The Nature of Unconscious Attention to Subliminal Cues
Abstract
1. Introduction
2. Attentional Control Over Unconscious Processing
2.1. Spatial Orienting Studies with Unconscious Cues
2.2. Unconscious Effects on Oculomotor Selection
3. Possible Explanations for the Inconsistencies
3.1. Top-Down Control over Unconscious Stimuli Is More Prominently Seen with Feature-Based Attention, Than with Spatial Attention
3.2. Abrupt-Onset Cues Automatically Capture Attention
3.3. Inclusion of Both Matching and Non-Matching Cues
3.4. Attention Capture Can Be Triggered by Both Stimulus and Goal-Driven Factors—However, Attentional Engagement Is Goal-Driven
4. Neural Mechanisms of Top-Down Attention to Unconscious Stimuli
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Awh, E.; Belopolsky, A.V.; Theeuwes, J. Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends Cogn. Sci. 2012, 16, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Lamy, D.; Leber, A.B.; Egeth, H.E. Selective Attention. Handbook of Psychology, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012; Volume 4. [Google Scholar]
- Leber, A.B.; Egeth, H.E. It’s under control: Top-down search strategies can override attentional capture. Psychon. Bull. Rev. 2006, 13, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Theeuwes, J. Top–down and bottom–up control of visual selection. Acta Psychol. 2010, 135, 77–99. [Google Scholar] [CrossRef] [PubMed]
- Koch, C.; Tsuchiya, N. Attention and consciousness: Two distinct brain processes. Trends Cogn. Sci. 2007, 11, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Ansorge, U.; Neumann, O. Intentions Determine the Effect of Invisible Metacontrast-Masked Primes: Evidence for Top-Down Contingencies in a Peripheral Cuing Task. J. Exp. Psychol. Hum. Percept. Perform. 2005, 31, 762–777. [Google Scholar] [CrossRef]
- Schoeberl, T.; Fuchs, I.; Theeuwes, J.; Ansorge, U. Stimulus-driven attentional capture by subliminal onset cues. Atten. Percept. Psychophys. 2015, 77, 737–748. [Google Scholar] [CrossRef] [PubMed]
- Chica, A.B.; Bartolomeo, P. Attentional Routes to Conscious Perception. Front. Psychol. 2012, 3, 1. [Google Scholar] [CrossRef]
- Chun, M.M.; Wolfe, J.M. Chapter nine visual attention. In Blackwell Handbook of Sensation and Perception; Wiley-Blackwell: Hoboken, NJ, USA, 2001. [Google Scholar]
- Cohen, M.A.; Cavanagh, P.; Chun, M.M.; Nakayama, K. The attentional requirements of consciousness. Trends Cogn. Sci. 2012, 16, 411–417. [Google Scholar] [CrossRef]
- De Brigard, F.; Prinz, J. Attention and consciousness. Wiley Interdiscip. Rev. Cogn. Sci. 2010, 1, 51–59. [Google Scholar] [CrossRef]
- Dehaene, S.; Changeux, J.-P.; Naccache, L.; Sackur, J.; Sergent, C. Conscious, preconscious, and subliminal processing: A testable taxonomy. Trends Cogn. Sci. 2006, 10, 204–211. [Google Scholar] [CrossRef]
- Neisser, U. Cognitive Psychology (New York: Appleton-Century-Crofts); Yorkville University: Fredericton, NB, Canada, 1967. [Google Scholar]
- Norman, D.A.; Shallice, T. Attention to action. In Consciousness and Self-Regulation; Springer: Boston, MA, USA, 1986; pp. 1–18. [Google Scholar]
- Posner, M.I.; Snyder, C.R.R. Attention and cognitivecontrol. In Information Processing and Cognition: The Loyola Symposium; Solso, R.L., Ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1975; pp. 55–85. [Google Scholar]
- Shiffrin, R.M.; Schneider, W. Controlled and automatic human information processing: II. Perceptual learning, automatic attending and a general theory. Psychol. Rev. 1977, 84, 127–190. [Google Scholar] [CrossRef]
- Bargh, J.A. The Ecology of Automaticity: Toward Establishing the Conditions Needed to Produce Automatic Processing Effects. Am. J. Psychol. 1992, 105, 181–199. [Google Scholar] [CrossRef] [PubMed]
- Bargh, J.A. The four horsemen of automaticity: Awareness, intention, efficiency, and control in social cognition. In Handbook of Social Cognition; Psychology Press: London, UK, 1994; Volume 1, pp. 1–40. [Google Scholar]
- Moors, A.; De Houwer, J. Automaticity: A Theoretical and Conceptual Analysis. Psychol. Bull. 2006, 132, 297–326. [Google Scholar] [CrossRef] [PubMed]
- Ansorge, U.; Kunde, W.; Kiefer, M. Unconscious vision and executive control: How unconscious processing and conscious action control interact. Conscious. Cogn. 2014, 27, 268–287. [Google Scholar] [CrossRef] [PubMed]
- Kiefer, M. Executive control over unconscious cognition: Attentional sensitization of unconscious information processing. Front. Hum. Neurosci. 2012, 6, 61. [Google Scholar] [CrossRef] [PubMed]
- Braver, T.S. The variable nature of cognitive control: A dual-mechanisms framework. Trends Cogn. Sci. 2012, 16, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Kiefer, M. Top-down modulation of unconscious ‘automatic’ processes: A gating framework. Adv. Cogn. Psychol. 2007, 3, 289–306. [Google Scholar] [CrossRef]
