Predicting Residual Astigmatism in Cataract Surgery
Abstract
:1. Introduction
2. Analysis Method for Astigmatism
3. Prediction of Residual Astigmatism
4. Factors Affecting Prediction Accuracy
4.1. Corneal Astigmatism Examination
4.2. Surgical Technique
4.3. Dry Eye
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hirnschall, N.; Hoffmann, P.C.; Draschl, P.; Maedel, S.; Findl, O. Evaluation of Factors Influencing the Remaining Astigmatism after Toric Intraocular Lens Implantation. J. Refract. Surg. 2014, 30, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Villegas, E.A.; Alcon, E.; Artal, P. Minimum Amount of Astigmatism that should be Corrected. J. Cataract. Refract. Surg. 2014, 40, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Villegas, E.A.; Gonzalez, C.; Bourdoncle, B.; Bonnin, T.; Artal, P. Correlation between Optical and Psychophysical Parameters as a Function of Defocus. Optom. Vis. Sci. 2002, 79, 60–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, K.Y.; Yang, H.; Kim, W.K.; Nam, S.M. Calculations of Actual Corneal Astigmatism Using Total Corneal Refractive Power before and after Myopic Keratorefractive Surgery. PLoS ONE 2017, 12, e0175268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holladay, J.T.; Hill, W.E.; Steinmueller, A. Corneal Power Measurements Using Scheimpflug Imaging in Eyes with Prior Corneal Refractive Surgery. J. Refract. Surg. 2009, 25, 862–868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kessel, L.; Andresen, J.; Tendal, B.; Erngaard, D.; Flesner, P.; Hjortdal, J. Toric Intraocular Lenses in the Correction of Astigmatism during Cataract Surgery: A Systematic Review and Meta-analysis. Ophthalmology 2016, 123, 275–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, K.; Jolly, J.K.; Mall, S.P.; Haldar, S.; Rosen, P.H.; MacLaren, R.E. Real-world Refractive Outcomes of Toric Intraocular Lens Implantation in a United Kingdom National Health Service Setting. BMC Ophthalmol. 2018, 18, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oshika, T.; Nakano, S.; Fujita, Y.; Nomura, Y.; Inoue, Y.; Takehara, H.; Miyata, K.; Honbou, M.; Sugita, T.; Kaneko, T. Long-term Outcomes of Cataract Surgery with Toric Intraocular Lens Implantation by the Type of Preoperative Astigmatism. Sci. Rep. 2022, 12, 8457. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, A.; Takayanagi, Y. Vector Analysis Investigation of Toric Intraocular Lens with No Deviation from the Intended Axis. Clin. Ophthalmol. 2016, 10, 2199–2203. [Google Scholar] [CrossRef] [Green Version]
- Abulafia, A.; Koch, D.D.; Holladay, J.T.; Wang, L.; Hill, W. Pursuing Perfection in IOL Calculations. IV. Rethinking Astigmatism Analysis for IOLbased Surgery: Suggested Terminology, Analysis, and Standards for Outcome Reports [guest editorial]. J. Cataract. Refract. Surg. 2018, 44, 1169–1174. [Google Scholar] [CrossRef] [PubMed]
- Eydelman, M.B.; Drum, B.; Holladay, J.; Hilmantel, G.; Kezirian, G.; Durrie, D.; Stulting, R.D.; Sanders, D.; Wong, B. Standardized Analyses of Correction of Astigmatism by Laser Systems that Reshape the Cornea. J. Refract. Surg. 2006, 22, 81–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thibos, L.N.; Horner, D. Power Vector Analysis of the Optical Outcome of Refractive Surgery. J. Cataract. Refract. Surg. 2001, 27, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Jaffe, N.S.; Clayman, H.M. The Pathophysiology of Corneal Astigmatism after Cataract Extraction. Trans. Am. Acad. Ophthalmol. Otolaryngol. 1975, 79, OP615–OP630. [Google Scholar]
- Naeser, K. Conversion of Keratometer Readings to Polar Values. J. Cataract Refract. Surg. 1990, 16, 741–745. [Google Scholar] [CrossRef] [PubMed]
- Naeser, K.; Hjortdal, J. Multivariate Analysis of Refractive Data: Mathematics and Statistics of Spherocylinders. J. Cataract. Refract. Surg. 2001, 27, 129–142. [Google Scholar] [CrossRef] [PubMed]
