Ocular Autonomic Nervous System: An Update from Anatomy to Physiological Functions
Abstract
:1. Introduction
2. The Autonomic Pathways in the Eye
2.1. Parasympathetic Pathways (Edinger-Westphal Nucleus–Ciliary Ganglion)
2.2. Parasympathetic Pathways (Superior Salivatory Nucleus–Pterygopalatine Ganglion)
2.3. Sympathetic Pathways Innervating the Eye
2.4. Trigeminal Nerves—A Part of the Somatosensory System
3. Autonomic Control of the Eye
3.1. Cornea
3.2. Iris
3.3. Anterior Chamber Angle
3.4. Lacrimal Glands
3.5. Retina
3.6. Choroid
4. Physiological Effect
4.1. Pupil Adjustment
4.1.1. Parasympathetic Pathway
4.1.2. Sympathetic Influences
4.2. Ocular Blood Flow
4.3. Intraocular Pressure Regulation
4.3.1. Ciliary Body Blood Flow
4.3.2. AH Production
4.3.3. Conventional Outflow Pathway
4.3.4. Unconventional Outflow Pathway
4.3.5. Episcleral Circulation
4.4. Lens Accommodation
5. Clinical Application
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
ABP | arterial blood pressure |
AH | aqueous humor |
ANS | autonomic nervous system |
CG | ciliary ganglion |
CGRP | calcitonin gene-related peptide |
ChAT | choline acetyltransferase |
ChBF | choroidal blood flow |
CRA | central retinal artery |
DMH | dorsomedial hypothalamus |
DRN | dorsal raphe nucleus |
EVP | episcleral venous pressure |
EW | Edinger-Westphal |
GABA | γ-aminobutyric acid |
ICN | intrinsic choroidal neurons |
IML | intermediolateral cell column |
IOP | intraocular pressure |
IR | immunoreactive |
LC | locus coeruleus |
LI | like immunoreactive |
NOS | nitric oxide synthase |
NPY | neuropeptide Y |
PAG | periaqueduct grey |
PLR | pupillary light reflex |
PMR | photomechanical responses |
PON | pretectal olivary nucleus |
PPG | pterygopalatine ganglion |
PVN | paraventricular nucleus |
RyR | ryanodine receptor |
SC | schlemm |
SCG | superior cervical ganglion |
SCN | suprachiasmatic nucleus |
SEP | subepithelial plexus |
SNS | sympathetic nerve stimulations |
SP | substance P |
SSN | superior salivatory nucleus |
TG | trigeminal ganglion |
TH | tyrosine hydroxylase |
TM | trabecular meshwork |
VIP | vasoactive intestinal polypeptide |
References
- Wang, Y.; Zekveld, A.; Naylor, G.; Ohlenforst, B.; Jansma, E.; Lorens, A.; Lunner, T.; Kramer, S.E. Parasympathetic Nervous System Dysfunction, as Identified by Pupil Light Reflex, and Its Possible Connection to Hearing Impairment. PLoS ONE 2016, 11, e0153566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibbins, I. Functional organization of autonomic neural pathways. Organogenesis 2013, 9, 169–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wehrwein, E.A.; Orer, H.S.; Barman, S.M. Overview of the Anatomy, Physiology, and Pharmacology of the Autonomic Nervous System. Compr. Physiol. 2016, 6, 1239–1278. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, K. Development of the human oculomotor nuclear complex: Centrally-projecting Edinger-Westphal nucleus. Neurosci. Lett. 2017, 646, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, L.A.; Donaldson, C.; Sita, L.V.; Casatti, C.; Lotfi, C.F.; Wang, L.; Cadinouche, M.A.; Elias, C.F.; Lovejoy, D.A.; Bittencourt, J. Urocortin in the central nervous system of a primate (Cebus apella): Sequencing, immunohistochemical, and hybridization histochemical characterization. J. Comp. Neurol. 2003, 463, 157–175. [Google Scholar] [CrossRef] [PubMed]
- Horn, A.K.; Eberhorn, A.; Härtig, W.; Ardeleanu, P.; Messoudi, A.; Büttner-Ennever, J.A. Perioculomotor cell groups in monkey and man defined by their histochemical and functional properties: Reappraisal of the Edinger-Westphal nucleus. J. Comp. Neurol. 2008, 507, 1317–1335. [Google Scholar] [CrossRef] [PubMed]
- Reiner, A.; Erichsen, J.T.; Cabot, J.B.; Evinger, C.; Fitzerald, M.E.C.; Karten, H.J. Neurotransmitter organization of the nucleus of Edinger-Westphal and its projection to the avian ciliary ganglion. Vis. Neurosci. 1991, 6, 451–472. [Google Scholar] [CrossRef]
- Horn, A.K.; Schulze, C.; Radtke-Schuller, S. The Edinger-Westphal Nucleus Represents Different Functional Cell Groups in Different Species. Ann. N. Y. Acad. Sci. 2009, 1164, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Kozicz, T.; Bittencourt, J.; May, P.J.; Reiner, A.; Gamlin, P.; Palkovits, M.; Horn, A.; Toledo, C.A.; Ryabinin, A.E. The Edinger-Westphal nucleus: A historical, structural, and functional perspective on a dichotomous terminology. J. Comp. Neurol. 2010, 519, 1413–1434. [Google Scholar] [CrossRef] [Green Version]
- Ryabinin, A.; Tsivkovskaia, N.O.; Ryabinin, S.A. Urocortin 1-containing neurons in the human Edinger-Westphal nucleus. Neuroscience 2005, 134, 1317–1323. [Google Scholar] [CrossRef]
- May, P.J.; Sun, W.; Wright, N.F.; Erichsen, J.T. Pupillary light reflex circuits in the macaque monkey: The preganglionic Edinger-Westphal nucleus. Brain Struct. Funct. 2019, 225, 403–425. [Google Scholar] [CrossRef] [Green Version]
- Warwick, R. The ocular parasympathetic nerve supply and its mesencephalic sources. J. Anat. 1954, 88, 71–93. [Google Scholar]
- Erichsen, J.T.; May, P.J. The pupillary and ciliary components of the cat Edinger-Westphal nucleus: A transsynaptic transport investigation. Vis. Neurosci. 2002, 19, 15–29. [Google Scholar] [CrossRef] [Green Version]
- D’Antoni, A.V. Gray’s Anatomy, the Anatomical Basis of Clinical Practice. In Clinical Anatomy, 41st ed.; Wiley: Hoboken, NJ, USA, 2016; Volume 29, pp. 264–265. [Google Scholar] [CrossRef]
- Haładaj, R. Anatomical variations of the ciliary ganglion with an emphasis on the location in the orbit. Anat. Sci. Int. 2019, 95, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, N.; Joshi, A. Neuroanatomy, Ciliary Ganglion. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Kirch, W.; Neuhuber, W.; Tamm, E.R. Immunohistochemical localization of neuropeptides in the human ciliary ganglion. Brain Res. 1995, 681, 229–234. [Google Scholar] [CrossRef]
- May, P.J.; Warren, S. Ultrastructure of the macaque ciliary ganglion. J. Neurocytol. 1993, 22, 1073–1095. [Google Scholar] [CrossRef] [PubMed]
- Barnerssoi, M.; May, P.J.; Horn, A.K.E. GABAergic innervation of the ciliary ganglion in macaque monkey—A light and electron microscopic study. J. Comp. Neurol. 2016, 525, 1517–1531. [Google Scholar] [CrossRef] [Green Version]
- Kuwayama, Y.; Grimes, P.A.; Ponte, B.; Stone, R.A. Autonomic neurons supplying the rat eye and the intraorbital distribution of vasoactive intestinal polypeptide (VIP)-like immunoreactivity. Exp. Eye Res. 1987, 44, 907–922. [Google Scholar] [CrossRef]
