Cost-Effective Design of IoT-Based Smart Household Distribution System
Abstract
:1. Introduction
2. Related Work in the Literature
3. System Concept
4. System Design
4.1. Simulation Model
4.2. Hardware Development
4.3. Measurement Accuracy, Safety, and Protection Precautions
4.4. Cost Estimation
5. Results and Discussions
5.1. Performance of ISHDB with and without Loads
5.2. ISHDB Tested with IoT Implementation
6. Conclusions
- The graphical view through the ThingSpeak web server and the numerical data displayed on the Blynk apps are identical. Thus, the results confirm that the proposed system satisfies crucial requirements of calibration, accuracy, and communication.
- The developed hardware can monitor the usage of electricity based on IoT and control the limit of power consumption. This feature enables users to monitor their appliances and promotes awareness on electricity consumption.
- The proposed ISHDB is cost effective and is of small time-span relevance that enables it to provide good technical performance.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zakaria, Z.; Kamarudin, S.K.; Abd Wahid, K.A.; Abu Hassan, S.H. The progress of fuel cell for malaysian residential consumption: Energy status and prospects to introduction as a renewable power generation system. Renew. Sustain. Energy Rev. 2021, 144, 110984. [Google Scholar] [CrossRef]
- Reka, S.S.; Venugopal, P.; Alhelou, H.H.; Siano, P.; Golshan, M.E.H. Real Time Demand Response Modeling for Residential Consumers in Smart Grid Considering Renewable Energy with Deep Learning Approach. IEEE Access 2021, 9, 56551–56562. [Google Scholar] [CrossRef]
- Oprea, S.V.; Bara, A.; Andreescu, A.I. Two Novel Blockchain-Based Market Settlement Mechanisms Embedded into Smart Contracts for Securely Trading Renewable Energy. IEEE Access 2020, 8, 212548–212556. [Google Scholar] [CrossRef]
- Narayan, S.; Doytch, N. An investigation of renewable and non-renewable energy consumption and economic growth nexus using industrial and residential energy consumption. Energy Econ. 2017, 68, 160–176. [Google Scholar] [CrossRef]
- Afzal, M.; Huang, Q.; Amin, W.; Umer, K.; Raza, A.; Naeem, M. Blockchain Enabled Distributed Demand Side Management in Community Energy System With Smart Homes. IEEE Access 2020, 8, 37428–37439. [Google Scholar] [CrossRef]
- Han, J.; Choi, C.S.; Park, W.K.; Lee, I.; Kim, S.H. Smart home energy management system including renewable energy based on ZigBee and PLC. IEEE Trans. Consum. Electron. 2014, 60, 198–202. [Google Scholar] [CrossRef]
- Alzate, E.B.; Bueno-Lopez, M.; Xie, J.; Strunz, K. Distribution System State Estimation to Support Coordinated Voltage-Control Strategies by Using Smart Meters. IEEE Trans. Power Syst. 2019, 34, 5198–5207. [Google Scholar] [CrossRef]
- Collotta, M.; Pau, G. A Novel Energy Management Approach for Smart Homes Using Bluetooth Low Energy. IEEE J. Sel. Areas Commun. 2015, 33, 2988–2996. [Google Scholar] [CrossRef]
- Collotta, M.; Pau, G. An Innovative Approach for Forecasting of Energy Requirements to Improve a Smart Home Management System Based on BLE. IEEE Trans. Green Commun. Netw. 2017, 1, 112–120. [Google Scholar] [CrossRef]
- Li, M.; Lin, H.J. Design and Implementation of Smart Home Control Systems Based on Wireless Sensor Networks and Power Line Communications. IEEE Trans. Ind. Electron. 2015, 62, 4430–4442. [Google Scholar] [CrossRef]
