.10 | 45.80 | 28.97 | 32.67 | 31.60 |

3 | 41.85 | 56.08 | 37.46 | 44.30 | 60.09 | 36.29 | 41.63 | 39.98 |

Froude Number | Power (kW) | |||||||
---|---|---|---|---|---|---|---|---|

Aresa | FPB | HSRC | LWRC | SMIT | Regression I | Regression II | Regression III | |

0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

1 | 363.65 | 436.30 | 189.30 | 214.15 | 249.07 | 303.72 | 295.26 | 306.74 |

1.5 | 507.71 | 645.75 | 339.06 | 363.244 | 497.49 | 423.79 | 442.28 | 450.94 |

2 | 725.00 | 971.91 | 555.61 | 593.962 | 870.22 | 612.77 | 668.17 | 669.67 |

2.5 | 1077.20 | 1502.97 | 897.49 | 959.234 | 1434.57 | 924.89 | 1048.07 | 1028.11 |

3 | 1598.98 | 2308.20 | 1391.57 | 1492.36 | 2254.81 | 1389.25 | 1600.05 | 1560.83 |

Model | Stability | |||
---|---|---|---|---|

GZ (m) | Max Heel Angle (deg) | Area Under GZ Curve (m.deg) | Angle of Vanishing Point (deg) | |

ARESA | 0.441 | 35.500 | 24.650 | 89.216 |

FPB | 0.540 | 44.500 | 31.960 | 92.048 |

HSRC | 0.648 | 40.900 | 36.800 | 91.765 |

LWRC | 0.561 | 42.700 | 31.300 | 91.373 |

SMIT | 0.737 | 36.400 | 42.640 | 90.000 |

Regression I | 0.533 | 44.500 | 30.280 | 91.834 |

Regression II | 0.587 | 41.800 | 33.780 | 90.856 |

Regression III | 0.479 | 43.600 | 26.590 | 90.978 |

No | Criteria | Aresa | FPB | HSRC | LWRC | SMIT | Regression I | Regression II | Regression III |
---|---|---|---|---|---|---|---|---|---|

1 | Deck Wetness (MII/h) | 0.362 | 0.046 | 0.178 | 0.124 | 0.426 | 0.114 | 0.073 | 0.15 |

2 | Slamming (MII/h) | 0.510 | 0.371 | 0.557 | 0.621 | 1.9 | 0.536 | 0.426 | 0.57 |

Froude Number | Resistance (kN) | |||||||
---|---|---|---|---|---|---|---|---|

ARESA | FPB | HSRC | LWRC | SMIT | Scaling I | Scaling II | Scaling III | |

0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 8.70 | 11.50 |

1 | 28.44 | 31.86 | 15.26 | 18.90 | 19.60 | 23.90 | 16.70 | 19.60 |

1.5 | 26.59 | 31.38 | 18.22 | 21.60 | 26.52 | 25.50 | 22.30 | 22.20 |

2 | 28.44 | 35.49 | 22.39 | 26.40 | 34.65 | 29.90 | 28.30 | 26.40 |

2.5 | 33.82 | 43.95 | 28.93 | 34.10 | 45.80 | 37.40 | 36.90 | 33.50 |

3 | 41.85 | 56.08 | 37.46 | 44.30 | 60.09 | 47.80 | 48.00 | 43.10 |

Froude Number | Power (kW) | |||||||
---|---|---|---|---|---|---|---|---|

ARESA | FPB | HSRC | LWRC | SMIT | Scale I | Scale II | Scale III | |

0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 49.88 | 64.32 |

1 | 363.65 | 436.30 | 189.30 | 214.15 | 249.07 | 264.79 | 189.14 | 219.43 |

1.5 | 507.71 | 645.75 | 339.06 | 363.24 | 497.49 | 416.81 | 376.61 | 370.75 |

2 | 725.00 | 971.91 | 555.61 | 593.96 | 870.22 | 653.59 | 636.48 | 588.13 |

2.5 | 1077.20 | 1502.97 | 897.49 | 959.23 | 1434.57 | 1018.44 | 1040.17 | 931.76 |

