Nitric Oxide Interaction with the Eye
Abstract
:1. Introduction
2. NO and the Eye
3. NO in Ocular Surface Cells
4. NO in the Retina
5. NO for the Treatment of Corneal Wound Healing
6. NO and Intraocular Pressure (IOP)
7. NO for the Treatment of Glaucoma
8. NO and AMD
9. NO and Retinopathy of Prematurity (ROP)
10. NO and Myopia
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hirst, D.G.; Robson, T. Nitric oxide physiology and pathology. In Nitric Oxide; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1–13. [Google Scholar]
- Lancaster, J., Jr. Nitric Oxide: Principles and Actions; Elsevier: Amsterdam, The Netherlands, 1996. [Google Scholar]
- Habib, S.; Ali, A. Biochemistry of nitric oxide. Indian J. Clin. Biochem. 2011, 26, 3–17. [Google Scholar] [CrossRef] [Green Version]
- Dawson, T.M.; Dawson, V.L. REVIEW: Nitric Oxide: Actions and Pathological Roles. Neurosci. 1995, 1, 7–18. [Google Scholar] [CrossRef]
- Nathan, C.; Xie, Q.W. Nitric oxide synthases: Roles, tolls, and controls. Cell 1994, 78, 915–918. [Google Scholar] [CrossRef]
- Nathan, C. Nitric oxide as a secretory product of mammalian cells. FASEB J 1992, 6, 3051–3064. [Google Scholar] [CrossRef]
- Moncada, S.; Palmer, R.M.; Higgs, E.A. Nitric oxide: Physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 1991, 43, 109–142. [Google Scholar] [PubMed]
- Clancy, R.M.; Amin, A.R.; Abramson, S.B. The role of nitric oxide in inflammation and immunity. Arthritis Rheum. 1998, 41, 1141–1151. [Google Scholar] [CrossRef]
- Schneemann, M.; Schoedon, G.; Hofer, S.; Blau, N.; Guerrero, L.; Schaffner, A. Nitric oxide synthase is not a constituent of the antimicrobial armature of human mononuclear phagocytes. J. Infect. Dis. 1993, 167, 1358–1363. [Google Scholar] [CrossRef] [PubMed]
- Vodovotz, Y.; Kwon, N.S.; Pospischil, M.; Manning, J.; Paik, J.; Nathan, C. Inactivation of nitric oxide synthase after prolonged incubation of mouse macrophages with IFN-gamma and bacterial lipopolysaccharide. J. Immunol. 1994, 152, 4110–4118. [Google Scholar] [PubMed]
- Xie, Q.W.; Kashiwabara, Y.; Nathan, C. Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J. Biol. Chem. 1994, 269, 4705–4708. [Google Scholar] [CrossRef]
- Weinberg, J.B.; Misukonis, M.A.; Shami, P.J.; Mason, S.N.; Sauls, D.L.; Dittman, W.A.; Wood, E.R.; Smith, G.K.; McDonald, B.; Bachus, K.E.; et al. Human mononuclear phagocyte inducible nitric oxide synthase (iNOS): Analysis of iNOS mRNA, iNOS protein, biopterin, and nitric oxide production by blood monocytes and peritoneal macrophages. Blood 1995, 86, 1184–1195. [Google Scholar] [CrossRef] [Green Version]
- Arany, I.; Brysk, M.M.; Brysk, H.; Tyring, S.K. Regulation of inducible nitric oxide synthase mRNA levels by differentiation and cytokines in human keratinocytes. Biochem. Biophys. Res. Commun. 1996, 220, 618–622. [Google Scholar] [CrossRef]
- Mandai, M.; Mittag, T.W.; Kogishi, J.; Iwaki, M.; Hangai, M.; Yoshimura, N. Role of nitric oxide synthase isozymes in endotoxin-induced uveitis. Invest. Ophthalmol. Vis. Sci 1996, 37, 826–832. [Google Scholar]
- Wink, D.A.; Hanbauer, I.; Grisham, M.B.; Laval, F.; Nims, R.W.; Laval, J.; Cook, J.; Pacelli, R.; Liebmann, J.; Krishna, M.; et al. Chemical biology of nitric oxide: Regulation and protective and toxic mechanisms. Curr. Top. Cell Regul. 1996, 34, 159–187. [Google Scholar]
