Perspectives on the Combined Use of Electric Brain Stimulation and Perceptual Learning in Vision
Abstract
:1. Introduction
1.1. Improvements through Practice
1.2. Improvements through Electric Brain Stimulation
2. Perceptual Learning Combined with Different Types of tES
3. Time Course of Different tES Protocols
4. Mechanisms of tES
5. Perceptual Learning, tES and Clinical Populations
6. Considerations on the Use of tES with VPL
7. Perspectives on the Combined Use of tES and VPL
- -
- Learning is a complex and dynamic process involving low-level, perceptual regions as well as higher-level, cognitive and attentional areas [6,8,31,150]; moreover, multiple mechanisms, acting in series or in parallel [10] underlie learning, potentially resulting in modifications of the functional specialization of cortical areas [151,152]. Our current understanding of brain mechanisms involved in learning conveys an image of higher sophistication than the earlier studies led us to believe. Multiple mechanisms, parallel or serial, are involved. For example, Jing and colleagues [8], using monkey electrophysiology, reported that improvements in a global form detection task were accompanied by parallel neural changes in both sensory and prefrontal areas, which exhibited different time courses within each area as the training progressed. Specifically, stimulus- and task-dependent changes emerged earlier in sensory areas (V4) than in prefrontal areas (ventrolateral prefrontal cortex) and exhibited high specificity for task and target features, while behavioral-related changes followed the opposite pattern, emerging earlier in prefrontal than in sensory areas and exhibiting larger generalization to untrained configurations. Similarly, Shibata and collaborators [10], using human neuroimaging, showed evidence for task- and stimulus-related plasticity, taking place in different regions of the occipital cortex and intraparietal sulcus, following motion-detection training. There is also evidence of different time-specific learning mechanisms. Itthipuripat and colleagues [153], using electrophysiology, suggested that learning has an initial phase dominated by an increase in attentional gain, later replaced by noise reduction mechanisms. Moreover, neuroimaging evidence suggests that VPL is characterized by dissociable neural and functional changes in the visual cortex over time [151,152,154].
- -
- tES modulates cortical excitability beyond sensory and motor areas. While the majority of tES studies has focused on motor or sensory brain regions, multiple pieces of evidence suggest that tES can modulate cortical excitability in brain regions preferentially involved in higher-level processes implicated in vision such as attention and cognition. Arif and colleagues [157] showed that occipital anodal tDCS has a polarity-dependent effect on the neural oscillations subserving attentional reorientation in adults and that such effects may be related to altered concentrations of GABA within neural networks involved in attentional reorientation. Contò and colleagues [86] showed improvements in behavior and functional connectivity between nodes of the dorsal and ventral attention network when tRNS was delivered over the intraparietal sulci during attentional training. Furthermore, long-term effects of multi-session tRNS have been reported for dorsolateral prefrontal cortex, resulting in a boost in mental arithmetic performances 6 months post-stimulation, which also correlated with an increase in activity within the stimulated area [158].
- -
- Select the stimulation protocol to optimize the behavioral outcome. Different protocols can be used to achieve different results. tRNS seems to be more effective in improving learning rate [57,74] and generalization [81,82,122] when used during training, while anodal tDCS boosts both perceptual performance and learning consolidation when used before [72] or after [73] behavioral sessions, respectively, rather than online. Similar to tRNS, tACS seems to be effective in modulating cortical excitability mainly when used online [159].
- -
- Optimize stimulus and stimulation intensity. Brain stimulation effects on behavior are dependent upon the intensity of the stimulation [67]. The optimal stimulation intensity might in turn depend on the targeted cortical region(s), the task at hand, and the participants’ individual threshold. Additionally, the size of the affected cortical and the current density are dependent on both the stimulation intensity and the size of the electrode [160]. Additionally, there is evidence of non-linear effects involving timing and dosage. Mosayebi-Samani conducted a systematic exploration of the effects of parameters manipulation on tDCS over the motor cortex [161]. The results showed non-linear effects of stimulation intensity and duration, in particular intensities of 1 and 3 mA reduced cortical excitability, while 2 mA increased it. Additionally, 1 and 3 mA stimulation for 15 min induced long-term depotentiation-like plasticity, while on the contrary, 20 min of 2 mA stimulation induced long-term potentiation-like plasticity. Agboada and colleagues (2020) compared a 15 min session of motor cortex anodal tDCS at 1 mA with a 20 min session at 3 mA [162]. When cortical excitability was measured after a single session, both protocols showed a 30 min aftereffect when compared to the sham. When a second session was delivered after a 20 min interval, the aftereffect of the 3 mA protocol lasted 2 h, while that of the 1 mA was still present after 24 h. When the second session was instead delivered 3 h after the first, no increase in cortical excitability was observed for the 3 mA, and only a minor increase was observed for the 1 mA intensity. This once again points toward non-linear effects of the numerous parameters involved in brain stimulation. Importantly, such systematic studies have not yet been conducted in the visual cortex. Further evidence supports intensity-dependent effects in tACS as well. Specifically, Johnson and colleagues (2020), using monkey single-cell recording, showed that tACS-induced modulation, in the form of phase entrainment, and increase in spike frequency, was proportional to the current intensity, with more units exhibiting modulation for higher intensities of stimulation [163]. Similarly, VPL effects are dependent upon the intensity of the stimulus; training too close to the threshold might disrupt transfer of learning [164], while providing a variety of stimulation might prevent sensory habituation [30]. In the context of stochastic resonance, both stimulus and stimulation intensity combine to produce the final behavioral outcome. To optimize such an outcome, one should carefully select and control for both, from choosing the size of the electrodes (and possibly, the electrode configuration montage; see [52,59]) and the current intensity to the experimental paradigm and features of the stimuli, such as size, orientation, contrast, speed, etc.
- -
- Understand the time course and washout of tES to optimize learning consolidation. While brain stimulation is commonly used before or during training to increase cortical excitability and to boost neural plasticity, post-stimulation effects are somehow overlooked. There is evidence of post-stimulation washout effects of tDCS [70], tACS [93] and tRNS [94,165] extending beyond the window of stimulation for over 1 h, which could potentially disrupt some of the learning gain. Thus, promoting consolidation by means of brain stimulation might produce more robust learning. Reis and colleagues [51], and more recently Yang, He and Fang [73], showed that anodal tDCS delivered after motor and visual training, respectively, led to larger learning effects than the sham.
- -
- Individual differences. Both brain stimulation and VPL are sensitive to inter-individual variability [55,166,167,168]. Several factors pertaining to subjective characteristics might play a role in the training effects, with evidence from both VPL and brain stimulation literature showing that anatomy, sex, age, and initial performance/cortical excitability baseline modulate training effects. For example, Kasten and colleagues showed a correlation between individual electric field variability and the modulatory effects of occipital tACS in increasing alpha power [169]. Similarly, Mosayebi-Samani and colleagues addressed observed inter-individual differences in tDCS-induced motor cortex excitability by estimating individual electric fields and anatomy [170]. The results showed that anatomical factors such as electrode-to-cortex distance and cortico-spinal fluid thickness negatively correlated with individual electric fields, which in turn correlated positively with tDCS cortical effects. Chaieb and colleagues [55] reported larger anodal (but not cathodal) tDCS effects in females with respect to male participants, suggesting that brain stimulation might interact with hormonal cycles. Some of the variability can be reduced following stimulation guidelines (e.g., [171]) by collecting a larger set of assessment tasks and individual difference measurements (i.e., questionnaires) and by using more sophisticated statistical models that include mediators and moderators of the effects we observe.