- Bedi, G.; Venayagamoorthy, G.K.; Singh, R.; Brooks, R.R.; Wang, K.-C. Review of Internet of Things (IoT) in Electric Power and Energy Systems. IEEE Internet Things J. 2018, 5, 847–870. [Google Scholar] [CrossRef]
- Shakerighadi, B.; Anvari-Moghaddam, A.; Vasquez, J.C.; Guerrero, J.M. Internet of things for modern energy systems: State-of-the-art, challenges, and open issues. Energies 2018, 11, 1252. [Google Scholar] [CrossRef] [Green Version]
- Tightiz, L.; Yang, H. A comprehensive review on IoT protocols’ features in smart grid communication. Energies 2020, 13, 2762. [Google Scholar] [CrossRef]
- Lv, Z.; Qiao, L.; Verma, S.; Kavita. AI-enabled IoT-Edge Data Analytics for Connected Living. ACM Trans. Internet Technol. 2021, 21, 1–20. [Google Scholar] [CrossRef]
- Polap, D. Analysis of Skin Marks through the Use of Intelligent Things. IEEE Access 2019, 7, 149355–149363. [Google Scholar] [CrossRef]
- Kim, K.; Li, S.; Heydariaan, M.; Smaoui, N.; Gnawali, O.; Suh, W.; Suh, M.J.; Kim, J.I. Feasibility of LoRa for Smart Home Indoor Localization. Appl. Sci. 2021, 11, 415. [Google Scholar] [CrossRef]
- Zainab, A.; Refaat, S.S.; Bouhali, O. Ensemble-based spam detection in smart home IOT devices time series data using machine learning techniques. Information 2020, 11, 344. [Google Scholar] [CrossRef]
- Makhanya, S.P.; Dogo, E.M.; Nwulu, N.I.; Damisa, U. A Smart Switch Control System Using ESP8266 Wi-Fi Module Integrated with an Android Application. In Proceedings of the 2019 IEEE 7th International Conference on Smart Energy Grid Engineering (SEGE), Oshawa, ON, Canada, 12–14 August 2019; pp. 125–128. [Google Scholar] [CrossRef]
- Sarah, A.; Ghozali, T.; Giano, G.; Mulyadi, M.; Octaviani, S.; Hikmaturokhman, A. Learning IoT: Basic Experiments of Home Automation using ESP8266, Arduino and XBee. In Proceedings of the 2020 IEEE International Conference on Smart Internet of Things (SmartIoT), Beijing, China, 14–16 August 2020; pp. 290–294. [Google Scholar] [CrossRef]
- Tawalbeh, N.; Abusamaha, H.M.; Al-Salaymeh, A. Domestic Appliances Scheduling Using BPSO and IoT. In Proceedings of the 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe), Bucharest, Romania, 29 September–2 October 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Durani, H.; Sheth, M.; Vaghasia, M.; Kotech, S. Smart Automated Home Application using IoT with Blynk App. In Proceedings of the 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT), Coimbatore, India, 20–21 April 2018; pp. 393–397. [Google Scholar] [CrossRef]
- Serikul, P.; Nakpong, N.; Nakjuatong, N. Smart Farm Monitoring via the Blynk IoT Platform: Case Study: Humidity Monitoring and Data Recording. In Proceedings of the 2018 16th International Conference on ICT and Knowledge Engineering (ICT&KE), Bangkok, Thailand, 21–23 November 2018; pp. 70–75. [Google Scholar]
- Swamy, S.N.; Kota, S.R. An Empirical Study on System Level Aspects of Internet of Things (IoT). IEEE Access 2020, 8, 188082–188134. [Google Scholar] [CrossRef]
- Gayathri, M.S.; Ravishankar, A.N.; Kumaravel, S.; Ashok, S. Battery Condition Prognostic System using IoT in Smart Microgrids. In Proceedings of the 2018 3rd International Conference On Internet of Things: Smart Innovation and Usages (IoT-SIU), Bhimtal, India, 23–24 February 2018; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2018. [Google Scholar]