- Dighiero, P.; Behar-Cohen, F.; Courtois, Y.; Goureau, O. Expression of inducible nitric oxide synthase in bovine corneal endothelial cells and keratocytes in vitro after lipopolysaccharide and cytokines stimulation. Invest. Ophthalmol. Vis. Sci. 1997, 38, 2045–2052. [Google Scholar]
- Yanagiya, N.; Akiba, J.; Kado, M.; Yoshida, A.; Kono, T.; Iwamoto, J. Transient corneal edema induced by nitric oxide synthase inhibition. Nitric. Oxide 1997, 1, 397–403. [Google Scholar] [CrossRef]
- Yoshida, M.; Yoshimura, N.; Hangai, M.; Tanihara, H.; Honda, Y. Interleukin-1 alpha, interleukin-1 beta, and tumor necrosis factor gene expression in endotoxin-induced uveitis. Invest. Ophthalmol. Vis. Sci. 1994, 35, 1107–1113. [Google Scholar]
- Brunet, L.R. Nitric oxide in parasitic infections. Int. Immunopharmacol. 2001, 1, 1457–1467. [Google Scholar] [CrossRef]
- Van der Veen, R.C. Nitric oxide and T helper cell immunity. Int. Immunopharmacol. 2001, 1, 1491–1500. [Google Scholar] [CrossRef]
- Bogdan, C.; Rollinghoff, M.; Diefenbach, A. The role of nitric oxide in innate immunity. Immunol. Rev. 2000, 173, 17–26. [Google Scholar] [CrossRef]
- Bogdan, C.; Rollinghoff, M.; Diefenbach, A. Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr. Opin. Immunol. 2000, 12, 64–76. [Google Scholar] [CrossRef]
- Sennlaub, F.; Courtois, Y.; Goureau, O. Nitric oxide synthase-II is expressed in severe corneal alkali burns and inhibits neovascularization. Invest. Ophthalmol. Vis. Sci. 1999, 40, 2773–2779. [Google Scholar]
- Ko, S.M.; Kim, M.K.; Kim, J.C. The role of nitric oxide in experimental allergic conjunctivitis. Cornea 2000, 19, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Er, H.; Turkoz, Y.; Ozerol, I.H.; Uzmez, E. Effect of nitric oxide synthase inhibition in experimental Pseudomonas keratitis in rabbits. Eur. J. Ophthalmol. 1998, 8, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Daheshia, M.; Kanangat, S.; Rouse, B.T. Production of key molecules by ocular neutrophils early after herpetic infection of the cornea. Exp. Eye Res 1998, 67, 619–624. [Google Scholar] [CrossRef]
- Hancock, J.T.; Neill, S.J. Nitric oxide: Its generation and interactions with other reactive signaling compounds. Plants 2019, 8, 41. [Google Scholar] [CrossRef] [Green Version]
- Ushio-Fukai, M.; Ash, D.; Nagarkoti, S.; Belin de Chantemèle, E.J.; Fulton, D.J.; Fukai, T. Interplay between Reactive Oxygen/Reactive Nitrogen Species and Metabolism in Vascular Biology and Disease. Antioxid. Redox Signal. 2021, 34, 1319–1354. [Google Scholar] [CrossRef] [PubMed]
- Lima, M.G.; Maximino, C.; Oliveira, K.R.M.; Brasil, A.; Crespo-Lopez, M.E.; Batista, E.d.J.O.; de Farias Rocha, F.A.; Picanço-Diniz, D.L.W.; Herculano, A.M. Nitric oxide as a regulatory molecule in the processing of the visual stimulus. Nitric. Oxide 2014, 36, 44–50. [Google Scholar] [CrossRef]
- Negi, V.; Mariaselvam, C.; Misra, D.; Muralidharan, N.; Fortier, C.; Charron, D.; Krishnamoorthy, R.; Tamouza, R. Polymorphisms in the promoter region of iNOS predispose to rheumatoid arthritis in south Indian Tamils. Int. J. Immunogenet. 2017, 44, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Aktan, F. iNOS-mediated nitric oxide production and its regulation. Life Sci. 2004, 75, 639–653. [Google Scholar] [CrossRef]