3 | 1598.98 | 2308. 20 | 1391.57 | 1492.36 | 2254.81 | 1558.96 | 1619.78 | 1435.34 |

Model | Stability Parameter | |||
---|---|---|---|---|

Gz (m) | Max Heel Angle (deg) | Area Under GZ Curve (m.deg) | Angle of Vanishing Point (deg) | |

ARESA | 0.441 | 35.500 | 24.650 | 89.216 |

FPB | 0.540 | 44.500 | 31.960 | 92.048 |

HSRC | 0.648 | 40.900 | 36.800 | 91.765 |

LWRC | 0.561 | 42.700 | 31.300 | 91.373 |

SMIT | 0.737 | 36.400 | 42.640 | 90.000 |

Scale I | 0.547 | 33.600 | 30.650 | 89.020 |

Scale II | 0.554 | 43.600 | 31.350 | 92.549 |

Scale III | 0.478 | 44.500 | 26.570 | 91.765 |

Criteria | ARESA | FPB | HSRC | LWRC | SMIT | Scale I | Scale II | Scale III |
---|---|---|---|---|---|---|---|---|

Deck Wetness (MII/h) | 0.362 | 0.046 | 0.178 | 0.124 | 0.426 | 0.329 | 0.158 | 0.150 |

Slamming (MII/h) | 0.510 | 0.371 | 0.557 | 0.621 | 1.900 | 0.455 | 0.502 | 0.450 |

Method | Model | Resistance (Fn = 3) | |
---|---|---|---|

Resistance (kN) | Power (kW) | ||

Reference Ship | Aresa | 41.85 | 1598.98 |

FPB | 56.08 | 2308.20 | |

HSRC | 37.46 | 1391.57 | |

LWRC | 44.30 | 1492.36 | |

SMIT | 60.09 | 2254.81 | |

Regression | Regression I | 36.29 | 1389.25 |

Regression II | 41.63 | 1600.05 | |

Regression III | 39.98 | 1560.83 | |

Scaling | Scale I | 47.80 | 1558.97 |

Scale II | 48.00 | 1619.79 | |

Scale III | 43.10 | 1435.34 |

Model Comparison | Similarity (%) | |
---|---|---|

Resistance | ||

Regression I | Aresa | 86.714 |

FPB | 64.711 | |

HSRC | 96.877 | |

LWRC | 81.919 | |

SMIT | 60.393 | |

Regression II | Aresa | 99.474 |

FPB | 74.233 | |

HSRC | 89.983 | |

LWRC | 93.973 | |

SMIT | 69.279 | |

Regression III | Aresa | 95.532 |

FPB | 71.291 | |

HSRC | 93.697 | |

LWRC | 90.248 | |

SMIT | 66.534 | |

MAX | 99.474 | |

MIN | 60.393 | |

AVERAGE | 82.324 |

Model Comparison | Similarity (%) | |
---|---|---|

Resistance | ||

Scale I | Aresa | 87.552 |

FPB | 85.235 | |

HSRC | 78.368 | |

LWRC | 92.678 | |

SMIT | 79.547 | |

Scale II | Aresa | 87.188 |

FPB | 85.592 | |

HSRC | 78.042 | |

LWRC | 92.292 | |

SMIT | 79.880 | |

Scale III | Aresa | 97.100 |

FPB | 76.854 | |

HSRC | 86.914 | |

LWRC | 97.291 | |

SMIT | 71.726 | |

MAX | 97.291 | |

MIN | 71.726 | |

AVERAGE | 85.084 |

Colour | Description |
---|---|

Larger scale model | |

Larger regression model | |

Larger reference model |

Method | Model | Stability | |||
---|---|---|---|---|---|

Gz (m) | Max Heel Angle (deg) | Area Under GZ Curve (m.deg) | Angle of Vanishing Point (deg) | ||