- -
- Understand the limitations of tES. While it is a powerful tool, tES still presents some constraints, mostly of technical nature. It is limited by coarse spatial and temporal resolution, which prevents small structures from being accurately and selectively targeted, and its shallow depth is not ideal for reaching inner structures. Moreover, despite attempts at reducing some of its adverse physical effects [172], some participants might still find it unpleasant, thus affecting compliance. Finally, it is of paramount importance to follow strict safety guidelines [171].
8. Open Questions
- -
- Lack of systematic comparison of transfer and training effects across stimulation types. Few studies looked at training effects of different stimulation protocols [57,173], or their ideal onset of stimulation with respect to training sessions [72]; however, no comparison of transfer effects has been conducted, except for studies looking at cognitive/arithmetical abilities [173] or targeting higher-level cortical regions [174]. Crucially, transfer of learning is a more relevant measure of the translational value of a technique when it comes to its rehabilitative application.
- -
- Lack of multi-site stimulation effects on learning. Particularly, electric brain stimulation delivered beyond sensory areas. This might be in part due to the use of ‘local’ and ‘sensory’ frameworks of VPL, which interpret learning effects as a product of neural plasticity changes at the early stages of sensory processing, i.e., sensory areas. However, recent results [11,13,71] and models [6] suggest a more complex scenario in which several regions, including those associated with attention, memory and cognition, can be involved in VPL.
- -
- While VPL and tES have been used to treat mild optical conditions (e.g., myopia, presbyopia) or some visual pathologies of cortical nature (e.g., amblyopia), no study thus far has investigated tES effects in severe retinal pathologies, such as those leading to loss of central vision. For central vision loss following macular degeneration, basic intervention with behavioral paradigms might not be sufficient [36,37,175]. The loss of central vision in MD forces these patients to use a peripheral retinal spot to replace the fovea; thus, any intervention in MD should consider the need for this clinical population not only to improve the detail resolution of their peripheral vision, but also to reroute their oculomotor reference and attentional system toward a peripheral region that must be repurposed to accomplish this feat.
- -
- Lack of follow-up studies to quantify and evaluate long-term effects of tES. Unlike the vast literature on the long-term effects of the use of VPL paradigms alone [3,26,175], studies looking at the lasting effects of tES and VPL together are limited (see Table 1, last column). The few studies that did conduct follow-up tests of training effects are encouraging, suggesting that the learning and transfer gains observed by the end of the training are preserved at least 3 to 6 months after the end of the studies [81,84,122] (however, see [74]), in which a subgroup of participants trained with tRNS and VPL showed lack of long-term effect at 3-month follow up.
9. Closing Remarks
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gibson, E.J. Principles of Perceptual Learning and Development; Appleton-Century Crofts: New York, NY, USA, 1969. [Google Scholar]
- Zaghi, S.; Acar, M.; Hultgren, B.; Boggio, P.S.; Fregni, F. Noninvasive brain stimulation with low-intensity electrical currents: Putative mechanisms of action for direct and alternating current stimulation. Neuroscientist 2010, 16, 285–307. [Google Scholar] [CrossRef] [PubMed]
- Sagi, D. Perceptual learning in Vision Research. Vis. Res. 2011, 51, 1552–1566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahissar, M.; Hochstein, S. The reverse hierarchy theory of visual perceptual learning. Trends Cogn. Sci. 2004, 8, 457–464. [Google Scholar] [CrossRef]
- Dosher, B.A.; Lu, Z.L. Perceptual learning reflects external noise filtering and internal noise reduction through channel reweighting. Proc. Natl. Acad. Sci. USA 1998, 95, 13988–13993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maniglia, M.; Seitz, A.R. Towards a whole brain model of Perceptual Learning. Curr. Opin. Behav. Sci. 2018, 20, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Fahle, M. Perceptual learning: A case for early selection. J. Vis. 2004, 4, 879–890. [Google Scholar] [CrossRef]
- Jing, R.; Yang, C.; Huang, X.; Li, W. Perceptual learning as a result of concerted changes in prefrontal and visual cortex. Curr. Biol. 2021, 31, 4521–4533.e3. [Google Scholar] [CrossRef]
- Sasaki, Y.; Nanez, J.E.; Watanabe, T. Advances in visual perceptual learning and plasticity. Nat. Rev. Neurosci. 2010, 11, 53–60. [Google Scholar] [CrossRef]
- Shibata, K.; Sasaki, Y.; Kawato, M.; Watanabe, T. Neuroimaging Evidence for 2 Types of Plasticity in Association with Visual Perceptual Learning. Cereb. Cortex 2016, 26, 3681–3689. [Google Scholar] [CrossRef]
- Wang, R.; Wang, J.; Zhang, J.-Y.; Xie, X.-Y.; Yang, Y.-X.; Luo, S.-H.; Yu, C.; Li, W. Perceptual learning at a conceptual level. J. Neurosci. 2016, 36, 2238–2246. [Google Scholar] [CrossRef] [Green Version]
- Wright, B.A.; Sabin, A.T.; Zhang, Y.; Marrone, N.; Fitzgerald, M.B. Enhancing perceptual learning by combining practice with periods of additional sensory stimulation. J. Neurosci. 2010, 30, 12868–12877. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.-Q.; Zhang, J.-Y.; Wang, R.; Klein, S.A.; Levi, D.M.; Yu, C. Complete transfer of perceptual learning across retinal locations enabled by double training. Curr. Biol. 2008, 18, 1922–1926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Valois, K.K. Spatial frequency adaptation can enhance contrast sensitivity. Vis. Res. 1977, 17, 1057–1065. [Google Scholar] [CrossRef]
- Fiorentini, A.; Berardi, N. Perceptual learning specific for orientation and spatial frequency. Nature 1980, 287, 43–44. [Google Scholar] [CrossRef]
- Mayer, M.J. Practice improves adults’ sensitivity to diagonals. Vis. Res. 1983, 23, 547–550. [Google Scholar] [CrossRef]
- Ball, K.; Sekuler, R.; Machamer, J. Detection and identification of moving targets. Vis. Res. 1983, 23, 229–238. [Google Scholar] [CrossRef]
- Ball, K.; Sekuler, R. A specific and enduring improvement in visual motion discrimination. Science 1982, 218, 697–698. [Google Scholar] [CrossRef]