- Grimes, P.A.; Koeberlein, B.; Tigges, M.; Stone, R.A. Neuropeptide Y-like immunoreactivity localizes to preganglionic axon terminals in the rhesus monkey ciliary ganglion. Investig. Ophthalmol. Vis. Sci. 1998, 39, 227–232. [Google Scholar]
- Tsibul’Kin, A.G.; Kolesnikov, L.L. Human and animal ciliary ganglion—History and modern conceptions. Morfologiia 2004, 126, 63–70. [Google Scholar]
- Kaleczyc, J.; Juranek, J.; Całka, J.; Lakomy, M. Immunohistochemical characterization of neurons in the porcine ciliary ganglion. Pol. J. Vet. Sci. 2005, 8, 65–72. [Google Scholar] [PubMed]
- Sun, W.; Erichsen, J.T.; May, P.J. NADPH-diaphorase reactivity in ciliary ganglion neurons: A comparison of distributions in the pigeon, cat, and monkey. Vis. Neurosci. 1994, 11, 1027–1031. [Google Scholar] [CrossRef]
- Kuchiiwa, S.; Kuchiiwa, T.; Suzuki, T. Comparative anatomy of the accessory ciliary ganglion in mammals. Anat. Embryol. 1989, 180, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Park, H.-Y.L.; Jung, S.H.; Park, S.-H.; Park, C.K. Detecting autonomic dysfunction in patients with glaucoma using dynamic pupillometry. Medicine 2019, 98, e14658. [Google Scholar] [CrossRef] [PubMed]
- Stone, R.A.; Kuwayama, Y.; Laties, A.M. Regulatory peptides in the eye. Experientia 1987, 43, 791–800. [Google Scholar] [CrossRef]
- Cuthbertson, S.; White, J.; Fitzgerald, M.E.; Shih, Y.-F.; Reiner, A. Distribution within the choroid of cholinergic nerve fibers from the ciliary ganglion in pigeons. Vis. Res. 1996, 36, 775–786. [Google Scholar] [CrossRef] [Green Version]
- Reiner, A.; Fitzgerald, M.E.; Del Mar, N.; Li, C. Neural control of choroidal blood flow. Prog. Retin. Eye Res. 2018, 64, 96–130. [Google Scholar] [CrossRef]
- Goadsby, P.J. Autonomic nervous system control of the cerebral circulation. Handb. Clin. Neurol. 2013, 117, 193–201. [Google Scholar] [CrossRef]
- Li, C.; Fitzgerald, M.E.; LeDoux, M.S.; Gong, S.; Ryan, P.; Del Mar, N.; Reiner, A. Projections from the hypothalamic paraventricular nucleus and the nucleus of the solitary tract to prechoroidal neurons in the superior salivatory nucleus: Pathways controlling rodent choroidal blood flow. Brain Res. 2010, 1358, 123–139. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Fitzgerald, M.E.C.; Del Mar, N.; Cuthbertson-Coates, S.; LeDoux, M.S.; Gong, S.; Ryan, J.P.; Reiner, A. The identification and neurochemical characterization of central neurons that target parasympathetic preganglionic neurons involved in the regulation of choroidal blood flow in the rat eye using pseudorabies virus, immunolabeling and conventional pathway tracing methods. Front. Neuroanat. 2015, 9, 65. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Fitzgerald, M.E.; Del Mar, N.; Wang, H.; Haughey, C.; Honig, M.G.; Reiner, A. Role of the superior salivatory nucleus in parasympathetic control of choroidal blood flow and in maintenance of retinal health. Exp. Eye Res. 2021, 206, 108541. [Google Scholar] [CrossRef]
- Lütjen-Drecoll, E. Choroidal innervation in primate eyes. Exp. Eye Res. 2006, 82, 357–361. [Google Scholar] [CrossRef] [PubMed]
- Tusscher, M.P.T.; Klooster, J.; Baljet, B.; Van der Werf, F.; Vrensen, G.F. Pre- and post-ganglionic nerve fibres of the pterygopalatine ganglion and their allocation to the eyeball of rats. Brain Res. 1990, 517, 315–323. [Google Scholar] [CrossRef]
- Beckers, H.; Klooster, J.; Vrensen, G.; Lamers, W. Facial Parasympathetic Innervation of the Rat Choroid, Lacrimal Glands and Ciliary Ganglion. Ophthalmic Res. 1993, 25, 319–330. [Google Scholar] [CrossRef]
- Botelho, S.Y.; Hisada, M.; Fuenmayor, N. Functional Innervation of the Lacrimal Gland in the Cat. Arch. Ophthalmol. 1966, 76, 581–588. [Google Scholar] [CrossRef]
- Ruskell, G.L. The distribution of autonomic post-ganglionic nerve fibres to the lacrimal gland in monkeys. J. Anat. 1971, 109, 229–242. [Google Scholar]
- Ackerknecht, E.H. The history of the discovery of the vegatative (autonomic) nervous system. Med. Hist. 1974, 18, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.Y.; Lee, J.H.; Song, J.S.; Song, M.J.; Hwang, S.-J.; Yoon, R.G.; Jang, S.W.; Park, J.E.; Heo, Y.J.; Choi, Y.J.; et al. Superior Cervical Sympathetic Ganglion: Normal Imaging Appearance on 3T-MRI. Korean J. Radiol. 2016, 17, 657–663. [Google Scholar] [CrossRef] [Green Version]
- Sonne, J.; Lopez-Ojeda, W. Neuroanatomy, Cranial Nerve. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Ebbesson, S.O.E. Quantitative studies of superior cervical sympathetic ganglia in a variety of primates including man. I. The ratio of preganglionic fibers to ganglionic neurons. J. Morphol. 1968, 124, 117–131. [Google Scholar] [CrossRef] [PubMed]
- Brooks-Fournier, R.; Coggeshall, R.E. The ratio of preganglionic axons to postganglionic cells in the sympathetic nervous system of the rat. J. Comp. Neurol. 1981, 197, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Purves, D.; Rubin, E.; Snider, W.; Lichtman, J. Relation of animal size to convergence, divergence, and neuronal number in peripheral sympathetic pathways. J. Neurosci. 1986, 6, 158–163. [Google Scholar] [CrossRef] [Green Version]
- Tusscher, M.T.; Klooster, J.; van der Want, J.; Lamers, W.; Vrensen, G. The allocation of nerve fibres to the anterior eye segment and peripheral ganglia of rats. II. The sympathetic innervation. Brain Res. 1989, 494, 105–113. [Google Scholar] [CrossRef]
- Huff, T.; Daly, D.T. Neuroanatomy, Cranial Nerve 5 (Trigeminal). In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Terenghi, G.; Polak, J.M.; Ghatei, M.A.; Mulderry, P.K.; Butler, J.M.; Unger, W.G.; Bloom, S.R. Distribution and origin of calcitonin gene-related peptide (CGRP) immunoreactivity in the sensory innervation of the mammalian eye. J. Comp. Neurol. 1985, 233, 506–516. [Google Scholar] [CrossRef]
- Lee, Y.; Kawai, Y.; Shiosaka, S.; Takami, K.; Kiyama, H.; Hillyard, C.; Girgis, S.; MacIntyre, I.; Emson, P.; Tohyama, M. Coexistence of calcitonin gene-related peptide and substance P-like peptide in single cells of the trigeminal ganglion of the rat: Immunohistochemical analysis. Brain Res. 1985, 330, 194–196. [Google Scholar] [CrossRef]
- Yang, A.Y.; Chow, J.; Liu, J. Corneal Innervation and Sensation: The Eye and Beyond. Yale J. Biol. Med. 2018, 91, 13–21. [Google Scholar] [PubMed]
- Marfurt, C.F.; Kingsley, R.E.; Echtenkamp, S.E. Sensory and sympathetic innervation of the mammalian cornea. A retrograde tracing study. Investig. Ophthalmol. Vis. Sci. 1989, 30, 461–472. [Google Scholar]
- Müller, L.J.; Marfurt, C.F.; Kruse, F.; Tervo, T.M. Corneal nerves: Structure, contents and function. Exp. Eye Res. 2003, 76, 521–542. [Google Scholar] [CrossRef]