- Naeser, K.; Hjortdal, J.O. Bivariate Analysis of Surgically Induced Regular Astigmatism. Mathematical Analysis and Graphical Display. Ophthalmic. Physiol. Opt. 1999, 19, 50–61. [Google Scholar] [CrossRef]
- Hayashi, K.; Yoshida, M.; Hayashi, S.; Hirata, A. Long-term Changes in the Refractive Effect of a Toric Intraocular Lens on Astigmatism Correction. Graefes. Arch. Clin. Exp. Ophthalmol. 2022, 260, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Holladay, J.T.; Moran, J.R.; Kezirian, G.M. Analysis of Aggregate Surgically Induced Refractive Change, Prediction Error, and Intraocular Astigmatism. J. Cataract. Refract. Surg. 2001, 27, 61–79. [Google Scholar] [CrossRef] [PubMed]
- Javal, E. Memoires d’Ophtalmometrie: Annotes et Precedes d’une Introduction; Masson, G., Ed.; Forgotten Books: Paris, France, 1890; pp. 130–131. [Google Scholar]
- Grosvenor, T.; Ratnakaram, R. Is the Relation between Keratometric Astigmatism and Refractive Astigmatism Linear? Optom. Vis. Sci. 1990, 67, 606–609. [Google Scholar] [CrossRef]
- Teus, M.A.; Arruabarrena, C.; Hernandez-Verdejo, J.L.; Sales-Sanz, A.; Sales-Sanz, M. Correlation between Keratometric and Refractive Astigmatism in Pseudophakic Eyes. J. Cataract. Refract. Surg. 2010, 36, 1671–1675. [Google Scholar] [CrossRef]
- Tejedor, J.; Guirao, A. Agreement between Refractive and Corneal Astigmatism in Pseudophakic Eyes. Cornea 2013, 32, 783–790. [Google Scholar] [CrossRef]
- Leffler, C.T.; Javey, G.; Mahmood, M.A. Prediction of Postoperative Astigmatism in Cataract Surgery. Can. J. Ophthalmol. 2008, 43, 551–554. [Google Scholar] [CrossRef]
- Kawahara, A.; Takayanagi, Y. Comparison of Refractive and Keratometric Astigmatism after Microincision Cataract Surgery. J. Cataract. Refract. Surg. 2017, 43, 1050–1053. [Google Scholar] [CrossRef]
- Kawahara, A.; Sato, T.; Hayashi, K. Multivariate Regression Analysis to Predict Postoperative Refractive Astigmatism in Cataract Surgery. J. Ophthalmol. 2020, 2020, 9842803. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, A. Prediction of Postoperative Refractive Astigmatism before Toric Intraocular Lens Implantation. BMC Ophthalmol. 2021, 21, 202. [Google Scholar] [CrossRef]
- Abulafia, A.; Koch, D.D.; Wang, L.; Hill, W.E.; Assia, E.I.; Franchina, M.; Barrett, G.D. New Regression Formula for Toric Intraocular Lens Calculations. J. Cataract. Refract. Surg. 2016, 42, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; Sato, T.; Sasaki, H.; Hirata, A.; Yoshimura, K. Sex-related Differences in Corneal Astigmatism and Shape with Age. J. Cataract. Refract. Surg. 2018, 44, 1130–1139. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; Hayashi, H.; Hayashi, F. Topographic Analysis of the Changes in Corneal Shape Due to Aging. Cornea 1995, 14, 527–532. [Google Scholar] [CrossRef] [PubMed]
- Asano, K.; Nomura, H.; Iwano, M.; Ando, F.; Niino, N.; Shimokata, H.; Miyake, Y. Relationship between Astigmatism and Aging in Middle-aged and Elderly Japanese. Jpn. J. Ophthalmol. 2005, 49, 127–133. [Google Scholar] [CrossRef]
- Hoffmann, P.C.; Hutz, W.W. Analysis of Biometry and Prevalence Data for Corneal Astigmatism in 23239 Eyes. J. Cataract. Refract. Surg. 2010, 36, 1479–1485. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.D.; Liou, S.W.; Tsai, R.J.F.; Tsai, C.Y. Effects of Aging on Anterior and Posterior Corneal Astigmatism. Cornea 2010, 29, 632–637. [Google Scholar] [CrossRef]
- Richdale, K.; Bullimore, M.A.; Zadnik, K. Lens Thickness with Age and Accommodation by Optical Coherence Tomography. Ophthalmic. Physiol. Opt. 2008, 28, 441–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holladay, J.T.; Pettit, G. Improving Toric Intraocular Lens Calculations Using Total Surgically Induced Astigmatism for a 2.5 mm Temporal Incision. J. Cataract. Refract. Surg. 2019, 45, 272–283. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.D.; Tsai, C.Y.; Liou, S.W. Accuracy of Corneal Astigmatism Estimation by Neglecting the Posterior Corneal Surface Measurement. Am. J. Ophthalmol. 2009, 147, 788–795. [Google Scholar] [CrossRef] [PubMed]