- Kuzin, B.; Regulski, M.; Stasiv, Y.; Scheinker, V.; Tully, T.; Enikolopov, G. Nitric oxide interacts with the retinoblastoma pathway to control eye development in Drosophila. Curr. Biol. 2000, 10, 459–462. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.C.; Cheong, T.; Park, G.; Park, M.; Kwon, N.; Yoon, H. The role of nitric oxide in ocular surface diseases. In Lacrimal Gland, Tear Film, and Dry Eye Syndromes 3; Springer: Berlin/Heidelberg, Germany, 2002; pp. 687–695. [Google Scholar]
- Park, J.W.; Piknova, B.; Jenkins, A.; Hellinga, D.; Parver, L.M.; Schechter, A.N. Potential roles of nitrate and nitrite in nitric oxide metabolism in the eye. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef]
- Kim, J.C.; Park, G.S.; Kim, J.K.; Kim, Y.M. The role of nitric oxide in ocular surface cells. J. Korean Med. Sci. 2002, 17, 389–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Shboul, O.A.; Mustafa, A.G.; Omar, A.A.; Al-Dwairi, A.N.; Alqudah, M.A.; Nazzal, M.S.; Alfaqih, M.A.; Al-Hader, R.A. Effect of progesterone on nitric oxide/cyclic guanosine monophosphate signaling and contraction in gastric smooth muscle cells. Biomed. Rep. 2020, 12, 36. [Google Scholar] [PubMed] [Green Version]
- Monica, F.; Bian, K.; Murad, F. The Endothelium-Dependent Nitric Oxide–cGMP Pathway. In Advances in Pharmacology; Elsevier: Amsterdam, The Netherlands, 2016; Volume 77, pp. 1–27. [Google Scholar]
- Kusuda, R.; Carreira, E.U.; Ulloa, L.; Cunha, F.Q.; Kanashiro, A.; Cunha, T.M. Choline attenuates inflammatory hyperalgesia activating nitric oxide/cGMP/ATP-sensitive potassium channels pathway. Brain Res. 2020, 1727, 146567. [Google Scholar] [CrossRef]
- Erdinest, N.; Shohat, N.; Moallem, E.; Yahalom, C.; Mechoulam, H.; Anteby, I.; Ovadia, H.; Solomon, A. Nitric oxide secretion in human conjunctival fibroblasts is inhibited by alpha linolenic acid. J. Inflamm. 2015, 12, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, U.N. Essential fatty acids and their metabolites could function as endogenous HMG-CoA reductase and ACE enzyme inhibitors, anti-arrhythmic, anti-hypertensive, anti-atherosclerotic, anti-inflammatory, cytoprotective, and cardioprotective molecules. Lipids Health Dis. 2008, 7, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vielma, A.H.; Retamal, M.A.; Schmachtenberg, O. Nitric oxide signaling in the retina: What have we learned in two decades? Brain Res. 2012, 1430, 112–125. [Google Scholar] [CrossRef] [PubMed]
- Bhutto, I.A.; Baba, T.; Merges, C.; McLeod, D.S.; Lutty, G.A. Low nitric oxide synthases (NOSs) in eyes with age-related macular degeneration (AMD). Exp. Eye Res. 2010, 90, 155–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantó, A.; Olivar, T.; Romero, F.J.; Miranda, M. Nitrosative Stress in Retinal Pathologies. Antioxidants 2019, 8, 543. [Google Scholar] [CrossRef] [Green Version]
- Agurto, A.; Vielma, A.; Cadiz, B.; Couve, E.; Schmachtenberg, O. NO signaling in retinal bipolar cells. Exp. Eye Res. 2017, 161, 30–35. [Google Scholar] [CrossRef]
