Combat Sports as a Model for Measuring the Effects of Repeated Head Impacts on Autonomic Brain Function: A Brief Report of Pilot Data
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Limitations
6. Conclusions
7. Declarations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hyder, A.A.; Wunderlich, C.A.; Puvanachandra, P.; Gururaj, G.; Kobusingye, O.C. The impact of traumatic brain injuries: A global perspective. NeuroRehabilitation 2007, 22, 341–353. [Google Scholar] [CrossRef] [PubMed]
- Turk, K.W.; Budson, A.E. Chronic traumatic encephalopathy. Contin. Lifelong Learn. Neurol. 2019, 25, 187–207. [Google Scholar] [CrossRef] [PubMed]
- McKee, A.; Alosco, M.; Huber, B. Repetitive head impacts and chronic traumatic encephalopathy. Neurosurg. Clin. N. Am. 2016, 27, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Mishra, V.R.; Sreenivasan, K.R.; Zhuang, X.; Yang, Z.; Cordes, D.; Banks, S.J.; Bernick, C. Understanding white matter structural connectivity differences between cognitively impaired and nonimpaired active professional fighters. Hum. Brain Mapp. 2019, 40, 5108–5122. [Google Scholar] [CrossRef] [PubMed]
- Bernick, C.; Shan, G.; Zetterberg, H.; Banks, S.; Mishra, V.R.; Bekris, L.; Leverenz, J.B.; Blennow, K. Longitudinal change in regional brain volumes with exposure to repetitive head impacts. Neurology 2020, 94, e232–e240. [Google Scholar] [CrossRef]
- Di Virgilio, T.G.; Ietswaart, M.; Wilson, L.; Donaldson, D.I.; Hunter, A.M. Understanding the consequences of repetitive subconcussive head impacts in sport: Brain changes and dampened motor control are seen after boxing practice. Front. Hum. Neurosci. 2019, 13, 294. [Google Scholar] [CrossRef]
- Baugh, C.M.; Stamm, J.M.; Riley, D.O.; Gavett, B.E.; Shenton, M.E.; Lin, A.; Nowinski, C.J.; Cantu, R.C.; McKee, A.C.; Stern, R.A. Chronic traumatic encephalopathy: Neurodegeneration following repetitive concussive and subconcussive brain trauma. Brain Imaging Behav. 2012, 6, 244–254. [Google Scholar] [CrossRef]
- DCMS. Concussion in Sport: Third Report of Session 2021–2022; Parliamentary House of Commons: London, UK, 2021. [Google Scholar]
- Galetta, K.M.; Brandes, L.E.; Maki, K.; Dziemianowicz, M.S.; Laudano, E.; Allen, M.; Lawler, K.; Sennett, B.; Wiebe, D.; Devick, S.; et al. The King–Devick test and sports-related concussion: Study of a rapid visual screening tool in a collegiate cohort. J. Neurol. Sci. 2011, 309, 34–39. [Google Scholar] [CrossRef]
- Pearson, B.C.; Armitage, K.R.; Horner, C.W.M.; Carpenter, R.H.S. Saccadometry: The possible application of latency distribution measurement for monitoring concussion. Br. J. Sports Med. 2007, 41, 610–612. [Google Scholar] [CrossRef]
- Hubbard, R.; Stringer, G.; Peterson, K.; Carneiro, M.R.F.V.; Finnoff, J.T.; Savica, R. The King-Devick test in mixed martial arts: The immediate consequences of knock-outs, technical knock-outs, and chokes on brain functions. Brain Inj. 2018, 33, 349–354. [Google Scholar] [CrossRef]
- De Beaumont, L.; Tremblay, S.; Henry, L.C.; Poirier, J.; Lassonde, M.; Théoret, H. Motor system alterations in retired former athletes: The role of aging and concussion history. BMC Neurol. 2013, 13, 109. [Google Scholar] [CrossRef] [PubMed]
- Tjarks, B.J.; Dorman, J.C.; Valentine, V.D.; Munce, T.A.; Thompson, P.A.; Kindt, S.L.; Bergeron, M.F. Comparison and utility of King-Devick and ImPACT® composite scores in adolescent concussion patients. J. Neurol. Sci. 2013, 334, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Tomar, G.S.; Singh, G.P.; Lahkar, D.; Sengar, K.; Nigam, R.; Mohan, M.; Anindya, R. New biomarkers in brain trauma. Clin. Chim. Acta 2018, 487, 325–329. [Google Scholar] [CrossRef] [PubMed]
- Venkatraman, J.; Kallakuri, S.; Perrine, S.; Bir, C. Repetitive Sub-Concussive Impacts Induce Inflammation-Implications for Innocuous Head Impacts in Sports; The Ohio State University Injury Biomechanics Symposium. 2022. Available online: https://ibrc.osu.edu/wp-content/uploads/2022/04/Venkatraman-et-al-1.pdf (accessed on 12 April 2023).