- Medeiros, C.S.; Santhiago, M.R. Corneal nerves anatomy, function, injury and regeneration. Exp. Eye Res. 2020, 200, 108243. [Google Scholar] [CrossRef] [PubMed]
- Zander, E.; Weddell, G. Observations on the innervation of the cornea. J. Anat. 1951, 85, 68–99. [Google Scholar]
- Al-Aqaba, M.A.; Fares, U.; Suleman, H.; Lowe, J.; Dua, H.S. Architecture and distribution of human corneal nerves. Br. J. Ophthalmol. 2009, 94, 784–789. [Google Scholar] [CrossRef] [Green Version]
- Müller, L.J.; Pels, L.; Vrensen, G.F. Ultrastructural organization of human corneal nerves. Investig. Ophthalmol. Vis. Sci. 1996, 37, 476–488. [Google Scholar]
- Stern, M.E.; Beuerman, R.W.; Fox, R.I.; Gao, J.; Mircheff, A.K.; Pflugfelder, S.C. The Pathology of Dry Eye. Cornea 1998, 17, 584–589. [Google Scholar] [CrossRef] [PubMed]
- Ghiasi, Z.; Gray, T.; Tran, P.; Dubielzig, R.; Murphy, C.; McCartney, D.L.; Reid, T.W. The Effect of Topical Substance-P Plus Insulin-like Growth Factor-1 (IGF-1) on Epithelial Healing After Photorefractive Keratectomy in Rabbits. Transl. Vis. Sci. Technol. 2018, 7, 12. [Google Scholar] [CrossRef] [PubMed]
- Suvas, S. Role of Substance P Neuropeptide in Inflammation, Wound Healing, and Tissue Homeostasis. J. Immunol. 2017, 199, 1543–1552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, M.; Nishida, T.; Ofuji, K.; Reid, T.W.; Mannis, M.J.; Murphy, C.J. Synergistic Effect of Substance P with Epidermal Growth Factor on Epithelial Migration in Rabbit Cornea. Exp. Eye Res. 1997, 65, 321–329. [Google Scholar] [CrossRef]
- Neuhuber, W.; Schrödl, F. Autonomic control of the eye and the iris. Auton. Neurosci. 2011, 165, 67–79. [Google Scholar] [CrossRef]
- Kawasaki, A. Physiology, assessment, and disorders of the pupil. Curr. Opin. Ophthalmol. 1999, 10, 394–400. [Google Scholar] [CrossRef]
- Stone, R.; Laties, A.; Brecha, N. Substance P-like immunoreactive nerves in the anterior segment of the rabbit, cat and monkey eye. Neuroscience 1982, 7, 2459–2468. [Google Scholar] [CrossRef]
- Fujiwara, M.; Hayashi, H.; Muramatsu, I.; Ueda, N. Supersensitivity of the rabbit iris sphincter muscle induced by trigeminal denervation: The role of substance P. J. Physiol. 1984, 350, 583–597. [Google Scholar] [CrossRef]
- Bremner, F. Pupil evaluation as a test for autonomic disorders. Clin. Auton. Res. 2009, 19, 88–101. [Google Scholar] [CrossRef]
- Hardie, R.C.; Franze, K. Photomechanical Responses in Drosophila Photoreceptors. Science 2012, 338, 260–263. [Google Scholar] [CrossRef] [PubMed]
- Barr, L. Photomechanical coupling in the vertebrate sphincter pupillae. Crit. Rev. Neurobiol. 1989, 4, 325–366. [Google Scholar]
- Rubin, L.J.; Nolte, J.F. Modulation of the response of a photosensitive muscle by β-adrenergic regulation of cyclic AMP levels. Nature 1984, 307, 551–553. [Google Scholar] [CrossRef]
- Tamm, E.R. The trabecular meshwork outflow pathways: Structural and functional aspects. Exp. Eye Res. 2009, 88, 648–655. [Google Scholar] [CrossRef]
- Ruskell, G.L. Trigeminal innervation of the scleral spur in cynomolgus monkeys. J. Anat. 1994, 184, 511–518. [Google Scholar]
- Tamm, E.R.; Koch, T.A.; Mayer, B.; Stefani, F.H.; Lütjen-Drecoll, E. Innervation of myofibroblast-like scleral spur cells in human monkey eyes. Investig. Ophthalmol. Vis. Sci. 1995, 36, 1633–1644. [Google Scholar]
- Stone, R.A. Neuropeptide Y and the innervation of the human eye. Exp. Eye Res. 1986, 42, 349–355. [Google Scholar] [CrossRef]
- Stone, R.A.; Tervo, T.; Tervo, K.; Tarkkanen, A. Vasoactive intestinal polypeptide-like immunoreactive nerves to the human eye. Acta Ophthalmol. 1986, 64, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Laties, A.M.; Stone, R.A.; Brecha, N.C. Substance P-like immunoreactive nerve fibers in the trabecular meshwork. Investig. Ophthalmol. Vis. Sci. 1981, 21, 484–486. [Google Scholar]
- Stone, R.A.; McGlinn, A.M. Calcitonin gene-related peptide immunoreactive nerves in human and rhesus monkey eyes. Investig. Ophthalmol. Vis. Sci. 1988, 29, 305–310. [Google Scholar]
- Selbach, J.M.; Gottanka, J.; Wittmann, M.; Lütjen-Drecoll, E. Efferent and afferent innervation of primate trabecular meshwork and scleral spur. Investig. Ophthalmol. Vis. Sci. 2000, 41, 2184–2191. [Google Scholar]
- Yang, F.; Zhu, X.; Liu, X.; Ma, L.; Zhang, Z.; Pei, L.; Wang, H.; Xu, F.; Liu, H. Anatomical evidence for the efferent pathway from the hypothalamus to autonomic innervation in the anterior chamber structures of eyes. Exp. Eye Res. 2020, 202, 108367. [Google Scholar] [CrossRef]
- Selbach, J.M.; Buschnack, S.H.; Steuhl, K.-P.; Kremmer, S.; Muth-Selbach, U. Substance P and opioid peptidergic innervation of the anterior eye segment of the rat: An immunohistochemical study. J. Anat. 2005, 206, 237–242. [Google Scholar] [CrossRef]
- May, C.A.; Skorski, L.M.; Lutjen-Drecoll, E. Innervation of the porcine ciliary muscle and outflow region. J. Anat. 2005, 206, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Nomura, T.; Smelser, G.K. The identification of adrenergic and cholinergic nerve endings in the trabecular meshwork. Investig. Ophthalmol. 1974, 13, 525–532. [Google Scholar]
- Jampel, H.D.; Lynch, M.G.; Brown, R.H.; Kuhar, M.J.; De Souza, E.B. Beta-adrenergic receptors in human trabecular meshwork. Identification and autoradiographic localization. Investig. Ophthalmol. Vis. Sci. 1987, 28, 772–779. [Google Scholar]
- Wax, M.B.; Molinoff, P.B.; Alvarado, J.; Polansky, J. Characterization of beta-adrenergic receptors in cultured human trabecular cells and in human trabecular meshwork. Investig. Ophthalmol. Vis. Sci. 1989, 30, 51–57. [Google Scholar]
- Dartt, D.A. Neural regulation of lacrimal gland secretory processes: Relevance in dry eye diseases. Prog. Retin. Eye Res. 2009, 28, 155–177. [Google Scholar] [CrossRef] [Green Version]
- Acosta, M.C.; Belmonte, C.; Gallar, J. Sensory experiences in humans and single-unit activity in cats evoked by polymodal stimulation of the cornea. J. Physiol. 2001, 534, 511–525. [Google Scholar] [CrossRef]
- Gallar, J.; Pozo, M.A.; Tuckett, R.P.; Belmonte, C. Response of sensory units with unmyelinated fibres to mechanical, thermal and chemical stimulation of the cat’s cornea. J. Physiol. 1993, 468, 609–622. [Google Scholar] [CrossRef]
- Acosta, M.C.; Peral, A.; Luna, C.; Pintor, J.; Belmonte, C.; Gallar, J. Tear Secretion Induced by Selective Stimulation of Corneal and Conjunctival Sensory Nerve Fibers. Investig. Opthalmol. Vis. Sci. 2004, 45, 2333–2336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Botelho, S.; Martinez, E.; Pholpramool, C.; Prooyen, H.; Janssen, J.; De Palau, A. Modification of stimulated lacrimal gland flow by sympathetic nerve impulses in rabbit. Am. J. Physiol. Content 1976, 230, 80–84. [Google Scholar] [CrossRef]