- Park, J.-H.; Kim, J.-Y.; Kim, D.J.; Kim, M.; Chang, M.; Chuck, R.S.; Park, C.Y. Effect of nitric oxide on human corneal epithelial cell viability and corneal wound healing. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Bastia, E.; Impagnatiello, F.; Ongini, E.; Serle, J.B.; Bergamini, M.V. Repeated dosing of NCX 667, a new nitric oxide (NO) donor, retains IOP-lowering activity in animal models of glaucoma. Invest. Ophthalmol. Vis. Sci. 2017, 58, 2106. [Google Scholar]
- Aliancy, J.; Stamer, W.D.; Wirostko, B. A review of nitric oxide for the treatment of glaucomatous disease. Ophthalmol. Ther. 2017, 6, 221–232. [Google Scholar] [CrossRef] [Green Version]
- McDonnell, F.; Perkumas, K.M.; Ashpole, N.E.; Kalnitsky, J.; Sherwood, J.M.; Overby, D.R.; Stamer, W.D. Shear Stress in Schlemm’s canal as a Sensor of intraocular pressure. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Jeong, H.; Park, S.; Park, K.; Kim, M.; Hong, J. Sustained nitric oxide-providing small molecule and precise release behavior study for glaucoma treatment. Mol. Pharm. 2020, 17, 656–665. [Google Scholar] [CrossRef]
- Muenster, S.; Lieb, W.S.; Fabry, G.; Allen, K.N.; Kamat, S.S.; Guy, A.H.; Dordea, A.C.; Teixeira, L.; Tainsh, R.E.; Yu, B. The ability of nitric oxide to lower intraocular pressure is dependent on guanylyl cyclase. Investig. Ophthalmol. Vis. Sci. 2017, 58, 4826–4835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elliott, M.H.; Ashpole, N.E.; Gu, X.; Herrnberger, L.; McClellan, M.E.; Griffith, G.L.; Reagan, A.M.; Boyce, T.M.; Tanito, M.; Tamm, E.R. Caveolin-1 modulates intraocular pressure: Implications for caveolae mechanoprotection in glaucoma. Sci. Rep. 2016, 6, 37127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouchemi, M.; Soualmia, H.; Midani, F.; El Afrit, M.A.; El Asmi, M.; Feki, M. Impaired nitric oxide production in patients with primary open-angle glaucoma. La Tunis. Med. 2020, 98, 144–149. [Google Scholar]
- Wiggs, J.L.; Pasquale, L.R. Genetics of glaucoma. Hum. Mol. Genet. 2017, 26, R21–R27. [Google Scholar] [CrossRef] [PubMed]
- Eroglu, E.; Bischof, H.; Charoensin, S.; Waldeck-Weiermaier, M.; Graier, W.F.; Malli, R. Real-time imaging of nitric oxide signals in individual cells using geNOps. In Nitric Oxide; Springer: Berlin/Heidelberg, Germany, 2018; pp. 23–34. [Google Scholar]
- Jeoung, J.W.; Kim, D.M.; Oh, S.; Lee, J.-S.; Park, S.S.; Kim, J.Y. The relation between endothelial nitric oxide synthase polymorphisms and normal tension glaucoma. J. Glaucoma 2017, 26, 1030–1035. [Google Scholar] [CrossRef] [PubMed]
- Araie, M.; Sforzolini, B.S.; Vittitow, J.; Weinreb, R.N. Evaluation of the effect of latanoprostene bunod ophthalmic solution, 0.024% in lowering intraocular pressure over 24 h in healthy Japanese subjects. Adv. Ther. 2015, 32, 1128–1139. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, P.L. Latanoprostene bunod ophthalmic solution 0.024% for IOP lowering in glaucoma and ocular hypertension. Expert Opin. Pharmacother. 2017, 18, 433–444. [Google Scholar] [CrossRef] [Green Version]