- Marshall, M.; Deo, R.; Childs, C.; Ali, A. Feasibility and Variability of Automated Pupillometry Among Stroke Patients and Healthy Participants: Potential Implications for Clinical Practice. J. Neurosci. Nurs. 2019, 51, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Ciuffreda, K.J.; Joshi, N.R.; Truong, J.Q. Understanding the effects of mild traumatic brain injury on the pupillary light reflex. Concussion 2017, 2, CNC36. [Google Scholar] [CrossRef] [PubMed]
- Thakur, B.; Nadim, H.; Atem, F.; Stutzman, S.E.; Olson, D.M. Dilation velocity is associated with Glasgow Coma Scale scores in patients with brain injury. Brain Inj. 2020, 35, 114–118. [Google Scholar] [CrossRef]
- Capó-Aponte, J.; A Beltran, T.; Walsh, D.V.; Cole, W.R.; Dumayas, J.Y. Validation of Visual Objective Biomarkers for Acute Concussion. Mil. Med. 2018, 183, 9–17. [Google Scholar] [CrossRef]
- Lussier, B.L.; Stutzman, S.E.; Atem, F.; Venkatachalam, A.; Perera, A.C.; Barnes, A.; Aiyagari, V.; Olson, D. Distributions and Reference Ranges for Automated Pupillometer Values in Neurocritical Care Patients. J. Neurosci. Nurs. 2019, 51, 335–340. [Google Scholar] [CrossRef]
- Teixeira, T.L.; Peluso, L.; Banco, P.; Njimi, H.; Abi-Khalil, L.; Pillajo, M.C.; Schuind, S.; Creteur, J.; Bouzat, P.; Taccone, F.S. Early Pupillometry Assessment in Traumatic Brain Injury Patients: A Retrospective Study. Brain Sci. 2021, 11, 1657. [Google Scholar] [CrossRef]
- Kirk, C.; Langan-Evans, C.; Clark, D.; Morton, J. Quantification of training load distribution in mixed martial arts athletes: A lack of periodisation and load management. PLoS ONE 2021, 16, e0251266. [Google Scholar] [CrossRef]
- Follmer, B.; Varga, A.A.; Zehr, E.P. Understanding concussion knowledge and behavior among mixed martial arts, boxing, kickboxing, and Muay Thai athletes and coaches. Physician Sportsmed. 2020, 48, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, H.M.; da Costa, R.M. Pupillary light reflex as a diagnostic aid from computational viewpoint: A systematic literature review. J. Biomed. Inform. 2021, 117, 103757. [Google Scholar] [CrossRef] [PubMed]
- Traylor, J.I.; El Ahmadieh, T.Y.; Bedros, N.M.; Al Adli, N.; Stutzman, S.E.; Venkatachalam, A.M.; Pernik, M.N.; Collum, C.M.; Douglas, P.M.; Aiyagari, V.; et al. Quantitative pupillometry in patients with traumatic brain injury and loss of consciousness: A prospective pilot study. J. Clin. Neurosci. 2021, 91, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Wetzels, R.; Wagenmakers, E.-J. A default Bayesian hypothesis test for correlations and partial correlations. Psychon. Bull. Rev. 2012, 19, 1057–1064. [Google Scholar] [CrossRef]
- Capó-Aponte, J.; Urosevich, T.; Walsh, D.; Temme, L.; Tarbett, A. Pupillary light reflex as an objective biomarker for early identification of blast-induced mTBI. J. Spine S 2013, 4, 1–4. [Google Scholar]
- Larson, M.; Behrends, M. Portable infrared pupillometry: A review. Anesth. Analg. 2015, 120, 1242–1253. [Google Scholar] [CrossRef]
- Tiernan, S.; Meagher, A.; O’sullivan, D.; O’keeffe, E.; Kelly, E.; Wallace, E.; Doherty, C.P.; Campbell, M.; Liu, Y.; Domel, A.G. Concussion and the severity of head impacts in mixed martial arts. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2020, 234, 1472–1483. [Google Scholar] [CrossRef]