Reference Ship | Aresa | 0.441 | 35.5 | 24.65 | 89.216 |

FPB | 0.540 | 44.5 | 31.96 | 92.048 | |

HSRC | 0.648 | 40.9 | 36.80 | 91.765 | |

LWRC | 0.561 | 42.7 | 31.30 | 91.373 | |

SMIT | 0.737 | 36.4 | 42.64 | 90.000 | |

Regression | Regression I | 0.533 | 44.5 | 30.28 | 91.834 |

Regression II | 0.587 | 41.8 | 33.78 | 90.856 | |

Regression III | 0.479 | 43.6 | 26.59 | 90.978 | |

Scaling | Scale I | 0.547 | 33.6 | 30.65 | 89.020 |

Scale II | 0.554 | 43.6 | 31.35 | 92.549 | |

Scale III | 0.478 | 44.5 | 26.57 | 91.765 |

Model Comparison | Similarity (%) | |
---|---|---|

Surface Area under Curve | ||

Regression I | Aresa | 81.407 |

FPB | 94.743 | |

HSRC | 82.283 | |

LWRC | 96.741 | |

SMIT | 71.013 | |

Regression II | Aresa | 72.972 |

FPB | 94.612 | |

HSRC | 91.793 | |

LWRC | 92.658 | |

SMIT | 79.221 | |

Regression III | Aresa | 92.704 |

FPB | 83.198 | |

HSRC | 72.255 | |

LWRC | 84.952 | |

SMIT | 62.359 | |

MAX | 96.741 | |

MIN | 62.359 | |

AVERAGE | 83.528 |

Model Comparison | Similarity (%) | |
---|---|---|

Surface Area under Curve | ||

Scale I | Aresa | 80.424 |

FPB | 95.901 | |

HSRC | 83.288 | |

LWRC | 97.923 | |

SMIT | 71.881 | |

Scale II | Aresa | 78.628 |

FPB | 98.091 | |

HSRC | 85.190 | |

LWRC | 99.841 | |

SMIT | 73.523 | |

Scale III | Aresa | 92.774 |

FPB | 83.135 | |

HSRC | 72.201 | |

LWRC | 84.888 | |

SMIT | 62.312 | |

MAX | 99.841 | |

MIN | 62.312 | |

AVERAGE | 84.000 |

Colour | Description |
---|---|

Larger scale model | |

Larger regression model | |

Larger reference model |

Method | Model | Seakeeping | |||||
---|---|---|---|---|---|---|---|

Heaving (m/m) | Rolling (rad/rad) | Pitching (rad/rad) | MSI (%) | Deck Wetness (MII/h) | Slamming (MII/h) | ||