- Ball, K.; Sekuler, R. Direction-specific improvement in motion discrimination. Vis. Res. 1987, 27, 953–965. [Google Scholar] [CrossRef]
- Ahissar, M.; Hochstein, S. Learning pop-out detection: Specificities to stimulus characteristics. Vis. Res. 1996, 36, 3487–3500. [Google Scholar] [CrossRef] [Green Version]
- Ellison, A.; Walsh, V. Perceptual learning in visual search: Some evidence of specificities. Vis. Res. 1998, 38, 333–345. [Google Scholar] [CrossRef] [Green Version]
- Sireteanu, R.; Rettenbach, R. Perceptual learning in visual search: Fast, enduring, but non-specific. Vis. Res. 1995, 35, 2037–2043. [Google Scholar] [CrossRef] [Green Version]
- Karni, A.; Sagi, D. Where practice makes perfect in texture discrimination: Evidence for primary visual cortex plasticity. Proc. Natl. Acad. Sci. USA 1991, 88, 4966–4970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karni, A.; Sagi, D. The time course of learning a visual skill. Nature 1993, 365, 250–252. [Google Scholar] [CrossRef] [PubMed]
- Schoups, A.; Vogels, R.; Qian, N.; Orban, G. Practising orientation identification improves orientation coding in V1 neurons. Nature 2001, 412, 549–553. [Google Scholar] [CrossRef] [Green Version]
- Polat, U. Making perceptual learning practical to improve visual functions. Vis. Res. 2009, 49, 2566–2573. [Google Scholar] [CrossRef] [Green Version]
- Pourtois, G.; Rauss, K.S.; Vuilleumier, P.; Schwartz, S. Effects of perceptual learning on primary visual cortex activity in humans. Vis. Res. 2008, 48, 55–62. [Google Scholar] [CrossRef]
- Saarinen, J.; Levi, D.M. Perceptual learning in vernier acuity: What is learned? Vis. Res. 1995, 35, 519–527. [Google Scholar] [CrossRef] [Green Version]
- Green, C.S.; Kattner, F.; Siegel, M.H.; Kersten, D.; Schrater, P.R. Differences in perceptual learning transfer as a function of training task. J. Vis. 2015, 15, 5. [Google Scholar] [CrossRef] [Green Version]
- Harris, H.; Gliksberg, M.; Sagi, D. Generalized perceptual learning in the absence of sensory adaptation. Curr. Biol. 2012, 22, 1813–1817. [Google Scholar] [CrossRef] [Green Version]
- Szpiro, S.F.A.; Carrasco, M. Exogenous attention enables perceptual learning. Psychol. Sci. 2015, 26, 1854–1862. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.-L.; Lin, Z.; Dosher, B.A. Translating Perceptual Learning from the Laboratory to Applications. Trends Cogn. Sci. 2016, 20, 561–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maniglia, M.; Cottereau, B.R.; Soler, V.; Trotter, Y. Rehabilitation approaches in macular degeneration patients. Front. Syst. Neurosci. 2016, 10, 107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, D.T.H.; Fong, A. Efficacy of neural vision therapy to enhance contrast sensitivity function and visual acuity in low myopia. J. Cataract Refract. Surg. 2008, 34, 570–577. [Google Scholar] [CrossRef] [PubMed]
- Levi, D.M.; Li, R.W. Perceptual learning as a potential treatment for amblyopia: A mini-review. Vis. Res. 2009, 49, 2535–2549. [Google Scholar] [CrossRef] [Green Version]
- Chung, S.T.L. Improving reading speed for people with central vision loss through perceptual learning. Investig. Ophthalmol. Vis. Sci. 2011, 52, 1164–1170. [Google Scholar] [CrossRef] [Green Version]
- Maniglia, M.; Soler, V.; Trotter, Y. Combining fixation and lateral masking training enhances perceptual learning effects in patients with macular degeneration. J. Vis. 2020, 20, 19. [Google Scholar] [CrossRef]
- Plank, T.; Rosengarth, K.; Schmalhofer, C.; Goldhacker, M.; Brandl-Rühle, S.; Greenlee, M.W. Perceptual learning in patients with macular degeneration. Front. Psychol. 2014, 5, 1189. [Google Scholar] [CrossRef] [Green Version]
- Dubljević, V.; Saigle, V.; Racine, E. The rising tide of tDCS in the media and academic literature. Neuron 2014, 82, 731–736. [Google Scholar] [CrossRef] [Green Version]
- Nitsche, M.A.; Paulus, W. Transcranial direct current stimulation--update 2011. Restor. Neurol. Neurosci. 2011, 29, 463–492. [Google Scholar] [CrossRef]
- Fertonani, A.; Miniussi, C. Transcranial electrical stimulation: What we know and do not know about mechanisms. Neuroscientist 2017, 23, 109–123. [Google Scholar] [CrossRef]
- Angelakis, E.; Liouta, E. Transcranial Electrical Stimulation: Methodology and Applications. J. Neurother. 2011, 15, 337–357. [Google Scholar] [CrossRef] [Green Version]
- Antal, A.; Kincses, T.Z.; Nitsche, M.A.; Paulus, W. Manipulation of phosphene thresholds by transcranial direct current stimulation in man. Exp. Brain Res. 2003, 150, 375–378. [Google Scholar] [CrossRef] [PubMed]
- Antal, A.; Kincses, T.Z.; Nitsche, M.A.; Paulus, W. Modulation of moving phosphene thresholds by transcranial direct current stimulation of V1 in human. Neuropsychologia 2003, 41, 1802–1807. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000, 527, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, M.A.; Paulus, W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 2001, 57, 1899–1901. [Google Scholar] [CrossRef] [PubMed]
- Bindman, L.J.; Lippold, O.C.; Redfearn, J.W. The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. J Physiol. 1964, 172, 369–382. [Google Scholar] [CrossRef]
- Furubayashi, T.; Terao, Y.; Arai, N.; Okabe, S.; Mochizuki, H.; Hanajima, R.; Hamada, M.; Yugeta, A.; Inomata-Terada, S.; Ugawa, Y. Short and long duration transcranial direct current stimulation (tDCS) over the human hand motor area. Exp. Brain Res. 2008, 185, 279–286. [Google Scholar] [CrossRef]
- Priori, A.; Berardelli, A.; Rona, S.; Accornero, N.; Manfredi, M. Polarization of the human motor cortex through the scalp. Neuroreport 1998, 9, 2257–2260. [Google Scholar] [CrossRef]
- Rosenkranz, K.; Nitsche, M.A.; Tergau, F.; Paulus, W. Diminution of training-induced transient motor cortex plasticity by weak transcranial direct current stimulation in the human. Neurosci. Lett. 2000, 296, 61–63. [Google Scholar] [CrossRef]
- Reis, J.; Schambra, H.M.; Cohen, L.G.; Buch, E.R.; Fritsch, B.; Zarahn, E.; Celnik, P.A.; Krakauer, J.W. Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc. Natl. Acad. Sci. USA 2009, 106, 1590–1595. [Google Scholar] [CrossRef] [Green Version]
- Accornero, N.; Li Voti, P.; La Riccia, M.; Gregori, B. Visual evoked potentials modulation during direct current cortical polarization. Exp. Brain Res. 2007, 178, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Antal, A.; Nitsche, M.A.; Paulus, W. External modulation of visual perception in humans. Neuroreport 2001, 12, 3553–3555. [Google Scholar] [CrossRef] [PubMed]