- Tan, H.; Chung, I. Secure Authentication and Group Key Distribution Scheme for WBANs Based on Smartphone ECG Sensor. IEEE Access 2019, 7, 151459–151474. [Google Scholar] [CrossRef]
- Li, W.; Logenthiran, T.; Phan, V.T.; Woo, W.L. Implemented IoT-based self-learning home management system (SHMS) for Singapore. IEEE Internet Things J. 2018, 5, 2212–2219. [Google Scholar] [CrossRef]
- Risteska Stojkoska, B.L.; Trivodaliev, K.V. A review of Internet of Things for smart home: Challenges and solutions. J. Clean. Prod. 2017, 140, 1454–1464. [Google Scholar] [CrossRef]
- Iqbal, A.; Ullah, F.; Anwar, H.; Kwak, K.S.; Imran, M.; Jamal, W.; ur Rahman, A. Interoperable Internet-of-Things platform for smart home system using Web-of-Objects and cloud. Sustain. Cities Soc. 2018, 38, 636–646. [Google Scholar] [CrossRef]
- Zhihua, S. Design of Smart Home System Based on ZigBee. In Proceedings of the 2016 International Conference on Robots & Intelligent System (ICRIS), Zhangjiajie, China, 27–28 August 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 167–170. [Google Scholar]
- Howedi, A.; Jwaid, A. Design and implementation prototype of a smart house system at low cost and multi-functional. In Proceedings of the 2016 Future Technologies Conference (FTC), San Francisco, CA, USA, 6–7 December 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 876–884. [Google Scholar]
- Asadullah, M.; Ullah, K. Smart home automation system using Bluetooth technology. In Proceedings of the 2017 International Conference on Innovations in Electrical Engineering and Computational Technologies (ICIEECT), Karachi, Pakistan, 5–7 April 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6. [Google Scholar]
- Froiz-Míguez, I.; Fernández-Caramés, T.; Fraga-Lamas, P.; Castedo, L. Design, Implementation and Practical Evaluation of an IoT Home Automation System for Fog Computing Applications Based on MQTT and ZigBee-WiFi Sensor Nodes. Sensors 2018, 18, 2660. [Google Scholar] [CrossRef] [Green Version]
- Majeed, R.; Abdullah, N.A.; Ashraf, I.; Bin Zikria, Y.; Mushtaq, M.F.; Umer, M. An Intelligent, Secure, and Smart Home Automation System. Sci. Program. 2020, 2020, 4579291. [Google Scholar] [CrossRef]
- Stolojescu-crisan, C.; Crisan, C.; Butunoi, B.-P. An IoT-Based Smart Home Automation System. Sensors 2021, 21, 3784. [Google Scholar] [CrossRef]
- Mahalakshmi, G.; Vigneshwaran, M. IOT Based HOME AUTOMATION Using Arduino. Int. J. Eng. Adv. Res. Technol. 2018, 3, 386–390. [Google Scholar]
- Yildiz, S.; Burunkaya, M. Web Based Smart Meter for General Purpose Smart Home Systems with ESP8266. In Proceedings of the 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkey, 11–13 October 2019. [Google Scholar] [CrossRef]
- Ismaeel, A.G.; Kamal, M.Q. Worldwide auto-mobi: Arduino IoT home automation system for IR devices. In Proceedings of the 2017 International Conference on Current Research in Computer Science and Information Technology (ICCIT), Sulaymaniyah, Iraq, 26–27 April 2017; pp. 52–57. [Google Scholar] [CrossRef]
- InnovatorsGuru. PZEM-004T User Manual; InnovatorsGuru: Pune, India, 2019. [Google Scholar]
- PZEM-004T|Specification|Price|Arduino Library|Pinout. Available online: https://innovatorsguru.com/ac-digital-multifunction-meter-using-pzem-004t/ (accessed on 26 June 2021).