Reference Ship | Aresa | 1.001 | 6.682 | 4.014 | 5.00 | 0.362 | 0.510 |

FPB | 1.001 | 6.683 | 3.301 | 5.00 | 0.046 | 0.371 | |

HSRC | 1.001 | 6.562 | 3.288 | 5.00 | 0.178 | 0.557 | |

LWRC | 1.001 | 6.637 | 3.125 | 5.00 | 0.124 | 0.621 | |

SMIT | 1.000 | 6.576 | 3.460 | 5.00 | 0.426 | 1.900 | |

Regression | Regression I | 1.001 | 6.679 | 3.433 | 5.00 | 0.114 | 0.536 |

Regression II | 1.001 | 6.516 | 3.440 | 5.00 | 0.073 | 0.426 | |

Regression III | 1.001 | 6.679 | 3.708 | 5.00 | 0.150 | 0.570 | |

Scaling | Scale I | 1.001 | 6.584 | 3.616 | 5.00 | 0.329 | 0.455 |

Scale II | 1.001 | 6.629 | 2.984 | 5.00 | 0.158 | 0.502 | |

Scale III | 1.001 | 6.506 | 3.513 | 5.00 | 0.150 | 0.450 |

Model Comparison | Similarity (%) | |||
---|---|---|---|---|

Heaving | Rolling | Pitching | ||

Regression I | Aresa | 99.973 | 99.960 | 85.516 |

FPB | 99.978 | 99.948 | 96.156 | |

HSRC | 99.994 | 98.237 | 95.798 | |

LWRC | 99.994 | 99.200 | 86.415 | |

SMIT | 99.971 | 98.448 | 99.200 | |

Regression II | Aresa | 99.976 | 97.513 | 85.707 |

FPB | 99.981 | 97.501 | 95.941 | |

HSRC | 99.997 | 99.303 | 95.584 | |

LWRC | 99.986 | 98.169 | 90.841 | |

SMIT | 99.969 | 99.090 | 99.422 | |

Regression III | Aresa | 99.986 | 99.961 | 92.390 |

FPB | 99.991 | 99.949 | 89.001 | |

HSRC | 99.994 | 98.236 | 88.670 | |

LWRC | 99.995 | 99.370 | 84.270 | |

SMIT | 99.959 | 98.447 | 93.306 | |

MAX | 99.997 | 99.961 | 99.422 | |

MIN | 99.959 | 97.501 | 84.270 | |

AVERAGE | 99.983 | 98.889 | 91.881 |

Model Comparison | Similarity (%) | |||
---|---|---|---|---|

Heaving | Rolling | Pitching | ||

Scale I | Aresa | 99.985 | 98.537 | 90.096 |

FPB | 99.990 | 98.525 | 91.267 | |

HSRC | 99.995 | 99.655 | 90.927 | |

LWRC | 99.994 | 99.200 | 86.415 | |

SMIT | 99.960 | 99.870 | 95.681 | |

Scale II | Aresa | 99.997 | 99.210 | 74.337 |

FPB | 99.992 | 99.198 | 90.403 | |

HSRC | 99.977 | 98.979 | 90.741 | |

LWRC | 99.988 | 99.878 | 95.479 | |

SMIT | 99.942 | 99.192 | 86.232 | |

Scale III | Aresa | 99.995 | 97.370 | 87.527 |

FPB | 100.000 | 97.358 | 93.946 | |

HSRC | 99.985 | 99.157 | 93.596 | |

LWRC | 99.996 | 98.025 | 88.952 | |

SMIT | 99.950 | 98.944 | 98.490 | |

MAX | 100.000 | 99.878 | 98.490 | |

MIN | 99.942 | 97.358 | 74.337 | |

AVERAGE | 99.983 | 98.873 | 90.273 |

Colour | Description |
---|---|

Larger scale model | |

Larger regression model | |

Larger reference model | |

Same value |

Criteria | Similarity | |||||
---|---|---|---|---|---|---|

Regression vs. Reference Ship | Scale vs. Reference Ship | |||||

Resistance | Stability | Seakeeping | Resistance | Stability | Seakeeping | |

MAX | 99.474 | 96.741 | 99.793 | 97.291 | 99.841 | 99.456 |

MIN | 60.393 | 62.359 | 93.910 | 71.726 | 62.312 | 90.546 |

AVERAGE | 82.324 | 83.528 | 96.918 | 85.084 | 84.000 | 96.376 |

Criterion | Description | Weight |
---|---|---|

C1 | Resistance | 50% |

C2 | Stability | 30% |

C3 | Seakeeping | 20% |

Alternative | Description |
---|---|

A1 | Aresa 1300 Sentinel |

A2 | Fast Police Boat |

A3 | High-Speed Rescue Craft |

A4 | Lightweight Rescue Craft |

A5 | SMIT Patrol Boat |

A6 | Regression I |

A7 | Regression II |

A8 | Regression III |

A9 | Scale I |

A10 | Scale II |

A11 | Scale III |

Alternative Model | Criteria | ||
---|---|---|---|

C1 | C2 | C3 | |

A1 | 41.850 | 24.650 | 3.898 |

A2 | 56.080 | 31.960 | 3.661 |

A3 | 37.460 | 36.800 | 3.616 |

A4 | 44.300 | 31.300 | 3.587 |

A5 | 60.090 | 42.640 | 3.678 |

A6 | 36.290 | 30.280 | 3.704 |

A7 | 41.630 | 33.780 | 3.652 |