- Battaglini, L.; Contemori, G.; Penzo, S.; Maniglia, M. tRNS effects on visual contrast detection. Neurosci. Lett. 2020, 717, 134696. [Google Scholar] [CrossRef] [PubMed]
- Chaieb, L.; Antal, A.; Paulus, W. Gender-specific modulation of short-term neuroplasticity in the visual cortex induced by transcranial direct current stimulation. Vis. Neurosci. 2008, 25, 77–81. [Google Scholar] [CrossRef] [Green Version]
- Terney, D.; Chaieb, L.; Moliadze, V.; Antal, A.; Paulus, W. Increasing human brain excitability by transcranial high-frequency random noise stimulation. J. Neurosci. 2008, 28, 14147–14155. [Google Scholar] [CrossRef]
- Fertonani, A.; Pirulli, C.; Miniussi, C. Random noise stimulation improves neuroplasticity in perceptual learning. J. Neurosci. 2011, 31, 15416–15423. [Google Scholar] [CrossRef] [Green Version]
- Spiegel, D.P.; Byblow, W.D.; Hess, R.F.; Thompson, B. Anodal transcranial direct current stimulation transiently improves contrast sensitivity and normalizes visual cortex activation in individuals with amblyopia. Neurorehabil. Neural Repair 2013, 27, 760–769. [Google Scholar] [CrossRef]
- Antal, A.; Kincses, T.Z.; Nitsche, M.A.; Bartfai, O.; Paulus, W. Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: Direct electrophysiological evidence. Investig. Ophthalmol. Vis. Sci. 2004, 45, 702. [Google Scholar] [CrossRef] [Green Version]
- Ding, Z.; Li, J.; Spiegel, D.P.; Chen, Z.; Chan, L.; Luo, G.; Yuan, J.; Deng, D.; Yu, M.; Thompson, B. The effect of transcranial direct current stimulation on contrast sensitivity and visual evoked potential amplitude in adults with amblyopia. Sci. Rep. 2016, 6, 19280. [Google Scholar] [CrossRef] [Green Version]
- Strigaro, G.; Mayer, I.; Chen, J.-C.; Cantello, R.; Rothwell, J.C. Transcranial direct current stimulation effects on single and paired flash visual evoked potentials. Clin. EEG Neurosci. 2015, 46, 208–213. [Google Scholar] [CrossRef]
- Viganò, A.; D’Elia, T.S.; Sava, S.L.; Auvé, M.; De Pasqua, V.; Colosimo, A.; Di Piero, V.; Schoenen, J.; Magis, D. Transcranial Direct Current Stimulation (tDCS) of the visual cortex: A proof-of-concept study based on interictal electrophysiological abnormalities in migraine. J. Headache Pain 2013, 14, 23. [Google Scholar] [CrossRef] [PubMed]
- Kraft, A.; Roehmel, J.; Olma, M.C.; Schmidt, S.; Irlbacher, K.; Brandt, S.A. Transcranial direct current stimulation affects visual perception measured by threshold perimetry. Exp. Brain Res. 2010, 207, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Reinhart, R.M.G.; Xiao, W.; McClenahan, L.J.; Woodman, G.F. Electrical stimulation of visual cortex can immediately improve spatial vision. Curr. Biol. 2016, 26, 1867–1872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richard, B.; Johnson, A.P.; Thompson, B.; Hansen, B.C. The Effects of tDCS Across the Spatial Frequencies and Orientations that Comprise the Contrast Sensitivity Function. Front. Psychol. 2015, 6, 1784. [Google Scholar] [CrossRef] [Green Version]
- Spiegel, D.P.; Hansen, B.C.; Byblow, W.D.; Thompson, B. Anodal transcranial direct current stimulation reduces psychophysically measured surround suppression in the human visual cortex. PLoS ONE 2012, 7, e36220. [Google Scholar] [CrossRef]
- Pavan, A.; Ghin, F.; Contillo, A.; Milesi, C.; Campana, G.; Mather, G. Modulatory mechanisms underlying high-frequency transcranial random noise stimulation (hf-tRNS): A combined stochastic resonance and equivalent noise approach. Brain Stimulat. 2019, 12, 967–977. [Google Scholar] [CrossRef]
- Battaglini, L.; Ghiani, A.; Casco, C.; Ronconi, L. Parietal tACS at beta frequency improves vision in a crowding regime. Neuroimage 2020, 208, 116451. [Google Scholar] [CrossRef]
- Kar, K.; Krekelberg, B. Transcranial alternating current stimulation attenuates visual motion adaptation. J. Neurosci. 2014, 34, 7334–7340. [Google Scholar] [CrossRef]
- Olma, M.C.; Dargie, R.A.; Behrens, J.R.; Kraft, A.; Irlbacher, K.; Fahle, M.; Brandt, S.A. Long-Term Effects of Serial Anodal tDCS on Motion Perception in Subjects with Occipital Stroke Measured in the Unaffected Visual Hemifield. Front. Hum. Neurosci. 2013, 7, 314. [Google Scholar] [CrossRef] [Green Version]
- Amar-Halpert, R.; Laor-Maayany, R.; Nemni, S.; Rosenblatt, J.D.; Censor, N. Memory reactivation improves visual perception. Nat. Neurosci. 2017, 20, 1325–1328. [Google Scholar] [CrossRef]
- Pirulli, C.; Fertonani, A.; Miniussi, C. The role of timing in the induction of neuromodulation in perceptual learning by transcranial electric stimulation. Brain Stimulat. 2013, 6, 683–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.-Y.; He, Q.; Fang, F. Transcranial direct current stimulation over the visual cortex facilitates awake consolidation of visual perceptual learning. Brain Stimulat. 2022, 15, 380–382. [Google Scholar] [CrossRef] [PubMed]
- Contemori, G.; Trotter, Y.; Cottereau, B.R.; Maniglia, M. tRNS boosts perceptual learning in peripheral vision. Neuropsychologia 2019, 125, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Fröhlich, F.; McCormick, D.A. Endogenous electric fields may guide neocortical network activity. Neuron 2010, 67, 129–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrmann, C.S.; Rach, S.; Neuling, T.; Strüber, D. Transcranial alternating current stimulation: A review of the underlying mechanisms and modulation of cognitive processes. Front. Hum. Neurosci. 2013, 7, 279. [Google Scholar] [CrossRef] [Green Version]
- Ozen, S.; Sirota, A.; Belluscio, M.A.; Anastassiou, C.A.; Stark, E.; Koch, C.; Buzsáki, G. Transcranial electric stimulation entrains cortical neuronal populations in rats. J. Neurosci. 2010, 30, 11476–11485. [Google Scholar] [CrossRef]
- Reato, D.; Rahman, A.; Bikson, M.; Parra, L.C. Effects of weak transcranial alternating current stimulation on brain activity-a review of known mechanisms from animal studies. Front. Hum. Neurosci. 2013, 7, 687. [Google Scholar] [CrossRef] [Green Version]
- Freyer, F.; Becker, R.; Dinse, H.R.; Ritter, P. State-dependent perceptual learning. J. Neurosci. 2013, 33, 2900–2907. [Google Scholar] [CrossRef] [Green Version]
- He, Q.; Gong, B.; Bi, K.; Fang, F. The causal role of transcranial alternating current stimulation at alpha frequency in boosting visual perceptual learning. bioRxiv 2021. [Google Scholar] [CrossRef]
- Camilleri, R.; Pavan, A.; Ghin, F.; Battaglini, L.; Campana, G. Improvement of uncorrected visual acuity and contrast sensitivity with perceptual learning and transcranial random noise stimulation in individuals with mild myopia. Front. Psychol. 2014, 5, 1234. [Google Scholar] [CrossRef] [Green Version]