- Tiernan, S.; Meagher, A.; O’sullivan, D.; O’kelly, E. Finite element simulation of head impacts in mixed martial arts. Comput. Methods Biomech. Biomed. Eng. 2020, 24, 278–288. [Google Scholar] [CrossRef]
- Joseph, J.R.; Swallow, J.S.; Willsey, K.; Almeida, A.A.; Lorincz, M.T.; Fraumann, R.K.; Oppenlander, M.E.; Szerlip, N.J.; Broglio, S.P. Pupillary changes after clinically asymptomatic high-acceleration head impacts in high school football athletes. J. Neurosurg. 2020, 133, 1886–1891. [Google Scholar] [CrossRef]
- Kuwamizu, R.; Yamazaki, Y.; Aoike, N.; Ochi, G.; Suwabe, K.; Soya, H. Pupil-linked arousal with very light exercise: Pattern of pupil dilation during graded exercise. J. Physiol. Sci. 2022, 72, 23. [Google Scholar] [CrossRef]
- Pan, J.; Klímová, M.; McGuire, J.T.; Ling, S. Arousal-based pupil modulation is dictated by luminance. Sci. Rep. 2022, 12, 1390. [Google Scholar] [CrossRef] [PubMed]
- Bradley, M.M.; Miccoli, L.; Escrig, M.A.; Lang, P.J. The pupil as a measure of emotional arousal and autonomic activation. Psychophysiology 2008, 45, 602–607. [Google Scholar] [CrossRef]
- Petersen, C.; Lindsay, A. Movement and physiological demands of amateur mixed martial art fighting. J. Sport Exerc. Sci. 2020, 4, 40–43. [Google Scholar]
- Thiagarajan, P.; Ciuffreda, K.J. Pupillary responses to light in chronic non-blast-induced mTBI. Brain Inj. 2015, 29, 1420–1425. [Google Scholar] [CrossRef]
- Tekin, K.; Sekeroglu, M.A.; Kiziltoprak, H.; Doguizi, S.; Inanc, M.; Yilmazbas, P. Static and dynamic pupillometry data of healthy individuals. Clin. Exp. Optom. 2018, 101, 659–665. [Google Scholar] [CrossRef] [PubMed]
- Shin, W.; Mahmoud, S.Y.; Sakaie, K.; Banks, S.J.; Lowe, M.J.; Phillips, M.; Modic, M.T.; Bernick, C. Diffusion Measures Indicate Fight Exposure-Related Damage to Cerebral White Matter in Boxers and Mixed Martial Arts Fighters. Am. J. Neuroradiol. 2013, 35, 285–290. [Google Scholar] [CrossRef]
- Bryant, B.R.; Narapareddy, B.R.; Bray, M.J.C.; Richey, L.N.; Krieg, A.; Shan, G.; Peters, M.E.; Bernick, C.B. The effect of age of first exposure to competitive fighting on cognitive and other neuropsychiatric symptoms and brain volume. Int. Rev. Psychiatry 2019, 32, 89–95. [Google Scholar] [CrossRef]
- Hsu, J.; Stec, M.; Ranaivo, H.R.; Srdanovic, N.; Kurup, S.P. Concussion Alters Dynamic Pupillary Light Responses in Children. J. Child Neurol. 2020, 36, 195–202. [Google Scholar] [CrossRef]
- Boulter, J.; Shields, M.; Meister, M.; Murtha, G.; Curry, B.; Dengler, B. The expanding role of quantitative pupillometry in the evalu-ation and management of traumatic brain injury. Front. Neurol. 2021, 12, 685313. [Google Scholar] [CrossRef]
- Master, C.L.; Podolak, O.E.; Ciuffreda, K.J.; Metzger, K.B.; Joshi, N.R.; McDonald, C.C.; Margulies, S.S.; Grady, M.F.; Arbogast, K.B. Utility of Pupillary Light Reflex Metrics as a Physiologic Biomarker for Adolescent Sport-Related Concussion. JAMA Ophthalmol. 2020, 138, 1135. [Google Scholar] [CrossRef]
- Shoemaker, M.J.; Curtis, A.B.; Vangsnes, E.; Dickinson, M.G. Clinically Meaningful Change Estimates for the Six-Minute Walk Test and Daily Activity in Individuals with Chronic Heart Failure. Cardiopulm. Phys. Ther. J. 2013, 24, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Truong, J.Q.; Ciuffreda, K.J. Comparison of pupillary dynamics to light in the mild traumatic brain injury (mTBI) and normal populations. Brain Inj. 2016, 30, 1378–1389. [Google Scholar] [CrossRef] [PubMed]