- Adeghate, E.; Singh, J.; Howarth, F.C.; Burrows, S. Control of porcine lacrimal gland secretion by non-cholinergic, non-adrenergic nerves: Effects of electrical field stimulation, VIP and NPY. Brain Res. 1997, 758, 127–135. [Google Scholar] [CrossRef]
- Ding, C.; Walcott, B.; Keyser, K.T. Sympathetic Neural Control of the Mouse Lacrimal Gland. Investig. Opthalmol. Vis. Sci. 2003, 44, 1513–1520. [Google Scholar] [CrossRef] [Green Version]
- Meneray, M.A.; Bennett, D.J.; Nguyen, D.H.; Beuerman, R.W. Effect of Sensory Denervation on the Structure and Physiologic Responsiveness of Rabbit Lacrimal Gland. Cornea 1998, 17, 99–107. [Google Scholar] [CrossRef]
- Ruskell, G.L. Changes in nerve terminals and acini of the lacrimal gland and changes in secretion induced by autonomic denervation. Z. Für Zellforsch. Und Mikrosk. Anat. 1969, 94, 261–281. [Google Scholar] [CrossRef]
- Tangkrisanavinont, V. Stimulation of lacrimal secretion by sympathetic nerve impulses in the rabbit. Life Sci. 1984, 34, 2365–2371. [Google Scholar] [CrossRef]
- Jin, K.; Imada, T.; Hisamura, R.; Ito, M.; Toriumi, H.; Tanaka, K.; Nakamura, S.; Tsubota, K. Identification of Lacrimal Gland Postganglionic Innervation and Its Regulation of Tear Secretion. Am. J. Pathol. 2020, 190, 1068–1079. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Tada, Y.; Akaishi, T.; Nakata, K. M3 muscarinic receptor mediates regulation of protein secretion in rabbit lacrimal gland. Curr. Eye Res. 1997, 16, 614–619. [Google Scholar] [CrossRef] [PubMed]
- Mauduit, P.; Jammes, H.; Rossignol, B. M3 muscarinic acetylcholine receptor coupling to PLC in rat exorbital lacrimal acinar cells. Am. J. Physiol. Physiol. 1993, 264, C1550–C1560. [Google Scholar] [CrossRef]
- Toshida, H.; Nguyen, A.H.; Beuerman, R.W.; Murakami, A. Evaluation of Novel Dry Eye Model: Preganglionic Parasympathetic Denervation in Rabbit. Investig. Opthalmol. Vis. Sci. 2007, 48, 4468–4475. [Google Scholar] [CrossRef]
- Alm, A.; Bill, A. Ocular and optic nerve blood flow at normal and increased intraocular pressures in monkeys (Macaca irus): A study with radioactively labelled microspheres including flow determinations in brain and some other tissues. Exp. Eye Res. 1973, 15, 15–29. [Google Scholar] [CrossRef]
- Törnquist, P.; Alm, A. Retinal and choroidal contribution to retinal metabolism in vivo. A study in pigs. Acta Physiol. Scand. 1979, 106, 351–357. [Google Scholar] [CrossRef]
- Hogan, M.J.; Feeney, L. The ultrastructure of the retinal blood vessels: I. The large vessels. J. Ultrastruct. Res. 1963, 9, 10–28. [Google Scholar] [CrossRef]
- Laties, A.M. Central Retinal Artery Innervation. Arch. Ophthalmol. 1967, 77, 405–409. [Google Scholar] [CrossRef]
- Delaey, C.; Van De Voorde, J. Regulatory Mechanisms in the Retinal and Choroidal Circulation. Ophthalmic Res. 2000, 32, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Ferrari-DiLeo, G.; Davis, E.B.; Anderson, D.R. Biochemical evidence for cholinergic activity in retinal blood vessels. Investig. Ophthalmol. Vis. Sci. 1989, 30, 473–477. [Google Scholar]
- Bergua, A.; Kapsreiter, M.; Neuhuber, W.L.; Reitsamer, H.A.; Schrödl, F. Innervation pattern of the preocular human central retinal artery. Exp. Eye Res. 2013, 110, 142–147. [Google Scholar] [CrossRef]
- Bergua, A.; Schrödl, F.; Neuhuber, W.L. Vasoactive intestinal and calcitonin gene-related peptides, tyrosine hydroxylase and nitrergic markers in the innervation of the rat central retinal artery. Exp. Eye Res. 2003, 77, 367–374. [Google Scholar] [CrossRef]
- Ye, X.D.; Laties, A.M.; Stone, R.A. Peptidergic innervation of the retinal vasculature and optic nerve head. Investig. Ophthalmol. Vis. Sci. 1990, 31, 1731–1737. [Google Scholar]
- Kumagai, N.; Yuda, K.; Kadota, T.; Goris, R.C.; Kishida, R. Substance P-like immunoreactivity in the central retinal artery of the rabbit. Exp. Eye Res. 1988, 46, 591–596. [Google Scholar] [CrossRef]
- Laties, A.M.; Jacobowitz, D. A comparative study of the autonomic innervation of the eye in monkey, cat, and rabbit. Anat. Rec. Adv. Integr. Anat. Evol. Biol. 1966, 156, 383–395. [Google Scholar] [CrossRef]
- Toda, N.; Toda, M.; Ayajiki, K.; Okamura, T. Monkey central retinal artery is innervated by nitroxidergic vasodilator nerves. Investig. Ophthalmol. Vis. Sci. 1996, 37, 2177–2184. [Google Scholar]
- Toda, N.; Ayajiki, K.; Yoshida, K.; Kimura, H.; Okamura, T. Impairment by damage of the pterygopalatine ganglion of nitroxidergic vasodilator nerve function in canine cerebral and retinal arteries. Circ. Res. 1993, 72, 206–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, C.P.; Sharma, S.; Steinle, J. Age-related changes in sympathetic neurotransmission in rat retina and choroid. Exp. Eye Res. 2007, 84, 75–81. [Google Scholar] [CrossRef]
- Steinle, J.J.; Lindsay, N.L.; Lashbrook, B.L. Cervical sympathectomy causes photoreceptor-specific cell death in the rat retina. Auton. Neurosci. 2005, 120, 46–51. [Google Scholar] [CrossRef] [PubMed]
- May, C.A.; Neuhuber, W.; Lütjen-Drecoll, E. Immunohistochemical Classification and Functional Morphology of Human Choroidal Ganglion Cells. Investig. Opthalmol. Vis. Sci. 2004, 45, 361–367. [Google Scholar] [CrossRef] [Green Version]
- Schrödl, F.; Brehmer, A.; Neuhuber, W.L. Intrinsic choroidal neurons in the duck eye express galanin. J. Comp. Neurol. 2000, 425, 24–33. [Google Scholar] [CrossRef]
- De Hoz, R.; Salazar, J.J.; Ramírez, A.I.; Rojas, B.; Triviño, A.; Ramírez, J.M. Estudio comparativo de la inervación coroidea en el hombre y en el conejo (oryctolagus cuniculus). Arch. Soc. Esp. Oftalmol. 2006, 81, 463–470. [Google Scholar] [CrossRef]
- Schroedl, F.; De Stefano, M.E.; Reese, S.; Brehmer, A.; Neuhuber, W.L. Comparative anatomy of nitrergic intrinsic choroidal neurons (ICN) in various avian species. Exp. Eye Res. 2004, 78, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Terenghi, G.; Polak, J.M.; Probert, L.; McGregor, G.P.; Ferri, G.L.; Blank, M.A.; Butler, J.M.; Unger, W.G.; Zhang, A.-Q.; Cole, D.F.; et al. Mapping, quantitative distribution and origin of substance P- and VIP-containing nerves in the Uvea of guinea pig eye. Histochemistry 1982, 75, 399–417. [Google Scholar] [CrossRef] [PubMed]
- Nakanome, Y.; Karita, K.; Izumi, H.; Tamai, M. Two types of vasodilatation in cat choroid elicited by electrical stimulation of the short ciliary nerve. Exp. Eye Res. 1995, 60, 37–42. [Google Scholar] [CrossRef]
- Gherezghiher, T.; Hey, J.A.; Koss, M.C. Parasympathetic nervous control of intraocular pressure. Exp. Eye Res. 1990, 50, 457–462. [Google Scholar] [CrossRef]