- Campana, G.; Camilleri, R.; Pavan, A.; Veronese, A.; Lo Giudice, G. Improving visual functions in adult amblyopia with combined perceptual training and transcranial random noise stimulation (tRNS): A pilot study. Front. Psychol. 2014, 5, 1402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cappelletti, M.; Gessaroli, E.; Hithersay, R.; Mitolo, M.; Didino, D.; Kanai, R.; Cohen Kadosh, R.; Walsh, V. Transfer of cognitive training across magnitude dimensions achieved with concurrent brain stimulation of the parietal lobe. J. Neurosci. 2013, 33, 14899–14907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herpich, F.; Melnick, M.D.; Agosta, S.; Huxlin, K.R.; Tadin, D.; Battelli, L. Boosting Learning Efficacy with Noninvasive Brain Stimulation in Intact and Brain-Damaged Humans. J. Neurosci. 2019, 39, 5551–5561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camilleri, R.; Pavan, A.; Campana, G. The application of online transcranial random noise stimulation and perceptual learning in the improvement of visual functions in mild myopia. Neuropsychologia 2016, 89, 225–231. [Google Scholar] [CrossRef]
- Contò, F.; Edwards, G.; Tyler, S.; Parrott, D.; Grossman, E.; Battelli, L. Attention network modulation via tRNS correlates with attention gain. eLife 2021, 10, e63782. [Google Scholar] [CrossRef]
- Kuo, M.-F.; Paulus, W.; Nitsche, M.A. Sex differences in cortical neuroplasticity in humans. Neuroreport 2006, 17, 1703–1707. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Fricke, K.; Henschke, U.; Schlitterlau, A.; Liebetanz, D.; Lang, N.; Henning, S.; Tergau, F.; Paulus, W. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J. Physiol. 2003, 553, 293–301. [Google Scholar] [CrossRef]
- Stagg, C.J.; Nitsche, M.A. Physiological basis of transcranial direct current stimulation. Neuroscientist 2011, 17, 37–53. [Google Scholar] [CrossRef]
- Fricke, K.; Seeber, A.A.; Thirugnanasambandam, N.; Paulus, W.; Nitsche, M.A.; Rothwell, J.C. Time course of the induction of homeostatic plasticity generated by repeated transcranial direct current stimulation of the human motor cortex. J. Neurophysiol. 2011, 105, 1141–1149. [Google Scholar] [CrossRef]
- Monte-Silva, K.; Kuo, M.-F.; Hessenthaler, S.; Fresnoza, S.; Liebetanz, D.; Paulus, W.; Nitsche, M.A. Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation. Brain Stimulat. 2013, 6, 424–432. [Google Scholar] [CrossRef]
- Liebetanz, D.; Nitsche, M.A.; Tergau, F.; Paulus, W. Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain 2002, 125, 2238–2247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasten, F.H.; Dowsett, J.; Herrmann, C.S. Sustained Aftereffect of α-tACS Lasts Up to 70 min after Stimulation. Front. Hum. Neurosci. 2016, 10, 245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herpich, F.; Contò, F.; van Koningsbruggen, M.; Battelli, L. Modulating the excitability of the visual cortex using a stimulation priming paradigm. Neuropsychologia 2018, 119, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Holland, P.; Frens, M.A.; Donchin, O. Impact of transcranial direct current stimulation (tdcs) on neuronal functions. Front. Neurosci. 2016, 10, 550. [Google Scholar] [CrossRef] [Green Version]
- Messer, W.S. The Neuron: Cell And Molecular Biology. Irwin B. Levitan, Leonard K. Kaczmarek. Q. Rev. Biol. 1998, 73, 107. [Google Scholar] [CrossRef]
- Boros, K.; Poreisz, C.; Münchau, A.; Paulus, W.; Nitsche, M.A. Premotor transcranial direct current stimulation (tDCS) affects primary motor excitability in humans. Eur. J. Neurosci. 2008, 27, 1292–1300. [Google Scholar] [CrossRef]
- Bachtiar, V.; Near, J.; Johansen-Berg, H.; Stagg, C.J. Modulation of GABA and resting state functional connectivity by transcranial direct current stimulation. eLife 2015, 4, e08789. [Google Scholar] [CrossRef]
- Baroncelli, L.; Braschi, C.; Spolidoro, M.; Begenisic, T.; Maffei, L.; Sale, A. Brain plasticity and disease: A matter of inhibition. Neural. Plast. 2011, 2011, 286073. [Google Scholar] [CrossRef]
- Kim, S.; Stephenson, M.C.; Morris, P.G.; Jackson, S.R. tDCS-induced alterations in GABA concentration within primary motor cortex predict motor learning and motor memory: A 7 T magnetic resonance spectroscopy study. Neuroimage 2014, 99, 237–243. [Google Scholar] [CrossRef] [Green Version]
- Stagg, C.J.; Best, J.G.; Stephenson, M.C.; O’Shea, J.; Wylezinska, M.; Kincses, Z.T.; Morris, P.G.; Matthews, P.M.; Johansen-Berg, H. Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. J. Neurosci. 2009, 29, 5202–5206. [Google Scholar] [CrossRef]
- Stagg, C.J.; Bachtiar, V.; Johansen-Berg, H. The role of GABA in human motor learning. Curr. Biol. 2011, 21, 480–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, Y.; Wang, X.S.; Wang, Y.C.; Zhang, J.; Liang, Z.; Zhou, Y.F.; Ma, Y.Y. The effects of aging on the strength of surround suppression of receptive field of V1 cells in monkeys. Neuroscience 2010, 169, 874–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, J.H.; Maddock, R.J.; Rokem, A.; Silver, M.A.; Minzenberg, M.J.; Ragland, J.D.; Carter, C.S. GABA concentration is reduced in visual cortex in schizophrenia and correlates with orientation-specific surround suppression. J. Neurosci. 2010, 30, 3777–3781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sale, A.; Berardi, N.; Spolidoro, M.; Baroncelli, L.; Maffei, L. GABAergic inhibition in visual cortical plasticity. Front. Cell. Neurosci. 2010, 4, 10. [Google Scholar] [CrossRef] [Green Version]
- Bavelier, D.; Levi, D.M.; Li, R.W.; Dan, Y.; Hensch, T.K. Removing brakes on adult brain plasticity: From molecular to behavioral interventions. J. Neurosci. 2010, 30, 14964–14971. [Google Scholar] [CrossRef]
- Huang, S.; Gu, Y.; Quinlan, E.M.; Kirkwood, A. A refractory period for rejuvenating GABAergic synaptic transmission and ocular dominance plasticity with dark exposure. J. Neurosci. 2010, 30, 16636–16642. [Google Scholar] [CrossRef] [Green Version]
- Sale, A.; Maya Vetencourt, J.F.; Medini, P.; Cenni, M.C.; Baroncelli, L.; De Pasquale, R.; Maffei, L. Environmental enrichment in adulthood promotes amblyopia recovery through a reduction of intracortical inhibition. Nat. Neurosci. 2007, 10, 679–681. [Google Scholar] [CrossRef]
- Maya Vetencourt, J.F.; Sale, A.; Viegi, A.; Baroncelli, L.; De Pasquale, R.; O’Leary, O.F.; Castrén, E.; Maffei, L. The antidepressant fluoxetine restores plasticity in the adult visual cortex. Science 2008, 320, 385–388. [Google Scholar] [CrossRef] [Green Version]