- Machorro-Cano, I.; Paredes-Valverde, M.A.; Alor-Hernandez, G.; Salas-Zárate, M.D.P.; Segura-Ozuna, M.G.; Sánchez-Cervantes, J.L. Pesshiot: Smart platform for monitoring and controlling smart home devices and sensors. In Communications in Computer and Information Science; Springer: Berlin/Heidelberg, Germany, 2019; Volume 1124, pp. 137–150. [Google Scholar]
- Paredes-Valverde, M.A.; Alor-Hernández, G.; García-Alcaráz, J.L.; Salas-Zárate, M.d.P.; Colombo-Mendoza, L.O.; Sánchez-Cervantes, J.L. IntelliHome: An internet of things-based system for electrical energy saving in smart home environment. Comput. Intell. 2020, 36, 203–224. [Google Scholar] [CrossRef]
- Qays, O.; Buswig, Y.; Basri, H.; Hossain, L.; Abu-siada, A.; Rahman, M.M.; Muyeen, S.M. An Intelligent Controlling Method for Battery Lifetime Increment Using State of Charge Estimation in PV-Battery Hybrid System. Appl. Sci. 2020, 10, 8799. [Google Scholar] [CrossRef]
- Qays, O.; Buswig, Y.; Anyi, M. Active Cell Balancing Control Method for Series-Connected Lithium-Ion Battery. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 2424–2430. [Google Scholar] [CrossRef]
- Qays, O.; Yasmin, F.; Kamal, H.A. A Review on Improved Performance for Solar Photovoltaic Cells by Various Cooling Methods. J. Therm. Energy Syst. 2020, 5, 1–19. [Google Scholar] [CrossRef]
- Qays, O.; Buswig, Y.; Hossain, L.; Ieee, S.M.; Rahman, M.; Abu-siada, A.; Ieee, S.M.; Modeling, A.C. Active cell balancing control strategy for parallel connected LiFePO4 batteries. CSEE J. Power Energy Syst. 2020, 7, 86–92. [Google Scholar] [CrossRef]
- Hossain, E.; Zawad, M.; Rakibul Islam, K.H.; Akash, M.Q. Design a novel controller for stability analysis of microgrid by managing controllable load using load shaving and load shifting techniques; and optimizing cost analysis for energy storage system. Int. J. Renew. Energy Res. 2016, 6, 772–786. [Google Scholar]
- Yonis Buswig, Y.M.; Qays, O.; Affam, A.; Albalawi, H.; Othman, A.-K.; Julai, N.; Yi, S.S. Designing a control system based on SOC estimation of BMS for PV-Solar system. Int. J. Integr. Eng. 2020, 12, 148–157. [Google Scholar] [CrossRef]
- Qays, O.; Yasmin, F. Renewable energy production based on solar power and magnetic field prototype in Bangladesh. Int. J. Appl. Power Eng. 2020, 8, 29–35. [Google Scholar] [CrossRef]
- Ohirul Qays, M.; Buswig, Y.; Hossain, M.L.; Abu-Siada, A. Active Charge Balancing Strategy Using the State of Charge Estimation Technique for a PV-Battery Hybrid System. Energies 2020, 13, 3434. [Google Scholar] [CrossRef]
- Qays, O.; Buswig, Y.; Hossain, M.L.H.; Abu-Siada, A. Recent progress and future trends on state of charge estimation methods to improve battery-storage efficiency: A review. CSEE J. Power Energy Syst. 2020, 1, 1–12. [Google Scholar] [CrossRef]
- Hasan, M.M.; Abu-Siada, A.; Dahidah, M.S.A. A three-phase symmetrical DC-Link multilevel inverter with reduced number of DC Sources. IEEE Trans. Power Electron. 2018, 33, 8331–8340. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.M.; Abu-Siada, A.; Islam, S.M.; Dahidah, M.S.A. A New Cascaded Multilevel Inverter Topology with Galvanic Isolation. IEEE Trans. Ind. Appl. 2018, 54, 3463–3472. [Google Scholar] [CrossRef]
- Application of STATCOM to Improve the LVRT of DFIG during RSC Fire-through Fault|IEEE Conference Publication|IEEE Xplore. Available online: https://ieeexplore.ieee.org/document/6360266 (accessed on 29 May 2021).