- Stjernschantz, J.; Bill, A. Effect of intracranial stimulation of the oculomotor nerve on ocular blood flow in the monkey, cat, and rabbit. Investig. Ophthalmol. Vis. Sci. 1979, 18, 99–103. [Google Scholar]
- Triviño, A.; De Hoz, R.; Rojas, B.; Salazar, J.J.; Ramirez, A.I.; Ramirez, J.M. NPY and TH innervation in human choroidal whole-mounts. Histol. Histopathol. 2005, 20, 393–402. [Google Scholar] [CrossRef]
- Klooster, J.; Beckers, H.; Tusscher, T.; Vrensen, G.; Van Der Want, J.; Lamers, W. Sympathetic Innervation of the Rat Choroid: An Autoradiographic Tracing and Immunohistochemical Study. Ophthalmic Res. 1996, 28, 36–43. [Google Scholar] [CrossRef]
- Schrödl, F.; Tines, R.; Brehmer, A.; Neuhuber, W.L. Intrinsic choroidal neurons in the duck eye receive sympathetic input: Anatomical evidence for adrenergic modulation of nitrergic functions in the choroid. Cell Tissue Res. 2001, 304, 175–184. [Google Scholar] [CrossRef]
- May, C.A. Chronologic versus Biologic Aging of the Human Choroid. Sci. World J. 2013, 2013, 378206. [Google Scholar] [CrossRef]
- Jablonski, M.M.; Iannaccone, A.; Reynolds, D.H.; Gallaher, P.; Allen, S.; Wang, X.; Reiner, A. Age-Related Decline in VIP-Positive Parasympathetic Nerve Fibers in the Human Submacular Choroid. Investig. Opthalmol. Vis. Sci. 2007, 48, 479–485. [Google Scholar] [CrossRef] [Green Version]
- Nuzzi, R.; Finazzo, C.; Grignolo, F.M. Changes in adrenergic innervation of the choroid during aging. J. Fr. Dophtalmol. 1996, 19, 89–96. [Google Scholar]
- Hoz, A.D.; Ramírez, A.I.; Salazar, J.J.; Rojas, B.; Ramírez, J.M.; Triviño, A. Substance P and calcitonin gene-related peptide intrinsic choroidal neurons in human choroidal whole-mounts. Histol. Histopathol. 2008, 23, 1249–1258. [Google Scholar] [CrossRef] [PubMed]
- Sghari, S.; Davies, W.I.L.; Gunhaga, L. Elucidation of Cellular Mechanisms That Regulate the Sustained Contraction and Relaxation of the Mammalian Iris. Investig. Opthalmol. Vis. Sci. 2020, 61, 5. [Google Scholar] [CrossRef]
- Lai, J.S.M.; Tham, C.C.Y.; Lam, D.S.C. Comparative study of intraoperative mitomycin C and beta irradiation in pterygium surgery. Br. J. Ophthalmol. 2001, 85, 121–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douglas, R.H. The pupillary light responses of animals; a review of their distribution, dynamics, mechanisms and functions. Prog. Retin. Eye Res. 2018, 66, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Zele, A.J.; Adhikari, P.; Cao, D.; Feigl, B. Melanopsin and Cone Photoreceptor Inputs to the Afferent Pupil Light Response. Front. Neurol. 2019, 10, 529. [Google Scholar] [CrossRef]
- Hayter, E.A.; Brown, T.M. Additive contributions of melanopsin and both cone types provide broadband sensitivity to mouse pupil control. BMC Biol. 2018, 16, 83. [Google Scholar] [CrossRef] [Green Version]
- Lucas, R.J. Mammalian Inner Retinal Photoreception. Curr. Biol. 2013, 23, R125–R133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berson, D.M.; Dunn, F.A.; Takao, M. Phototransduction by Retinal Ganglion Cells That Set the Circadian Clock. Science 2002, 295, 1070–1073. [Google Scholar] [CrossRef] [Green Version]
- Hattar, S.; Liao, H.-W.; Takao, M.; Berson, D.M.; Yau, K.-W. Melanopsin-containing retinal ganglion cells: Architecture, projections, and intrinsic photosensitivity. Science 2002, 295, 1065–1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDougal, D.H.; Gamlin, P.D. Autonomic Control of the Eye. Compr. Physiol. 2014, 5, 439–473. [Google Scholar] [CrossRef] [Green Version]
- Gamlin, P.D.; McDougal, D.H.; Pokorny, J.; Smith, V.C.; Yau, K.-W.; Dacey, D.M. Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells. Vis. Res. 2007, 47, 946–954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucas, R.J.; Hattar, S.; Takao, M.; Berson, D.M.; Foster, R.G.; Yau, K.-W. Diminished Pupillary Light Reflex at High Irradiances in Melanopsin-Knockout Mice. Science 2003, 299, 245–247. [Google Scholar] [CrossRef] [Green Version]
- Hattar, S.; Lucas, R.J.; Mrosovsky, N.; Thompson, S.; Douglas, R.H.; Hankins, M.W.; Lem, J.; Biel, M.; Hofmann, F.; Foster, R.G.; et al. Melanopsin and rod–cone photoreceptive systems account for all major accessory visual functions in mice. Nature 2003, 424, 75–81. [Google Scholar] [CrossRef] [Green Version]
- Hatori, M.; Le, H.; Vollmers, C.; Keding, S.R.; Tanaka, N.; Schmedt, C.; Jegla, T.; Panda, S. Inducible Ablation of Melanopsin-Expressing Retinal Ganglion Cells Reveals Their Central Role in Non-Image Forming Visual Responses. PLoS ONE 2008, 3, e2451. [Google Scholar] [CrossRef]
- Bouffard, M.A. The Pupil. Contin. Lifelong Learn. Neurol. 2019, 25, 1194–1214. [Google Scholar] [CrossRef]
- Breen, L.A.; Burde, R.M.; Loewy, A.D. Brainstem connections to the Edinger-Westphal nucleus of the cat: A retrograde tracer study. Brain Res. 1983, 261, 303–306. [Google Scholar] [CrossRef]
- Jones, B.E.; Yang, T.-Z. The efferent projections from the reticular formation and the locus coeruleus studied by anterograde and retrograde axonal transport in the rat. J. Comp. Neurol. 1985, 242, 56–92. [Google Scholar] [CrossRef]
- Lewis, D.; Coote, J. Excitation and inhibition of rat sympathetic preganglionic neurones by catecholamines. Brain Res. 1990, 530, 229–234. [Google Scholar] [CrossRef]
- Szabadi, E. Functional Organization of the Sympathetic Pathways Controlling the Pupil: Light-Inhibited and Light-Stimulated Pathways. Front. Neurol. 2018, 9, 1069. [Google Scholar] [CrossRef] [Green Version]
- Okada, H.; Nakano, O.; Okamoto, K.; Nakayama, K.; Nisida, I. The central path of the light reflex via the sympathetic nerve in the cat. Jpn. J. Physiol. 1960, 10, 646–658. [Google Scholar] [CrossRef] [Green Version]
- Dampney, R.A.; Furlong, T.; Horiuchi, J.; Iigaya, K. Role of dorsolateral periaqueductal grey in the coordinated regulation of cardiovascular and respiratory function. Auton. Neurosci. 2013, 175, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Bajic, D.; Van Bockstaele, E.J.; Proudfit, H.K. Ultrastructural analysis of rat ventrolateral periaqueductal gray projections to the A5 cell group. Neuroscience 2012, 224, 145–159. [Google Scholar] [CrossRef] [Green Version]
- González, M.M.; Aston-Jones, G. Circadian regulation of arousal: Role of the noradrenergic locus coeruleus system and light exposure. Sleep 2006, 29, 1327–1336. [Google Scholar] [CrossRef] [Green Version]
- Samuels, E.; Szabadi, E.R.S.A.E. Functional Neuroanatomy of the Noradrenergic Locus Coeruleus: Its Roles in the Regulation of Arousal and Autonomic Function Part II: Physiological and Pharmacological Manipulations and Pathological Alterations of Locus Coeruleus Activity in Humans. Curr. Neuropharmacol. 2008, 6, 254–285. [Google Scholar] [CrossRef] [Green Version]