- Nitsche, M.A.; Grundey, J.; Liebetanz, D.; Lang, N.; Tergau, F.; Paulus, W. Catecholaminergic consolidation of motor cortical neuroplasticity in humans. Cereb. Cortex 2004, 14, 1240–1245. [Google Scholar] [CrossRef] [Green Version]
- Adelhöfer, N.; Mückschel, M.; Teufert, B.; Ziemssen, T.; Beste, C. Anodal tDCS affects neuromodulatory effects of the norepinephrine system on superior frontal theta activity during response inhibition. Brain Struct. Funct. 2019, 224, 1291–1300. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Liebetanz, D.; Schlitterlau, A.; Henschke, U.; Fricke, K.; Frommann, K.; Lang, N.; Henning, S.; Paulus, W.; Tergau, F. GABAergic modulation of DC stimulation-induced motor cortex excitability shifts in humans. Eur. J. Neurosci. 2004, 19, 2720–2726. [Google Scholar] [CrossRef] [PubMed]
- Stagg, C.J.; O’Shea, J.; Kincses, Z.T.; Woolrich, M.; Matthews, P.M.; Johansen-Berg, H. Modulation of movement-associated cortical activation by transcranial direct current stimulation. Eur. J. Neurosci. 2009, 30, 1412–1423. [Google Scholar] [CrossRef] [PubMed]
- Thut, G.; Miniussi, C. New insights into rhythmic brain activity from TMS-EEG studies. Trends Cogn. Sci. 2009, 13, 182–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antal, A.; Boros, K.; Poreisz, C.; Chaieb, L.; Terney, D.; Paulus, W. Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans. Brain Stimulat. 2008, 1, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Vossen, A.; Gross, J.; Thut, G. Alpha Power Increase After Transcranial Alternating Current Stimulation at Alpha Frequency (α-tACS) Reflects Plastic Changes Rather Than Entrainment. Brain Stimulat. 2015, 8, 499–508. [Google Scholar] [CrossRef] [Green Version]
- Schoen, I.; Fromherz, P. Extracellular stimulation of mammalian neurons through repetitive activation of Na+ channels by weak capacitive currents on a silicon chip. J. Neurophysiol. 2008, 100, 346–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kandel, E.R.; Schwartz, J.H.; Jessell, T.M. Principles of Neural Science, 4th ed.; McGraw-Hill Companies: New York, NY, USA, 2000; Volume 4. [Google Scholar]
- Miniussi, C.; Harris, J.A.; Ruzzoli, M. Modelling non-invasive brain stimulation in cognitive neuroscience. Neurosci. Biobehav. Rev. 2013, 37, 1702–1712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Groen, O.; Wenderoth, N. Transcranial random noise stimulation of visual cortex: Stochastic resonance enhances central mechanisms of perception. J. Neurosci. 2016, 36, 5289–5298. [Google Scholar] [CrossRef] [Green Version]
- van der Groen, O.; Wenderoth, N. Random noise stimulation of the cortex: Stochastic resonance enhances central mechanisms of perception. Brain Stimulat. 2017, 10, e4. [Google Scholar] [CrossRef]
- Moret, B.; Camilleri, R.; Pavan, A.; Lo Giudice, G.; Veronese, A.; Rizzo, R.; Campana, G. Differential effects of high-frequency transcranial random noise stimulation (hf-tRNS) on contrast sensitivity and visual acuity when combined with a short perceptual training in adults with amblyopia. Neuropsychologia 2018, 114, 125–133. [Google Scholar] [CrossRef]
- Brodal, A. Neurological Anatomy in Relation To Clinical Medicine, 3rd ed.; Oxford University Press: New York, NY, USA, 1981. [Google Scholar]
- Stuart, G.; Spruston, N. Determinants of voltage attenuation in neocortical pyramidal neuron dendrites. J. Neurosci. 1998, 18, 3501–3510. [Google Scholar] [CrossRef] [PubMed]
- Radman, T.; Ramos, R.L.; Brumberg, J.C.; Bikson, M. Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimulat. 2009, 2, 215–228.e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, R.; Weiskrantz, L. Impaired discrimination following polarisation of the striate cortex. Exp. Brain Res. 1969, 9, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, L.; Koslowsky, M.; Lavidor, M. tDCS polarity effects in motor and cognitive domains: A meta-analytical review. Exp. Brain Res. 2012, 216, 1–10. [Google Scholar] [CrossRef]
- Miranda, P.C.; Lomarev, M.; Hallett, M. Modeling the current distribution during transcranial direct current stimulation. Clin. Neurophysiol. 2006, 117, 1623–1629. [Google Scholar] [CrossRef]
- Rahman, A.; Reato, D.; Arlotti, M.; Gasca, F.; Datta, A.; Parra, L.C.; Bikson, M. Cellular effects of acute direct current stimulation: Somatic and synaptic terminal effects. J. Physiol. 2013, 591, 2563–2578. [Google Scholar] [CrossRef]
- De Valois, R.L.; Albrecht, D.G.; Thorell, L.G. Spatial frequency selectivity of cells in macaque visual cortex. Vis. Res. 1982, 22, 545–559. [Google Scholar] [CrossRef]
- Tootell, R.B.; Silverman, M.S.; De Valois, R.L. Spatial frequency columns in primary visual cortex. Science 1981, 214, 813–815. [Google Scholar] [CrossRef]
- Chan, C.Y.; Nicholson, C. Modulation by applied electric fields of Purkinje and stellate cell activity in the isolated turtle cerebellum. J. Physiol. 1986, 371, 89–114. [Google Scholar] [CrossRef]
- Chan, C.Y.; Hounsgaard, J.; Nicholson, C. Effects of electric fields on transmembrane potential and excitability of turtle cerebellar Purkinje cells in vitro. J. Physiol. 1988, 402, 751–771. [Google Scholar] [CrossRef]
- Li, L.M.; Uehara, K.; Hanakawa, T. The contribution of interindividual factors to variability of response in transcranial direct current stimulation studies. Front. Cell. Neurosci. 2015, 9, 181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, F.W.; Kulikowski, J.J.; Levinson, J. The effect of orientation on the visual resolution of gratings. J. Physiol. 1966, 187, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Essock, E.A. The influence of stimulus length on the oblique effect of contrast sensitivity. Vis. Res. 1990, 30, 1243–1246. [Google Scholar] [CrossRef]
- Berryhill, M.E.; Jones, K.T. tDCS selectively improves working memory in older adults with more education. Neurosci. Lett. 2012, 521, 148–151. [Google Scholar] [CrossRef]
- Gill, J.; Shah-Basak, P.P.; Hamilton, R. It’s the thought that counts: Examining the task-dependent effects of transcranial direct current stimulation on executive function. Brain Stimulat. 2015, 8, 253–259. [Google Scholar] [CrossRef]
- Olma, M.C.; Kraft, A.; Roehmel, J.; Irlbacher, K.; Brandt, S.A. Excitability changes in the visual cortex quantified with signal detection analysis. Restor. Neurol. Neurosci. 2011, 29, 453–461. [Google Scholar] [CrossRef] [Green Version]