- Nyancho, D.; Atem, F.D.; Venkatachalam, A.M.; Barnes, A.; Hill, M.; Traylor, J.I.; Stutzman, S.E.; Bedros, N.; Aiyagari, V.; Aoun, S.G. Anisocoria correlates with injury severity and out-comes after blunt traumatic brain injury. J. Neurosci. Nurs. 2021, 53, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Truong, J.Q.; Ciuffreda, K.J. Quantifying pupillary asymmetry through objective binocular pupillometry in the normal and mild traumatic brain injury (mTBI) populations. Brain Inj. 2016, 30, 1372–1377. [Google Scholar] [CrossRef] [PubMed]
- Wagenmakers, E.-J.; Verhagen, J.; Ly, A.; Bakker, M.; Lee, M.D.; Matzke, D.; Rouder, J.N.; Morey, R.D. A power fallacy. Behav. Res. Methods 2015, 47, 913–917. [Google Scholar] [CrossRef]
- Kruschke, J.K. What to believe: Bayesian methods for data analysis. Trends Cogn. Sci. 2010, 14, 293–300. [Google Scholar] [CrossRef]
Pre | Post | |
---|---|---|
NPi (AU) * | 4.1 ± 0.3 | 4.2 ± 0.3 |
Maximum pupil size (mm) * | 5.8 ± 1.1 | 5.4 ± 1 |
Minimum pupil size (mm) * | 3.8 ± 0.9 | 3.4 ± 0.7 |
Mean constriction velocity (mm∙s−1) | 2.9 ± 0.4 | 3.2 ± 0.6 |
Maximum constriction velocity mm∙s−1) | 4.5 ± 0.7 | 5.1 ± 0.9 |
Dilation velocity (mm∙s−1) | 1.2 ± 0.2 | 1.4 ± 0.2 |
Latency (s) * | 0.23 ± 0.02 | 0.20 ± 0.01 |
Absolute amplitude (mm) | 1.96 ± 0.28 | 1.93 ± 0.39 |
Relative amplitude (%) | 34.3 ± 3.6 | 36 ± 2.6 |
Pre | Post | |||
---|---|---|---|---|
Left Eye | Right Eye | Left Eye | Right Eye | |
NPi (AU) | 4.07 ± 0.3 | 4 ± 0.4 | 4.2 ± 0.3 | 4.2 ± 0.3 |
Maximum pupil size (mm) | 5.7 ± 1.1 | 5.9 ± 1 | 5.2 ± 1 | 5.6 ± 1 * |
Minimum pupil size (mm) | 3.7 ± 0.9 | 3.9 ± 0.9 * | 3.3 ± 0.7 | 3.5 ± 0.7 * |
Mean constriction velocity (mm∙s−1) | 2.9 ± 0.4 | 3 ± 0.3 | 2.9 ± 0.8 | 3.5 ± 0.6 |
Maximum constriction velocity (mm∙s−1) | 4.3 ± 0.7 | 4.6 ± 0.7 | 4.8 ± 1.1 | 5.4 ± 0.8 * |
Dilation velocity (mm∙s−1) | 1.1 ± 0.3 | 1.3 ± 0.2 | 1.4 ± 0.2 | 1.4 ± 0.2 |
Latency (s) | 0.22 ± 0.03 | 0.24 ± 0.04 | 0.20 ± 0.02 | 0.21 ± 0.02 |
Absolute amplitude (mm) | 1.93 ± 0.36 | 2 ± 0.25 | 1.85 ± 0.47 | 2.02 ± 0.34 |
Relative amplitude (%) | 34.4 ± 3.6 | 34.1 ± 4.3 | 35.6 ± 3.8 | 36.4 ± 2.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirk, C.; Childs, C. Combat Sports as a Model for Measuring the Effects of Repeated Head Impacts on Autonomic Brain Function: A Brief Report of Pilot Data. Vision 2023, 7, 39. https://doi.org/10.3390/vision7020039
Kirk C, Childs C. Combat Sports as a Model for Measuring the Effects of Repeated Head Impacts on Autonomic Brain Function: A Brief Report of Pilot Data. Vision. 2023; 7(2):39. https://doi.org/10.3390/vision7020039
Chicago/Turabian StyleKirk, Christopher, and Charmaine Childs. 2023. "Combat Sports as a Model for Measuring the Effects of Repeated Head Impacts on Autonomic Brain Function: A Brief Report of Pilot Data" Vision 7, no. 2: 39. https://doi.org/10.3390/vision7020039
APA StyleKirk, C., & Childs, C. (2023). Combat Sports as a Model for Measuring the Effects of Repeated Head Impacts on Autonomic Brain Function: A Brief Report of Pilot Data. Vision, 7(2), 39. https://doi.org/10.3390/vision7020039