- Vanderhasselt, M.-A.; De Raedt, R.; Nasso, S.; Puttevils, L.; Mueller, S. Don’t judge me: Psychophysiological evidence of gender differences to social evaluative feedback. Biol. Psychol. 2018, 135, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Lichtenstein-Vidne, L.; Gabay, S.; Cohen, N.; Henik, A. Lateralisation of emotions: Evidence from pupil size measurement. Cogn. Emot. 2016, 31, 699–711. [Google Scholar] [CrossRef]
- Brocher, A.; Graf, T. Decision-related factors in pupil old/new effects: Attention, response execution, and false memory. Neuropsychologia 2017, 102, 124–134. [Google Scholar] [CrossRef] [PubMed]
- Gomes, C.A.; Montaldi, D.; Mayes, A. The pupil as an indicator of unconscious memory: Introducing the pupil priming effect. Psychophysiology 2015, 52, 754–769. [Google Scholar] [CrossRef] [PubMed]
- Ebitz, R.B.; Moore, T. Selective Modulation of the Pupil Light Reflex by Microstimulation of Prefrontal Cortex. J. Neurosci. 2017, 37, 5008–5018. [Google Scholar] [CrossRef]
- Joshi, S.; Li, Y.; Kalwani, R.M.; Gold, J.I. Relationships between Pupil Diameter and Neuronal Activity in the Locus Coeruleus, Colliculi, and Cingulate Cortex. Neuron 2015, 89, 221–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.-A.J.; Boehnke, S.; White, B.J.; Munoz, D.P. Microstimulation of the Monkey Superior Colliculus Induces Pupil Dilation Without Evoking Saccades. J. Neurosci. 2012, 32, 3629–3636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peinkhofer, C.; Knudsen, G.M.; Moretti, R.; Kondziella, D. Cortical modulation of pupillary function: Systematic review. PeerJ 2019, 7, e6882. [Google Scholar] [CrossRef] [PubMed]
- Clarke, R.J.; Zhang, H.; Gamlin, P.D.R. Characteristics of the Pupillary Light Reflex in the Alert Rhesus Monkey. J. Neurophysiol. 2003, 89, 3179–3189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaudric, A.; Coscas, G.; Bird, A. Choroidal Ischemia. Am. J. Ophthalmol. 1982, 94, 489–498. [Google Scholar] [CrossRef]
- Cuthbertson, S.; LeDoux, M.S.; Jones, S.; Jones, J.; Zhou, Q.; Gong, S.; Ryan, P.; Reiner, A. Localization of preganglionic neurons that innervate choroidal neurons of pterygopalatine ganglion. Investig. Opthalmol. Vis. Sci. 2003, 44, 3713–3724. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, S.F.E.; Bill, A. Vasoactive intestinal polypeptide (VIP): Effects in the eye and on regional blood flows. Acta Physiol. Scand. 1984, 121, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, S.F. Nitric oxide as a mediator of parasympathetic vasodilation in ocular and extraocular tissues in the rabbit. Investig. Ophthalmol. Vis. Sci. 1996, 37, 2110–2119. [Google Scholar]
- Nilsson, S.F.; Linder, J.; Bill, A. Characteristics of uveal vasodilation produced by facial nerve stimulation in monkeys, cats and rabbits. Exp. Eye Res. 1985, 40, 841–852. [Google Scholar] [CrossRef]
- Cuthbertson, S.; Jackson, B.; Toledo, C.; Fitzgerald, M.E.C.; Shih, Y.F.; Zagvazdin, Y.; Reiner, A. Innervation of orbital and choroidal blood vessels by the pterygopalatine ganglion in pigeons. J. Comp. Neurol. 1997, 386, 273–282. [Google Scholar] [CrossRef]
- Reiner, A.; Zagvazdin, Y.; Fitzgerald, M.E. Choroidal blood flow in pigeons compensates for decreases in arterial blood pressure. Exp. Eye Res. 2003, 76, 273–282. [Google Scholar] [CrossRef]
- Gamlin, P.; Reiner, A.; Karten, H.J. Substance P-containing neurons of the avian suprachiasmatic nucleus project directly to the nucleus of Edinger-Westphal. Proc. Natl. Acad. Sci. USA 1982, 79, 3891–3895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantwell, E.L.; Cassone, V.M. Chicken suprachiasmatic nuclei: I. Efferent and afferent connections. J. Comp. Neurol. 2006, 496, 97–120. [Google Scholar] [CrossRef] [Green Version]
- Cantwell, E.L.; Cassone, V.M. Chicken suprachiasmatic nuclei: II. Autoradiographic and immunohistochemical analysis. J. Comp. Neurol. 2006, 499, 442–457. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, M.E.C.; Gamlin, P.D.R.; Zagvazdin, Y.; Reiner, A. Central neural circuits for the light-mediated reflexive control of choroidal blood flow in the pigeon eye: A laser Doppler study. Vis. Neurosci. 1996, 13, 655–669. [Google Scholar] [CrossRef] [PubMed]
- Reiner, A.; Wong, T.; Nazor, C.; DEL Mar, N.; Fitzgerald, M. Type-specific photoreceptor loss in pigeons after disruption of parasympathetic control of choroidal blood flow by the medial subdivision of the nucleus of Edinger-Westphal. Vis. Neurosci. 2016, 33, E008. [Google Scholar] [CrossRef] [Green Version]
- Fischer, A.J.; McKinnon, L.A.; Nathanson, N.M.; Stell, W.K. Identification and localization of muscarinic acetylcholine receptors in the ocular tissues of the chick. J. Comp. Neurol. 1998, 392, 273–284. [Google Scholar] [CrossRef]
- Zagvazdin, Y.; Fitzgeraldab, M.E.; Reiner, A. Role of Muscarinic Cholinergic Transmission in Edinger-Westphal Nucleus-induced Choroidal Vasodilation in Pigeon. Exp. Eye Res. 2000, 70, 315–327. [Google Scholar] [CrossRef]
- Alm, A.; Bill, A. The Effect of Stimulation of the Cervical Sympathetic Chain on Retinal Oxygen Tension and on Uveal, Retinal and Cerebral Blood Flow in Cats. Acta Physiol. Scand. 1973, 88, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Alm, A. The effect of sympathetic stimulation on blood flow through the uvea, retina and optic nerve in monkeys (Macaca irus). Exp. Eye Res. 1977, 25, 19–24. [Google Scholar] [CrossRef]
- Li, C.; Fitzgerald, M.E.C.; Del Mar, N.; Haughey, C.; Reiner, A. Defective Choroidal Blood Flow Baroregulation and Retinal Dysfunction and Pathology Following Sympathetic Denervation of Choroid. Investig. Opthalmol. Vis. Sci. 2018, 59, 5032–5044. [Google Scholar] [CrossRef]
- Martinez-Camarillo, J.-C.; Spee, C.K.; Chen, M.; Rodriguez, A.; Nimmagadda, K.; Trujillo-Sánchez, G.P.; Hinton, D.R.; Giarola, A.; Pikov, V.; Sridhar, A.; et al. Sympathetic Effects of Internal Carotid Nerve Manipulation on Choroidal Vascularity and Related Measures. Investig. Opthalmol. Vis. Sci. 2019, 60, 4303–4309. [Google Scholar] [CrossRef] [Green Version]
- Kiel, J.W.; Lovell, M.O. Adrenergic modulation of choroidal blood flow in the rabbit. Investig. Ophthalmol. Vis. Sci. 1996, 37, 673–679. [Google Scholar]
- Nilsson, S.F.E. Neuropeptide Y (NPY): A vasoconstrictor in the eye, brain and other tissues in the rabbit. Acta Physiol. Scand. 1991, 141, 455–467. [Google Scholar] [CrossRef] [PubMed]