- Alharbi, Y.M.; Shiddiq Yunus, A.M.; Abu-Siada, A. Application of STATCOM to improve the high-voltage-ride-through capability of wind turbine generator. In Proceedings of the 2011 IEEE PES Innovative Smart Grid Technologies, Perth, WA, Australia, 13–16 November 2011. [Google Scholar]
- Zhao, X.; Yao, C.; Zhou, Z.; Li, C.; Wang, X.; Zhu, T.; Abu-Siada, A. Experimental Evaluation of Transformer Internal Fault Detection Based on V-I Characteristics. IEEE Trans. Ind. Electron. 2020, 67, 4108–4119. [Google Scholar] [CrossRef]
- Li, Z.; Xiang, X.; Hu, T.; Abu-Siada, A.; Li, Z.; Xu, Y. An improved digital integral algorithm to enhance the measurement accuracy of Rogowski coil-based electronic transformers. Int. J. Electr. Power Energy Syst. 2020, 118, 105806. [Google Scholar] [CrossRef]
- Li, Z.; Zheng, Y.; Abu-Siada, A.; Lu, M.; Li, H.; Xu, Y. Online evaluation for the accuracy of electronic voltage transformer based on recursive principal components analysis. Energies 2020, 13, 5576. [Google Scholar] [CrossRef]
- Li, Z.; Du, Y.; Abu-Siada, A.; Bao, G.; Yu, J.; Hu, T.; Zhang, T. An Online Calibration System for Digital Input Electricity Meters Based on Improved Nuttall Window. IEEE Access 2018, 6, 71262–71270. [Google Scholar] [CrossRef]
- Li, Z.; Yu, C.; Abu-Siada, A.; Li, H.; Li, Z.; Zhang, T.; Xu, Y. An online correction system for electronic voltage transformers. Int. J. Electr. Power Energy Syst. 2021, 126, 106611. [Google Scholar] [CrossRef]
- Jabbar, W.A.; Kian, T.K.; Ramli, R.M.; Zubir, S.N.; Zamrizaman, N.S.M.; Balfaqih, M.; Shepelev, V.; Alharbi, S. Design and Fabrication of Smart Home with Internet of Things Enabled Automation System. IEEE Access 2019, 7, 144059–144074. [Google Scholar] [CrossRef]
- Singh, U.; Ansari, M.A. Smart Home Automation System Using Internet of Things. In Proceedings of the 2019 2nd International Conference on Power Energy, Environment and Intelligent Control (PEEIC), Greater Noida, India, 18–19 October 2019; pp. 144–149. [Google Scholar] [CrossRef]
Year | Reference | Focus |
---|---|---|
2016 | [29] | Monitor indoor appliances by ZigBee without actual implementation |
2016 | [30] | Indoor energy management by Bluetooth of a short range coverage |
2017 | [31] | Monitor indoor appliances by Bluetooth of a short range coverage |
2018 | [32] | Monitor home temperature and humidity |
2020 | [33] | Monitor home appliances by IoT |
2021 | [34] | IoT-aided home energy management |
2021 | Proposed model | IoT-based smart household distribution board design |
Reference | Year | Communication | Controller | User Interface | Applications | Time Span (s) | Cost (US $) |
---|---|---|---|---|---|---|---|
[60] | 2018 | Wi-Fi | NodeMCU | Web-Based, Mobile App | Home appliances monitoring | - | - |
[61] | 2019 | Wi-Fi | NodeMCU | Web-Based | Control indoor appliances | - | - |
[33] | 2020 | GSM | Raspberry PI, GSM Module | GUI-based, Mobile App | Home appliances monitoring | 30 | - |
[34] | 2021 | Wi-Fi | Raspberry PI, ESP8266 | Web-Based, Mobile App | Home security, energy management monitoring | 15 | 140 |
Proposed Model in this paper | 2021 | Wi-Fi | Arduino, ESP8266 | Web-Based, Mobile App | Home appliances monitoring, energy management | 15 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, M.M.; Qays, M.O.; Abu-Siada, A.; Muyeen, S.M.; Hossain, M.L. Cost-Effective Design of IoT-Based Smart Household Distribution System. Designs 2021, 5, 55. https://doi.org/10.3390/designs5030055
Ahmed MM, Qays MO, Abu-Siada A, Muyeen SM, Hossain ML. Cost-Effective Design of IoT-Based Smart Household Distribution System. Designs. 2021; 5(3):55. https://doi.org/10.3390/designs5030055
Chicago/Turabian StyleAhmed, Musse Mohamud, Md Ohirul Qays, Ahmed Abu-Siada, S. M. Muyeen, and Md Liton Hossain. 2021. "Cost-Effective Design of IoT-Based Smart Household Distribution System" Designs 5, no. 3: 55. https://doi.org/10.3390/designs5030055
APA StyleAhmed, M. M., Qays, M. O., Abu-Siada, A., Muyeen, S. M., & Hossain, M. L. (2021). Cost-Effective Design of IoT-Based Smart Household Distribution System. Designs, 5(3), 55. https://doi.org/10.3390/designs5030055