- Kawase, K.; Vittitow, J.L.; Weinreb, R.N.; Araie, M.; Group, J.S. Long-term safety and efficacy of latanoprostene bunod 0.024% in Japanese subjects with open-angle glaucoma or ocular hypertension: The JUPITER study. Adv. Ther. 2016, 33, 1612–1627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morshedi, R.G.; Ricca, A.M.; Wirostko, B.M. Ocular hypertension following intravitreal antivascular endothelial growth factor therapy: Review of the literature and possible role of nitric oxide. J. Glaucoma 2016, 25, 291–300. [Google Scholar] [CrossRef]
- Cavet, M.E.; DeCory, H.H. The role of nitric oxide in the intraocular pressure lowering efficacy of latanoprostene bunod: Review of nonclinical studies. J. Ocul. Pharmacol. Ther. 2018, 34, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Sun, J.; Zhang, Y.; Chen, J.; Lei, Y.; Sun, X.; Deng, Y. Local Delivery and Sustained-Release of Nitric Oxide Donor Loaded in Mesoporous Silica Particles for Efficient Treatment of Primary Open-Angle Glaucoma. Adv. Healthc. Mater. 2018, 7, 1801047. [Google Scholar] [CrossRef]
- Venkataraman, S.T.; Flanagan, J.G.; Hudson, C. Vascular reactivity of optic nerve head and retinal blood vessels in glaucoma—a review. Microcirculation 2010, 17, 568–581. [Google Scholar] [CrossRef]
- Wareham, L.K.; Buys, E.S.; Sappington, R.M. The nitric oxide-guanylate cyclase pathway and glaucoma. Nitric. Oxide 2018, 77, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Chandrawati, R.; Chang, J.Y.; Reina-Torres, E.; Jumeaux, C.; Sherwood, J.M.; Stamer, W.D.; Zelikin, A.N.; Overby, D.R.; Stevens, M.M. Localized and controlled delivery of nitric oxide to the conventional outflow pathway via enzyme biocatalysis: Toward therapy for glaucoma. Adv. Mater. 2017, 29, 1604932. [Google Scholar] [CrossRef] [Green Version]
- Al Suleimani, Y.M.; Al Mahruqi, A.S. The endogenous lipid N-arachidonoyl glycine is hypotensive and nitric oxide-cGMP-dependent vasorelaxant. Eur. J. Pharmacol. 2017, 794, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Totan, Y.; Çekiç, O.; Borazan, M.; Uz, E.; Sögüt, S.; Akyol, Ö. Plasma malondialdehyde and nitric oxide levels in age related macular degeneration. Br. J. Ophthalmol. 2001, 85, 1426–1428. [Google Scholar] [CrossRef] [Green Version]
- Vanhoutte, P.M. Endothelial dysfunction. Circ. J. 2009, 73, 595–601. [Google Scholar] [CrossRef] [Green Version]
- Sakai, T.; Matsushima, M.; Tsuneoka, H. Endothelin-1 in neovascular AMD. Ophthalmology 2011, 118, 1217–1217.e1. [Google Scholar] [CrossRef] [PubMed]
- Totan, Y.; Koca, C.; Erdurmuş, M.; Keskin, U.; Yiğitoğlu, R. Endothelin-1 and Nitric Oxide levels in exudative age-related macular degeneration. J. Ophthalmic Vis. Res. 2015, 10, 151. [Google Scholar] [PubMed]
- Pittalà, V.; Fidilio, A.; Lazzara, F.; Platania, C.B.M.; Salerno, L.; Foresti, R.; Drago, F.; Bucolo, C. Effects of novel nitric oxide-releasing molecules against oxidative stress on retinal pigmented epithelial cells. Oxidative Med. Cell. Longev. 2017, 2017, 1–11. [Google Scholar] [CrossRef]
- Ahluwalia, T.S.; Ahuja, M.; Rai, T.S.; Kohli, H.S.; Sud, K.; Bhansali, A.; Khullar, M. Endothelial nitric oxide synthase gene haplotypes and diabetic nephropathy among Asian Indians. Mol. Cell. Biochem. 2008, 314, 9–17. [Google Scholar] [CrossRef]