- Stjernschantz, J.; Geijer, C.; Bill, A. Electrical stimulation of the fifth cranial nerve in rabbits: Effects on ocular blood flow, extravascular albumin content and intraocular pressure. Exp. Eye Res. 1979, 28, 229–238. [Google Scholar] [CrossRef]
- Costagliola, C.; Dell’Omo, R.; Agnifili, L.; Bartollino, S.; Fea, A.M.; Uva, M.G.; Zeppa, L.; Mastropasqua, L. How many aqueous humor outflow pathways are there? Surv. Ophthalmol. 2019, 65, 144–170. [Google Scholar] [CrossRef]
- Ruskell, G. An ocular parasympathetic nerve pathway of facial nerve origin and its influence on intraocular pressure. Exp. Eye Res. 1970, 10, 319–330. [Google Scholar] [CrossRef]
- Uusitalo, H.; Lehtosalo, J.I.; Palkama, A. Vasoactive Intestinal Polypeptide(VIP)-Immunoreactive Nerve Fibers in the Anterior Uvea of the Guinea Pig. Ophthalmic Res. 1985, 17, 235–240. [Google Scholar] [CrossRef]
- Nilsson, S.F. The Significance of Nitric Oxide for Parasympathetic Vasodilation in the Eye and other Orbital Tissues in the Cat. Exp. Eye Res. 2000, 70, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Kiel, J.W.; Reitsamerab, H.A.; Walker, J.S.; Kiel, F.W. Effects of Nitric Oxide Synthase Inhibition on Ciliary Blood Flow, Aqueous Production and Intraocular Pressure. Exp. Eye Res. 2001, 73, 355–364. [Google Scholar] [CrossRef]
- Granstam, E.; Nilsson, S.F. Non-adrenergic sympathetic vasoconstriction in the eye and some other facial tissues in the rabbit. Eur. J. Pharmacol. 1990, 175, 175–186. [Google Scholar] [CrossRef]
- Akagi, Y.; Ibata, Y.; Sano, Y. The sympathetic innervation of the ciliary body and trabecular meshwork of the cat. Cell Tissue Res. 1976, 173, 261–269. [Google Scholar] [CrossRef]
- Oksala, O.; Stjernschantz, J. Effects of calcitonin gene-related peptide in the eye. A study in rabbits and cats. Investig. Ophthalmol. Vis. Sci. 1988, 29, 1006–1011. [Google Scholar]
- Goel, M.; Pacciani, R.G.; Lee, R.K.; Battacharya, S.K. Aqueous Humor Dynamics: A Review. Open Ophthalmol. J. 2010, 4, 52–59. [Google Scholar] [CrossRef] [Green Version]
- Kiel, J.; Hollingsworth, M.; Rao, R.; Chen, M.; Reitsamer, H. Ciliary blood flow and aqueous humor production. Prog. Retin. Eye Res. 2011, 30, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Crosson, C.K.; Heath, A.R.; Devries, G.W.; Potter, D.E. Pharmacological evidence for heterogeneity of ocular $aL2adrenoceptors. Curr. Eye Res. 1992, 11, 963–970. [Google Scholar] [CrossRef] [PubMed]
- Wax, M.B.; Molinoff, P.B. Distribution and properties of beta-adrenergic receptors in human iris-ciliary body. Investig. Ophthalmol. Vis. Sci. 1987, 28, 420–430. [Google Scholar]
- Polansky, J.R.; Zlock, D.; Brasier, A.; Bloom, E. Adrenergic and cholinergic receptors in isolated non-pigmented ciliary epithelial cells. Curr. Eye Res. 1985, 4, 517–522. [Google Scholar] [CrossRef] [PubMed]
- Ogidigben, M.; Chu, T.C.; Potter, D.E. Ocular actions of moxonidine: A possible role for imidazoline receptors. J. Pharmacol. Exp. Ther. 1994, 269, 897–904. [Google Scholar]
- Kaufman, P.L. Aqueous humor dynamics following total iridectomy in the cynomolgus monkey. Investig. Ophthalmol. Vis. Sci. 1979, 18, 870–874. [Google Scholar]
- Kaufman, P.L.; Bárány, E.H. Adrenergic drug effects on aqueous outflow facility following ciliary muscle retrodisplacement in the cynomolgus monkey. Investig. Ophthalmol. Vis. Sci. 1981, 20, 644–651. [Google Scholar]
- Kaufman, P.L. Total iridectomy does not alter outflow facility responses to cyclic AMP in cynomolgus monkeys. Exp. Eye Res. 1986, 43, 441–447. [Google Scholar] [CrossRef]
- Ye, M.; Chen, Z.; Li, M.; Chen, W.; Zhang, H.; Wang, J. Effect of topical application of adrenaline on Schlemm canal, trabecular meshwork and intraocular pressure. Medicine 2019, 98, e15558. [Google Scholar] [CrossRef] [PubMed]
- Stamer, W.D.; Lei, Y.; Boussommier-Calleja, A.; Overby, D.R.; Ethier, C.R. eNOS, a Pressure-Dependent Regulator of Intraocular Pressure. Investig. Opthalmol. Vis. Sci. 2011, 52, 9438–9444. [Google Scholar] [CrossRef] [Green Version]
- Luo, Z.; Li, M.; Ye, M.; Ji, P.; Lou, X.; Huang, J.; Yao, K.; Zhao, Y.; Zhang, H. Effect of Electrical Stimulation of Cervical Sympathetic Ganglia on Intraocular Pressure Regulation According to Different Circadian Rhythms in Rats. Investig. Opthalmol. Vis. Sci. 2020, 61, 40. [Google Scholar] [CrossRef]
- Gallar, J.; Liu, J.H. Stimulation of the cervical sympathetic nerves increases intraocular pressure. Investig. Ophthalmol. Vis. Sci. 1993, 34, 596–605. [Google Scholar]
- Alm, A.; Nilsson, S.F. Uveoscleral outflow—A review. Exp. Eye Res. 2009, 88, 760–768. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.; McLaren, J.W.; Overby, D. Unconventional aqueous humor outflow: A review. Exp. Eye Res. 2016, 158, 94–111. [Google Scholar] [CrossRef] [Green Version]
- Yücel, Y.H.; Johnston, M.G.; Ly, T.; Patel, M.; Drake, B.; Gumus, E.; Fraenkl, S.A.; Moore, S.; Tobbia, D.; Armstrong, D.; et al. Identification of lymphatics in the ciliary body of the human eye: A novel “uveolymphatic” outflow pathway. Exp. Eye Res. 2009, 89, 810–819. [Google Scholar] [CrossRef] [PubMed]
- Bill, A. Effects of atropine and pilocarpine on aqueous humour dynamics in cynomolgus monkeys (Macaca irus). Exp. Eye Res. 1967, 6, 120–125. [Google Scholar] [CrossRef]
- Bill, A. Early effects of epinephrine on aqueous humor dynamics in vervet monkeys (Cercopithecus ethiops). Exp. Eye Res. 1969, 8, 35–43. [Google Scholar] [CrossRef]
- Abaye, D.A.; Pullen, F.S.; Nielsen, B.V. Practical considerations in analysing neuropeptides, calcitonin gene-related peptide and vasoactive intestinal peptide, by nano-electrospray ionisation and quadrupole time-of-flight mass spectrometry: Monitoring multiple protonations. Rapid Commun. Mass Spectrom. 2011, 25, 1107–1116. [Google Scholar] [CrossRef]
- Selbach, J.M.; Schonfelder, U.; Funk, R.H.W. Arteriovenous Anastomoses of the Episcleral Vasculature in the Rabbit and Rat Eye. J. Glaucoma 1998, 7, 50–57. [Google Scholar] [CrossRef]
- Goldmann, H. Abflussdruck, Minutenvolumen und Widerstand der Kammerwasser-strömung des Menschen. Doc. Ophthalmol. 1951, 5, 278–356. [Google Scholar] [CrossRef] [PubMed]
- Strohmaier, C.A.; Reitsamer, H.A.; Kiel, J.W. Episcleral Venous Pressure and IOP Responses to Central Electrical Stimulation in the Rat. Investig. Opthalmol. Vis. Sci. 2013, 54, 6860–6866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selbach, J.M.; Rohen, J.W.; Steuhl, K.-P.; Lütjen-Drecoll, E. Angioarchitecture and Innervation of the Primate Anterior Episclera. Curr. Eye Res. 2005, 30, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Ladek, A.M.; Trost, A.; Bruckner, D.; Schroedl, F.; Kaser-Eichberger, A.; Lenzhofer, M.; Reitsamer, H.A.; Strohmaier, C.A. Immunohistochemical Characterization of Neurotransmitters in the Episcleral Circulation in Rats. Investig. Opthalmol. Vis. Sci. 2019, 60, 3215–3220. [Google Scholar] [CrossRef] [PubMed]