- Koch, D.D.; Ali, S.F.; Weikert, M.P.; Shirayama, M.; Jenkins, R.; Wang, L. Contribution of Posterior Corneal Astigmatism to Total Corneal Astigmatism. J. Cataract. Refract. Surg. 2012, 38, 2080–2087. [Google Scholar] [CrossRef] [PubMed]
- Ueno, Y.; Hiraoka, T.; Beheregaray, S.; Miyazaki, M.; Ito, M.; Oshika, T. Age-related Changes in Anterior, Posterior, and Total Corneal Astigmatism. J. Refract. Surg. 2014, 30, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Goggin, M.; Zamora-Alejo, K.; Esterman, A.; van Zyl, L. Adjustment of Anterior Corneal Astigmatism Values to Incorporate the Likely Effect of Posterior Corneal Curvature for Toric Intraocular Lens Calculation. J. Refract. Surg. 2015, 31, 98–102. [Google Scholar] [CrossRef] [Green Version]
- Goggin, M.; van Zyl, L.; Caputo, S.; Esterman, A. Outcome of Adjustment for Posterior Corneal Curvature in Toric Intraocular Lens Calculation and Selection. J. Cataract. Refract. Surg. 2016, 42, 1441–1448. [Google Scholar] [CrossRef]
- Goggin, M.; Patel, I.; Billing, K.; Esterman, A. Variation in Surgically Induced Astigmatism Estimation Due to Test-to-test Variations in Keratometry. J. Cataract. Refract. Surg. 2010, 36, 1792–1793. [Google Scholar] [CrossRef]
- Módis, L., Jr.; Szalai, E.; Kolozsvári, B.; Németh, G.; Vajas, A.; Berta, A. Keratometry Evaluations with the Pentacam High Resolution in Comparison with the Automated Keratometry and Conventional Corneal Topography. Cornea 2012, 31, 36–41. [Google Scholar] [CrossRef]
- Savini, G.; Schiano-Lomoriello, D.; Hoffer, K.J. Repeatability of Automatic Measurements by a New Anterior Segment Optical Coherence Tomographer Combined with Placido Topography and Agreement with 2 Scheimpflug Cameras. J. Cataract. Refract. Surg. 2018, 44, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, P.C.; Abraham, M.; Hirnschall, N.; Findl, O. Prediction of Residual Astigmatism after Cataract Surgery Using Swept Source Fourier Domain Optical Coherence Tomography. Curr. Eye. Res. 2014, 39, 1178–1186. [Google Scholar] [CrossRef]
- Sato, T.; Shibata, S.; Yoshida, M.; Hayashi, K. Short-term Dynamics after Single- and Three-piece Acrylic Intraocular Lens Implantation: A Swept-source Anterior Segment Optical Coherence Tomography Study. Sci. Rep. 2018, 8, 10230. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, K.; Yoshida, M.; Hirata, A.; Yoshimura, K. Changes in Shape and Astigmatism of Total, Anterior, and Posterior Cornea after Long versus Short Clear Corneal Incision Cataract Surgery. J. Cataract. Refract. Surg. 2018, 44, 39–49. [Google Scholar] [CrossRef]
- Hayashi, K.; Sato, T.; Yoshida, M.; Yoshimura, K. Corneal Shape Changes of the Total and Posterior Cornea after Temporal versus Nasal Clear Corneal Incision Cataract Surgery. Br. J. Ophthalmol. 2019, 103, 181–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawahara, A.; Kurosaka, D.; Yoshida, A. Comparison of surgically induced astigmatism between one-handed and two-handed cataract surgery techniques. Clin. Ophthalmol. 2013, 7, 1967–1972. [Google Scholar] [CrossRef] [Green Version]
- Zhong, X.; Long, E.; Chen, W.; Xiang, W.; Liu, Z.; Chen, H.; Chen, J.; Lin, Z.; Lin, H.; Chen, W. Comparisons of the In-the-bag Stabilities of Single-piece and Three-piece Intraocular Lenses for Age-related Cataract Patients: A Randomized Controlled Trial. BMC. Ophthalmol. 2016, 16, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Findl, O.; Hirnschall, N.; Nishi, Y.; Maurino, V.; Crnej, A. Capsular Bag Performance of a Hydrophobic Acrylic 1-piece Intraocular Lens. J. Cataract. Refract. Surg. 2015, 41, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; Hayashi, H. Comparison of the Stability of 1-piece and 3-piece Acrylic Intraocular Lenses in the Lens Capsule. J. Cataract. Refract. Surg. 2005, 31, 337–342. [Google Scholar] [CrossRef]