- Tsukada, T.; Yokoyama, K.; Arai, T.; Takemoto, F.; Hara, S.; Yamada, A.; Kawaguchi, Y.; Hosoya, T.; Igari, J. Evidence of association of the ecNOS gene polymorphism with plasma NO metabolite levels in humans. Biochem. Biophys. Res. Commun. 1998, 245, 190–193. [Google Scholar] [CrossRef] [PubMed]
- Yanamandra, K.; Napper, D.; Pramanik, A.; Bocchini, J.A., Jr.; Dhanireddy, R. Endothelial nitric oxide synthase genotypes in the etiology of retinopathy of prematurity in premature infants. Ophthalmic Genet. 2010, 31, 173–177. [Google Scholar] [CrossRef]
- Delmas, D.; Cornebise, C.; Courtaut, F.; Xiao, J.; Aires, V. New highlights of resveratrol: A review of properties against ocular diseases. Int. J. Mol. Sci. 2021, 22, 1295. [Google Scholar] [CrossRef]
- Kim, W.T.; Suh, E.S. Retinal protective effects of resveratrol via modulation of nitric oxide synthase on oxygen-induced retinopathy. Korean J. Ophthalmol. KJO 2010, 24, 108. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Pardue, M.T.; Iuvone, P.M.; Qu, J. Dopamine signaling and myopia development: What are the key challenges. Prog. Retin. Eye Res. 2017, 61, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Landis, E.; Chrenek, M.; Chakraborty, R.; Strickland, R.; Bergen, M.; Yang, V.; Iuvone, P.; Pardue, M. Increased endogenous dopamine prevents myopia in mice. Exp. Eye Res. 2020, 193, 107956. [Google Scholar] [CrossRef] [PubMed]
- Carr, B.J.; Stell, W.K. Nitric oxide (NO) mediates the inhibition of form-deprivation myopia by atropine in chicks. Sci. Rep. 2016, 6, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Mathis, U.; Feldkaemper, M.; Wang, M.; Schaeffel, F. Studies on retinal mechanisms possibly related to myopia inhibition by atropine in the chicken. Graefe’s Arch. Clin. Exp. Ophthalmol. 2020, 258, 319–333. [Google Scholar] [CrossRef] [PubMed]
- Feldkaemper, M.; Schaeffel, F. An updated view on the role of dopamine in myopia. Exp. Eye Res. 2013, 114, 106–119. [Google Scholar] [CrossRef]
- Morgan, I.G. The biological basis of myopic refractive error. Clin. Exp. Optom. 2003, 86, 276–288. [Google Scholar] [CrossRef]
- Nickla, D.L.; Wildsoet, C.F. The effect of the nonspecific nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester on the choroidal compensatory response to myopic defocus in chickens. Optom. Vis. Sci. 2004, 81, 111–118. [Google Scholar] [CrossRef]
- Fujikado, T.; Kawasaki, Y.; Fujii, J.; Taniguchi, N.; Okada, M.; Suzuki, A.; Ohmi, G.; Tano, Y. The effect of nitric oxide synthase inhibitor on form-deprivation myopia. Curr. Eye Res. 1997, 16, 992–996. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erdinest, N.; London, N.; Ovadia, H.; Levinger, N. Nitric Oxide Interaction with the Eye. Vision 2021, 5, 29. https://doi.org/10.3390/vision5020029
Erdinest N, London N, Ovadia H, Levinger N. Nitric Oxide Interaction with the Eye. Vision. 2021; 5(2):29. https://doi.org/10.3390/vision5020029
Chicago/Turabian StyleErdinest, Nir, Naomi London, Haim Ovadia, and Nadav Levinger. 2021. "Nitric Oxide Interaction with the Eye" Vision 5, no. 2: 29. https://doi.org/10.3390/vision5020029
APA StyleErdinest, N., London, N., Ovadia, H., & Levinger, N. (2021). Nitric Oxide Interaction with the Eye. Vision, 5(2), 29. https://doi.org/10.3390/vision5020029