- Seitz, A.; Watanabe, T. A unified model for perceptual learning. Trends Cogn. Sci. 2005, 9, 329–334. [Google Scholar] [CrossRef]
- Tsodyks, M.; Gilbert, C. Neural networks and perceptual learning. Nature 2004, 431, 775–781. [Google Scholar] [CrossRef] [Green Version]
- Tarita-Nistor, L.; Brent, M.H.; Steinbach, M.J.; Markowitz, S.N.; González, E.G. Reading training with threshold stimuli in people with central vision loss: A feasibility study. Optom. Vis. Sci. 2014, 91, 86–96. [Google Scholar] [CrossRef]
- Moliadze, V.; Antal, A.; Paulus, W. Electrode-distance dependent after-effects of transcranial direct and random noise stimulation with extracephalic reference electrodes. Clin. Neurophysiol. 2010, 121, 2165–2171. [Google Scholar] [CrossRef]
- Moliadze, V.; Atalay, D.; Antal, A.; Paulus, W. Close to threshold transcranial electrical stimulation preferentially activates inhibitory networks before switching to excitation with higher intensities. Brain Stimulat. 2012, 5, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Jamil, A.; Batsikadze, G.; Kuo, H.-I.; Meesen, R.L.J.; Dechent, P.; Paulus, W.; Nitsche, M.A. Current intensity- and polarity-specific online and aftereffects of transcranial direct current stimulation: An fMRI study. Hum. Brain Mapp. 2020, 41, 1644–1666. [Google Scholar] [CrossRef] [PubMed]
- Esmaeilpour, Z.; Marangolo, P.; Hampstead, B.M.; Bestmann, S.; Galletta, E.; Knotkova, H.; Bikson, M. Incomplete evidence that increasing current intensity of tDCS boosts outcomes. Brain Stimulat. 2018, 11, 310–321. [Google Scholar] [CrossRef] [PubMed]
- Moret, B.; Donato, R.; Nucci, M.; Cona, G.; Campana, G. Transcranial random noise stimulation (tRNS): A wide range of frequencies is needed for increasing cortical excitability. Sci. Rep. 2019, 9, 15150. [Google Scholar] [CrossRef] [Green Version]
- Purpura, D.P.; Mcmurtry, J.G. Intracellular activities and evoked potential changes during polarization of motor cortex. J. Neurophysiol. 1965, 28, 166–185. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Cohen, L.G.; Wassermann, E.M.; Priori, A.; Lang, N.; Antal, A.; Paulus, W.; Hummel, F.; Boggio, P.S.; Fregni, F.; et al. Transcranial direct current stimulation: State of the art 2008. Brain Stimulat. 2008, 1, 206–223. [Google Scholar] [CrossRef]
- Zhang, J.-Y.; Zhang, G.-L.; Xiao, L.-Q.; Klein, S.A.; Levi, D.M.; Yu, C. Rule-based learning explains visual perceptual learning and its specificity and transfer. J. Neurosci. 2010, 30, 12323–12328. [Google Scholar] [CrossRef] [Green Version]
- Chang, D.H.F.; Mevorach, C.; Kourtzi, Z.; Welchman, A.E. Training transfers the limits on perception from parietal to ventral cortex. Curr. Biol. 2014, 24, 2445–2450. [Google Scholar] [CrossRef] [Green Version]
- Chen, N.; Cai, P.; Zhou, T.; Thompson, B.; Fang, F. Perceptual learning modifies the functional specializations of visual cortical areas. Proc. Natl. Acad. Sci. USA 2016, 113, 5724–5729. [Google Scholar] [CrossRef] [Green Version]
- Itthipuripat, S.; Cha, K.; Byers, A.; Serences, J.T. Two different mechanisms support selective attention at different phases of training. PLoS Biol. 2017, 15, e2001724. [Google Scholar] [CrossRef] [Green Version]
- Yotsumoto, Y.; Watanabe, T.; Sasaki, Y. Different dynamics of performance and brain activation in the time course of perceptual learning. Neuron 2008, 57, 827–833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chowdhury, S.A.; DeAngelis, G.C. Fine discrimination training alters the causal contribution of macaque area MT to depth perception. Neuron 2008, 60, 367–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.D.; Pack, C.C. The contribution of area MT to visual motion perception depends on training. Neuron 2017, 95, 436–446.e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arif, Y.; Spooner, R.K.; Heinrichs-Graham, E.; Wilson, T.W. High-definition transcranial direct current stimulation modulates performance and alpha/beta parieto-frontal connectivity serving fluid intelligence. J. Physiol. 2021, 599, 5451–5463. [Google Scholar] [CrossRef]
- Snowball, A.; Tachtsidis, I.; Popescu, T.; Thompson, J.; Delazer, M.; Zamarian, L.; Zhu, T.; Cohen Kadosh, R. Long-term enhancement of brain function and cognition using cognitive training and brain stimulation. Curr. Biol. 2013, 23, 987–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pozdniakov, I.; Vorobiova, A.N.; Galli, G.; Rossi, S.; Feurra, M. Online and offline effects of transcranial alternating current stimulation of the primary motor cortex. Sci. Rep. 2021, 11, 3854. [Google Scholar] [CrossRef]
- Thair, H.; Holloway, A.L.; Newport, R.; Smith, A.D. Transcranial direct current stimulation (tdcs): A beginner’s guide for design and implementation. Front. Neurosci. 2017, 11, 641. [Google Scholar] [CrossRef] [Green Version]
- Mosayebi Samani, M.; Agboada, D.; Jamil, A.; Kuo, M.-F.; Nitsche, M.A. Titrating the neuroplastic effects of cathodal transcranial direct current stimulation (tDCS) over the primary motor cortex. Cortex 2019, 119, 350–361. [Google Scholar] [CrossRef]
- Agboada, D.; Mosayebi-Samani, M.; Kuo, M.-F.; Nitsche, M.A. Induction of long-term potentiation-like plasticity in the primary motor cortex with repeated anodal transcranial direct current stimulation—Better effects with intensified protocols? Brain Stimulat. 2020, 13, 987–997. [Google Scholar] [CrossRef]
- Johnson, L.; Alekseichuk, I.; Krieg, J.; Doyle, A.; Yu, Y.; Vitek, J.; Johnson, M.; Opitz, A. Dose-dependent effects of transcranial alternating current stimulation on spike timing in awake nonhuman primates. Sci. Adv. 2020, 6, eaaz2747. [Google Scholar] [CrossRef]
- Hung, S.-C.; Seitz, A.R. Prolonged training at threshold promotes robust retinotopic specificity in perceptual learning. J. Neurosci. 2014, 34, 8423–8431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaieb, L.; Paulus, W.; Antal, A. Evaluating aftereffects of short-duration transcranial random noise stimulation on cortical excitability. Neural Plast. 2011, 2011, 105927. [Google Scholar] [CrossRef] [PubMed]
- Dale, G.; Cochrane, A.; Green, C.S. Individual difference predictors of learning and generalization in perceptual learning. Atten. Percept. Psychophys. 2021, 83, 2241–2255. [Google Scholar] [CrossRef] [PubMed]
- Fahle, M.; Daum, I. Visual learning and memory as functions of age. Neuropsychologia 1997, 35, 1583–1589. [Google Scholar] [CrossRef]
- Fahle, M.; Henke-Fahle, S. Interobserver variance in perceptual performance and learning. Investig. Ophthalmol. Vis. Sci. 1996, 37, 869–877. [Google Scholar]