A8 | 39.980 | 26.590 | 3.796 |

A9 | 47.800 | 30.650 | 3.733 |

A10 | 48.000 | 31.350 | 3.537 |

A11 | 43.100 | 26.570 | 3.673 |

Normalisation | |||
---|---|---|---|

Alternative | C1 | C2 | C3 |

A1 | 0.867 | 0.578 | 0.907 |

A2 | 0.647 | 0.750 | 0.966 |

A3 | 0.969 | 0.863 | 0.978 |

A4 | 0.819 | 0.734 | 0.986 |

A5 | 0.604 | 1.000 | 0.962 |

A6 | 1.000 | 0.710 | 0.955 |

A7 | 0.872 | 0.792 | 0.969 |

A8 | 0.908 | 0.624 | 0.932 |

A9 | 0.759 | 0.719 | 0.947 |

A10 | 0.756 | 0.735 | 1.000 |

A11 | 0.842 | 0.623 | 0.963 |

Alternative | Criterion | Total Weight | ||
---|---|---|---|---|

C1 | C2 | C3 | ||

A1 | 0.434 | 0.173 | 0.181 | 0.788 |

A2 | 0.324 | 0.225 | 0.193 | 0.742 |

A3 | 0.484 | 0.259 | 0.196 | 0.939 |

A4 | 0.410 | 0.220 | 0.197 | 0.827 |

A5 | 0.302 | 0.300 | 0.192 | 0.794 |

A6 | 0.500 | 0.213 | 0.191 | 0.904 |

A7 | 0.436 | 0.238 | 0.194 | 0.867 |

A8 | 0.454 | 0.187 | 0.186 | 0.827 |

A9 | 0.380 | 0.216 | 0.189 | 0.785 |

A10 | 0.378 | 0.221 | 0.200 | 0.799 |

A11 | 0.421 | 0.187 | 0.193 | 0.801 |

Alternative Design | Total Weight | Ranking |
---|---|---|

A3 | 0.939 | 1 |

A6 | 0.904 | 2 |

A7 | 0.867 | 3 |

A8 | 0.827 | 4 |

A4 | 0.827 | 5 |

A11 | 0.801 | 6 |

A10 | 0.799 | 7 |

A5 | 0.794 | 8 |

A1 | 0.788 | 9 |

A9 | 0.785 | 10 |

A2 | 0.742 | 11 |

Method | Process Details | Estimated Time (Minutes) |
---|---|---|

Reference Ship | Determining type of ship | 15 |

Looking for primary data and shape of hull of five reference ships according to type of ship determined | 75 | |

Modelling five selected reference ships | 150 | |

Performing hydrodynamic analysis of entire hull of ship | 350 | |

Performing analysis results calculations | 200 | |

Total | 790 | |

Regression | Determining type of ship | 15 |

Looking for primary data of five ships according to type of ship determined | 50 | |

Performing regression analysis calculations | 20 | |

Modelling three ships according to regression results with new geometry | 150 | |

Performing hydrodynamic analysis of three new hulls | 210 | |

Performing analysis results calculations | 120 | |

Total | 565 | |

Scaling | Determining type of ship | 15 |

Looking for primary data and shape of hull of five reference ships according to type of ship determined | 75 | |

Modelling five selected reference ships | 150 | |

Analyzing resistance of entire hull until three hulls with lowest resistance values are selected | 100 | |

Defining new primary dimension | 20 | |

Performing scaling process with help of 3D modelling software on three selected ships according to new size | 30 | |

Performing hydrodynamic analyses of three new hulls | 210 | |

Performing analysis results calculations | 120 | |

Total | 720 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Rahmaji, T.; Prabowo, A.R.; Tuswan, T.; Muttaqie, T.; Muhayat, N.; Baek, S.-J.
Design of Fast Patrol Boat for Improving Resistance, Stability, and Seakeeping Performance. *Designs* **2022**, *6*, 105.
https://doi.org/10.3390/designs6060105

**AMA Style**

Rahmaji T, Prabowo AR, Tuswan T, Muttaqie T, Muhayat N, Baek S-J.
Design of Fast Patrol Boat for Improving Resistance, Stability, and Seakeeping Performance. *Designs*. 2022; 6(6):105.
https://doi.org/10.3390/designs6060105

**Chicago/Turabian Style**

Rahmaji, Tri, Aditya Rio Prabowo, Tuswan Tuswan, Teguh Muttaqie, Nurul Muhayat, and Seung-Jun Baek.
2022. "Design of Fast Patrol Boat for Improving Resistance, Stability, and Seakeeping Performance" *Designs* 6, no. 6: 105.
https://doi.org/10.3390/designs6060105