- Koh, S.; Maeda, N.; Ogawa, M.; Asonuma, S.; Takai, Y.; Maruyama, K.; Klyce, S.D.; Nishida, K. Fourier Analysis of Corneal Irregular Astigmatism Due to The Anterior Corneal Surface in Dry Eye. Eye Contact. Lens. 2019, 45, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Koh, S.; Inoue, Y.; Ochi, S.; Takai, Y.; Maeda, N.; Nishida, K. Quality of Vision in Eyes with Epiphora Undergoing Lacrimal Passage Intubation. Am. J. Ophthalmol. 2017, 181, 71–78. [Google Scholar] [CrossRef]
- Chang, Y.H.; Pu, C.; Lin, K.K.; Lee, J.S.; Hou, C.H. Prediction of Residual Astigmatism in Cataract Surgery at Different Diameter Zones Using Optical Biometry Measurement. Sci. Rep. 2022, 12, 4305. [Google Scholar] [CrossRef] [PubMed]
- Epitropoulos, A.T.; Matossian, C.; Berdy, G.J.; Malhotra, R.P.; Potvin, R. Effect of tear osmolarity on repeatability of keratometry for cataract surgery planning. J. Cataract. Refract. Surg. 2015, 41, 1672–1677. [Google Scholar] [CrossRef] [PubMed]
- Starr, C.E.; Gupta, P.K.; Farid, M.; Beckman, K.A.; Chan, C.C.; Yeu, E.; Gomes, J.A.P.; Ayers, B.D.; Berdahl, J.P.; Holland, E.J.; et al. An Algorithm for the Preoperative Diagnosis and Treatment of Ocular Surface Disorders. J. Cataract. Refract. Surg. 2019, 45, 669–684. [Google Scholar] [CrossRef]
- Koch, D.D.; Jenkins, R.B.; Weikert, M.P.; Yeu, E.; Wang, L. Correcting Astigmatism with Toric Intraocular Lenses: Effect of Posterior Corneal Astigmatism. J. Cataract. Refract. Surg. 2013, 39, 1803–1809. [Google Scholar] [CrossRef]
Author | Regression Analysis | R2 Value | Predictor | |
---|---|---|---|---|
WTR/ATR Astigmatism Component | Oblique Astigmatism Component | |||
Teus et al. 2010 [21] | Univariate | 0.29 | 0.36 | |
Tejedor et al. 2013 [22] | Univariate | 0.49 * 0.13 | 0.42 * 0.20 | |
Leffler et al. 2008 [23] | Multivariate | 0.51 | 0.17 | Corneal and refractive astigmatism |
Kawahara et al. 2017 [24] | Multivariate | 0.85 | 0.70 | Corneal and refractive astigmatism |
Kawahara et al. 2020 [25] | Multivariate | 0.55 | 0.63 | Corneal astigmatism, age, and lens thickness |
Kawahara 2021 [26] | Multivariate | 0.96 | 0.72 | Corneal and refractive astigmatism |
Author | Measured Corneal Astigmatism | Corneal Astigmatism Measurement Equipment | Surgical Technique | |
---|---|---|---|---|
Incision | IOL | |||
Teus et al. 2010 [21] | Anterior | Keratometer | 3.2 mm corneal incision (Side ports unknown) | 3-piece aclylic |
Tejedor et al. 2013 [22] | Anterior (keratometer) and total (Scheimpflug camera) | Keratometerand Scheimpflug camera | 2.75 mm corneal incision (Side ports unknown) | 1-piece aclylic |
Leffler et al. 2008 [23] | Anterior | Keratometer | Scleral or corneal incision (Size and side ports unknown) | Unknown |
Kawahara et al. 2017 [24] | Anterior | Keratometer | 2.0 mm corneal incision and 1 side port | 1-piece aclylic |
Kawahara et al. 2020 [25] | Total | Scheimpflug camera | 2.4 mm corneal incision and 2 side port | 1-piece aclylic |
Kawahara 2021 [26] | Total | Anterior segment OCT | 2.4 mm corneal incision and 1 side port | 1-piece aclylic |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawahara, A. Predicting Residual Astigmatism in Cataract Surgery. Vision 2022, 6, 70. https://doi.org/10.3390/vision6040070
Kawahara A. Predicting Residual Astigmatism in Cataract Surgery. Vision. 2022; 6(4):70. https://doi.org/10.3390/vision6040070
Chicago/Turabian StyleKawahara, Atsushi. 2022. "Predicting Residual Astigmatism in Cataract Surgery" Vision 6, no. 4: 70. https://doi.org/10.3390/vision6040070
APA StyleKawahara, A. (2022). Predicting Residual Astigmatism in Cataract Surgery. Vision, 6(4), 70. https://doi.org/10.3390/vision6040070