- Kasten, F.H.; Duecker, K.; Maack, M.C.; Meiser, A.; Herrmann, C.S. Integrating electric field modeling and neuroimaging to explain inter-individual variability of tACS effects. Nat. Commun. 2019, 10, 5427. [Google Scholar] [CrossRef] [Green Version]
- Mosayebi-Samani, M.; Jamil, A.; Salvador, R.; Ruffini, G.; Haueisen, J.; Nitsche, M.A. The impact of individual electrical fields and anatomical factors on the neurophysiological outcomes of tDCS: A TMS-MEP and MRI study. Brain Stimulat. 2021, 14, 316–326. [Google Scholar] [CrossRef]
- Zhao, H.; Qiao, L.; Fan, D.; Zhang, S.; Turel, O.; Li, Y.; Li, J.; Xue, G.; Chen, A.; He, Q. Modulation of Brain Activity with Noninvasive Transcranial Direct Current Stimulation (tDCS): Clinical Applications and Safety Concerns. Front. Psychol. 2017, 8, 685. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, H.; Ugawa, Y. Adverse events of tDCS and tACS: A review. Clin. Neurophysiol. Pract. 2017, 2, 19–25. [Google Scholar] [CrossRef]
- Mosbacher, J.A.; Halverscheid, S.; Pustelnik, K.; Danner, M.; Prassl, C.; Brunner, C.; Vogel, S.E.; Nitsche, M.A.; Grabner, R.H. Theta band transcranial alternating current stimulation enhances arithmetic learning: A systematic comparison of different direct and alternating current stimulations. Neuroscience 2021, 477, 89–105. [Google Scholar] [CrossRef]
- Ghafoor, U.; Yang, D.; Hong, K.-S. Neuromodulatory Effects of HD-tACS/tDCS on the Prefrontal Cortex: A Resting-State fNIRS-EEG Study. IEEE J. Biomed. Health Inform. 2022, 26, 2192–2203. [Google Scholar] [CrossRef] [PubMed]
- Maniglia, M.; Pavan, A.; Sato, G.; Contemori, G.; Montemurro, S.; Battaglini, L.; Casco, C. Perceptual learning leads to long lasting visual improvement in patients with central vision loss. Restor. Neurol. Neurosci. 2016, 34, 697–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barraza-Bernal, M.J.; Rifai, K.; Wahl, S. A preferred retinal location of fixation can be induced when systematic stimulus relocations are applied. J. Vis. 2017, 17, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, M.; Nandy, A.S.; Tjan, B.S. Rapid and persistent adaptability of human oculomotor control in response to simulated central vision loss. Curr. Biol. 2013, 23, 1663–1669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maniglia, M.; Jogin, R.; Visscher, K.M.; Seitz, A.R. We don’t all look the same; detailed examination of peripheral looking strategies after simulated central vision loss. J. Vis. 2020, 20, 5. [Google Scholar] [CrossRef]
- Maniglia, M.; Visscher, K.M.; Seitz, A.R. A method to characterize compensatory oculomotor strategies following simulated central vision loss. J. Vis. 2020, 20, 15. [Google Scholar] [CrossRef]
- Walsh, D.V.; Liu, L. Adaptation to a simulated central scotoma during visual search training. Vis. Res. 2014, 96, 75–86. [Google Scholar] [CrossRef] [Green Version]
- Beliaeva, V.; Savvateev, I.; Zerbi, V.; Polania, R. Toward integrative approaches to study the causal role of neural oscillations via transcranial electrical stimulation. Nat. Commun. 2021, 12, 2243. [Google Scholar] [CrossRef]
Study | Sample Size | Stimulation Type | Stimulation Region | Control | Training Type | Population | Long-Term Effects | Results Supportive of tES + VPL |
---|---|---|---|---|---|---|---|---|
Fertonani, Pirulli and Miniussi (2011) [57] | 14 per stimulation type | Anodal tDCS (a-tDCS), Cathodal tDCS (c-tDCS), High frequency tRNS (hf-tRNS), Low frequency tRNS (lf-tRNS) | Occipital | CZ | Orientation discrimination | Healthy participants | Not tested | Yes |
Pirulli, Fertonani and Miniussi (2013) [72] | 14 per combination of timing (online vs offline) and stimulation (a-tDCS vs tRNS), 10 for sham | Online and offline(pre) a-tDCS, Online and offline(pre) tRNS | Occipital | Sham | Orientation discrimination | Healthy participants | Not tested | Yes: tRNS better online, tDCS better offline |
Campana et al. (2014) [82] | 7 stimulation | tRNS | Occipital | No | Flanked contrast detection | Amblyopic patients | Not tested | Yes |
Camilleri et al. (2014) [82] | 8 stimulation, 8 sham | tRNS | Occipital | Behavioral only | Contrast detection | Myopic patients | Yes, 3 month follow up | Yes |
Camilleri et al. (2016) [85] | 10 per group (PL + tRNS, Sham, tRNS) | tRNS | Occipital | Sham and tRNS only | Contrast detection | Myopic patients | Not tested | Yes, PL + tRNS bettr than Sham and tRNS alone |
Moret et al. (2018) [122] | 10 per group | tRNS | Parietal | Sham | Flanked contrast detection | Amblyopic patients | Yes, 6 month follow up | Yes |
Contemori et al. (2019) [74] | 16 stimulation, 16 sham | tRNS | Occipital | Sham | Crowded letter discrimination | Healthy participants | Absent on 3 months follow up on a subgroup of participants | Yes |
Herpich et al. (2019) [84] | Healthy: 9 per group, Patients:3 tRNS, 6 a-tDCS, 2 sham | a-tDCS, tRNS | Occipital, Parietal | Sham, No-stimulation, Active control | Motion direction discrimination | Healthy participants, Cortical blindess patients | Yes, 6 month follow up | Yes for tRNS but not a-tDCS |
Contò et al. (2021) [86] | 10 per group | tRNS | Parietal, Middle temporal | Sham | Orientation discrimination, Temporal order judgement | Healthy participants | Not tested | Yes, parietal tRNS on orientation discrimination |
He et al. (2021) [80] | 17–18 per group | 10 Hz, 20 Hz, 40 Hz tACS | Occipital, Parietal | Sham | Orientation discrimination | Healthy participants | Not tested | Yes for 10 Hz, no for 20 Hz/40 Hz |
Yang, He, Fang (2022) [73] | 17 stimulation, 16 sham | Offline (post) a-tDCS | Occipital | Sham | Texture discrimination | Healthy participants | Not tested | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maniglia, M. Perspectives on the Combined Use of Electric Brain Stimulation and Perceptual Learning in Vision. Vision 2022, 6, 33. https://doi.org/10.3390/vision6020033
Maniglia M. Perspectives on the Combined Use of Electric Brain Stimulation and Perceptual Learning in Vision. Vision. 2022; 6(2):33. https://doi.org/10.3390/vision6020033
Chicago/Turabian StyleManiglia, Marcello. 2022. "Perspectives on the Combined Use of Electric Brain Stimulation and Perceptual Learning in Vision" Vision 6, no. 2: 33. https://doi.org/10.3390/vision6020033
APA StyleManiglia, M. (2022). Perspectives on the Combined Use of Electric Brain Stimulation and Perceptual Learning in Vision. Vision, 6(2), 33. https://doi.org/10.3390/vision6020033