- Heermann, S. Neuroanatomie der Sehbahn. Mon. Augenheilkd. 2017, 234, 1327–1333. [Google Scholar] [CrossRef] [PubMed]
- May, P.J.; Warren, S.; Bohlen, M.O.; Barnerssoi, M.; Horn, A.K.E. A central mesencephalic reticular formation projection to the Edinger-Westphal nuclei. Brain Struct. Funct. 2015, 221, 4073–4089. [Google Scholar] [CrossRef] [Green Version]
- Motlagh, M.; Geetha, R. Physiology, Accommodation. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- May, P.J.; Gamlin, P.D. Is Primate Lens Accommodation Unilaterally or Bilaterally Controlled? Investig. Opthalmol. Vis. Sci. 2020, 61, 5. [Google Scholar] [CrossRef] [PubMed]
- Lara-Lacárcel, F.; Marín-Franch, I.; Fernández-Sánchez, V.; Riquelme-Nicolás, R.; López-Gil, N. Objective changes in astigmatism during accommodation. Ophthalmic Physiol. Opt. 2021, 41, 1069–1075. [Google Scholar] [CrossRef] [PubMed]
- Gamlin, P.D.; Yoon, K. An area for vergence eye movement in primate frontal cortex. Nat. Cell Biol. 2000, 407, 1003–1007. [Google Scholar] [CrossRef]
- Schor, C.M.; Lott, L.A.; Pope, D.; Graham, A.D. Saccades reduce latency and increase velocity of ocular accommodation. Vis. Res. 1999, 39, 3769–3795. [Google Scholar] [CrossRef]
- Domínguez-Vicent, A.; Monsálvez-Romín, D.; Del Águila-Carrasco, A.J.; Ferrer-Blasco, T.; Montés-Micó, R. Changes in the anterior chamber during accommodation assessed with a Scheimpflug system. J. Cataract. Refract. Surg. 2014, 40, 1790–1797. [Google Scholar] [CrossRef]
- Tigges, M.; Iuvone, P.M.; Fernandes, A.; Sugrue, M.F.; Mallorga, P.J.; Laties, A.M.; Stone, R.A. Effects of Muscarinic Cholinergic Receptor Antagonists on Postnatal Eye Growth of Rhesus Monkeys. Optom. Vis. Sci. 1999, 76, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Schmid, K.L.; Wildsoet, C.F. Inhibitory Effects of Apomorphine and Atropine and Their Combination on Myopia in Chicks. Optom. Vis. Sci. 2004, 81, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Wen, D.; Wang, Q.; McAlinden, C.; Flitcroft, I.; Chen, H.; Saw, S.M.; Chen, H.; Bao, F.; Zhao, Y.; et al. Efficacy Comparison of 16 Interventions for Myopia Control in Children. Ophthalmology 2016, 123, 697–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barathi, V.; Beuerman, R.W. Molecular mechanisms of muscarinic receptors in mouse scleral fibroblasts: Prior to and after induction of experimental myopia with atropine treatment. Mol. Vis. 2011, 17, 680–692. [Google Scholar] [PubMed]
- Barathi, V.A.; Weon, S.R.; Beuerman, R.W. Expression of muscarinic receptors in human and mouse sclera and their role in the regulation of scleral fibroblasts proliferation. Mol. Vis. 2009, 15, 1277–1293. [Google Scholar]
- Lin, H.-J.; Wan, L.; Chen, W.-C.; Lin, J.-M.; Lin, C.-J.; Tsai, F.-J. Muscarinic Acetylcholine Receptor 3 Is Dominant in Myopia Progression. Investig. Opthalmol. Vis. Sci. 2012, 53, 6519–6525. [Google Scholar] [CrossRef] [Green Version]
- McBrien, N.A.; Stell, W.K.; Carr, B. How does atropine exert its anti-myopia effects? Ophthalmic Physiol. Opt. 2013, 33, 373–378. [Google Scholar] [CrossRef]
- Abramson, D.H.; Franzen, L.A.; Coleman, D.J. Pilocarpine in the Presbyope. Arch. Ophthalmol. 1973, 89, 100–102. [Google Scholar] [CrossRef]
- Abramson, D.H.; Coleman, D.J.; Forbes, M.; Franzen, L.A. Pilocarpine. Arch. Ophthalmol. 1972, 87, 615–620. [Google Scholar] [CrossRef]
- Benozzi, G.; Cortina, M.E.; Gimeno, E.; Vantesone, D.L.; Solas, A.E.; Lorda, G.M.; Facal, S.; Leiro, J.; Orman, B. A multicentric study of pharmacological treatment for presbyopia. Graefe’s Arch. Clin. Exp. Ophthalmol. 2021, 259, 2441–2450. [Google Scholar] [CrossRef]
- Benozzi, G.; Perez, C.; Leiro, J.; Facal, S.; Orman, B. Presbyopia Treatment with Eye Drops: An Eight Year Retrospective Study. Transl. Vis. Sci. Technol. 2020, 9, 25. [Google Scholar] [PubMed]
- Ono, M.; Takamura, E.; Shinozaki, K.; Tsumura, T.; Hamano, T.; Yagi, Y.; Tsubota, K. Therapeutic effect of cevimeline on dry eye in patients with Sjögren’s syndrome: A randomized, double-blind clinical study. Am. J. Ophthalmol. 2004, 138, 6–17. [Google Scholar] [CrossRef] [PubMed]
- Petrone, D.; Condemi, J.J.; Fife, R.; Gluck, O.; Cohen, S.; Dalgin, P. A double-blind, randomized, placebo-controlled study of cevimeline in Sjögren’s syndrome patients with xerostomia and keratoconjunctivitis sicca. Arthritis Rheum. 2002, 46, 748–754. [Google Scholar] [CrossRef] [PubMed]
- Ou, K.; Copland, D.A.; Theodoropoulou, S.; Mertsch, S.; Li, Y.; Liu, J.; Schrader, S.; Liu, L.; Dick, A.D. Treatment of diabetic retinopathy through neuropeptide Y-mediated enhancement of neurovascular microenvironment. J. Cell. Mol. Med. 2020, 24, 3958–3970. [Google Scholar] [CrossRef] [Green Version]
Compound. | Mechanism |
---|---|
Substance P | Epithelial renewal and wound repair |
CGRP | Epithelial renewal and wound repair |
Norepinephrine | Epithelial renewal and wound repair; stimulate proliferation and migration of corneal epithelial cells |
Acetylcholine | Promote DNA synthesis in epithelial cells |
VIP | Protect corneal endothelial cells from oxidative stress |
Neurotensin | Increases keratocyte proliferation; decreases keratocycte apoptosis |
Nerve growth factor | Sustain homeostasis and regeneration of epithelium and stroma |
Drug | Target | Mechanism |
---|---|---|
Cholinergic drug | Ciliary muscle |
|
Carbonic anhydrase inhibitor | Ciliary body; non-pigmented epithelial cells |
|
Epinephrine and analogue | Ciliary muscle; endothelial cells of the canal |
|
β-Blocker | Ciliary body; non-pigmented epithelial cells |
|
α2-Agonist | Ciliary body; non-pigmented epithelial cells |
|
Prostaglandin and analogue | Ciliary muscle and extracellular matrix |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, F.; Zhao, Y.; Zhang, H. Ocular Autonomic Nervous System: An Update from Anatomy to Physiological Functions. Vision 2022, 6, 6. https://doi.org/10.3390/vision6010006
Wu F, Zhao Y, Zhang H. Ocular Autonomic Nervous System: An Update from Anatomy to Physiological Functions. Vision. 2022; 6(1):6. https://doi.org/10.3390/vision6010006
Chicago/Turabian StyleWu, Feipeng, Yin Zhao, and Hong Zhang. 2022. "Ocular Autonomic Nervous System: An Update from Anatomy to Physiological Functions" Vision 6, no. 1: 6. https://doi.org/10.3390/vision6010006
APA StyleWu, F., Zhao, Y., & Zhang, H. (2022). Ocular Autonomic Nervous System: An Update from Anatomy to Physiological Functions. Vision, 6(1), 6. https://doi.org/10.3390/vision6010006