- Kouider, S.; Faivre, N. Conscious and unconscious perception. In The Blackwell Companion to Consciousness; Wiley: Hoboken, NJ, USA, 2017; pp. 551–561. [Google Scholar]
- Eriksen, C.W. Discrimination and learning without awareness: A methodological survey and evaluation. Psychol. Rev. 1960, 67, 279–300. [Google Scholar] [CrossRef]
- Greenwald, A.G. New Look 3: Unconscious cognition reclaimed. Am. Psychol. 1992, 47, 766–779. [Google Scholar] [CrossRef] [PubMed]
- Forster, K.I.; Davis, C. Repetition priming and frequency attenuation in lexical access. J. Exp. Psychol. Learn. Mem. Cogn. 1984, 10, 680–698. [Google Scholar] [CrossRef]
- Greenwald, A.G.; Draine, S.C.; Abrams, R.L. Three Cognitive Markers of Unconscious Semantic Activation. Science 1996, 273, 1699–1702. [Google Scholar] [CrossRef] [PubMed]
- Posner, M.I. Orienting of attention. Q. J. Exp. Psychol. 1980, 32, 3–25. [Google Scholar] [CrossRef] [PubMed]
- Dehaene, S.; Naccache, L.; Le Clec’H, G.; Koechlin, E.; Mueller, M.; Dehaene-Lambertz, G.; Van De Moortele, P.-F.; Le Bihan, D. Imaging unconscious semantic priming. Nature 1998, 395, 597–600. [Google Scholar] [CrossRef] [PubMed]
- Eimer, M.; Schlaghecken, F. Effects of masked stimuli on motor activation: Behavioral and electrophysiological evidence. J. Exp. Psychol. Hum. Percept. Perform. 1998, 24, 1737–1747. [Google Scholar] [CrossRef] [PubMed]
- Neumann, O.; Klotz, W. Motor responses to nonreportable, masked stimuli: Where is the limit of direct parameter specification. In Attention and Performance XV: Conscious and Nonconscious Information Processing; MIT Press: Cambridge, MA, USA, 1994; pp. 123–150. [Google Scholar]
- Marcel, A.J. Conscious and unconscious perception: Experiments on visual masking and word recognition. Cogn. Psychol. 1983, 15, 197–237. [Google Scholar] [CrossRef]
- Kiefer, M.; Spitzer, M. Time course of conscious and unconscious semantic brain activation. NeuroReport 2000, 11, 2401–2407. [Google Scholar] [CrossRef] [PubMed]
- Klein, R.M. Inhibition of return. Trends Cogn. Sci. 2000, 4, 138–147. [Google Scholar] [CrossRef]
- McCormick, P.A. Orienting attention without awareness. J. Exp. Psychol. Hum. Percept. Perform. 1997, 23, 168–180. [Google Scholar] [CrossRef]
- Ivanoff, J.; Klein, R.M. Orienting of attention without awareness is affected by measurement-induced attentional control settings. J. Vis. 2003, 3, 4. [Google Scholar] [CrossRef]
- Mulckhuyse, M.; Talsma, D.; Theeuwes, J. Grabbing attention without knowing: Automatic capture of attention by subliminal spatial cues. Vis. Cogn. 2007, 15, 779–788. [Google Scholar] [CrossRef]
- Fuchs, I.; Ansorge, U. Inhibition of return is no hallmark of exogenous capture by unconscious cues. Front. Hum. Neurosci. 2012, 6, 30. [Google Scholar] [CrossRef] [PubMed]
- Mulckhuyse, M.; Theeuwes, J. Unconscious attentional orienting to exogenous cues: A review of the literature. Acta Psychol. 2010, 134, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Ansorge, U.; Kiss, M.; Eimer, M. Goal-driven attentional capture by invisible colors: Evidence from event-related potentials. Psychon. Bull. Rev. 2009, 16, 648–653. [Google Scholar] [CrossRef] [PubMed]
- Folk, C.L.; Remington, R.W.; Johnston, J.C. Involuntary covert orienting is contingent on attentional control settings. J. Exp. Psychol. Hum. Percept. Perform. 1992, 18, 1030–1044. [Google Scholar] [CrossRef] [PubMed]
- Spering, M.; Carrasco, M. Acting without seeing: Eye movements reveal visual processing without awareness. Trends Neurosci. 2015, 38, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Pöppel, E.; Held, R.; Frost, D. Residual Visual Function after Brain Wounds involving the Central Visual Pathways in Man. Nature 1973, 243, 295–296. [Google Scholar] [CrossRef] [PubMed]
- Tamietto, M.; Cauda, F.; Corazzini, L.L.; Savazzi, S.; Marzi, C.A.; Goebel, R.; Weiskrantz, L.; De Gelder, B. Collicular Vision Guides Nonconscious Behavior. J. Cogn. Neurosci. 2010, 22, 888–902. [Google Scholar] [CrossRef][Green Version]
- Van Der Stigchel, S.; Mulckhuyse, M.; Theeuwes, J. Eye cannot see it: The interference of subliminal distractors on saccade metrics. Vis. Res. 2009, 49, 2104–2109. [Google Scholar] [CrossRef]
- Mulckhuyse, M.; Theeuwes, J. Unconscious cueing effects in saccadic eye movements—Facilitation and inhibition in temporal and nasal hemifield. Vis. Res. 2010, 50, 606–613. [Google Scholar] [CrossRef]
- Weichselbaum, H.; Fuchs, I.; Ansorge, U. Oculomotor capture by supraliminal and subliminal onset singletons: The role of contrast polarity. Vis. Res. 2014, 100, 1–7. [Google Scholar] [CrossRef]
- Ansorge, U.; Horstmann, G.; Scharlau, I. Top-down contingent feature-specific orienting with and without awareness of the visual input. Adv. Cogn. Psychol. 2011, 7, 108–119. [Google Scholar] [CrossRef] [PubMed]
- Kunde, W.; Reuss, H.; Kiesel, A. Consciousness and cognitive control. Adv. Cogn. Psychol. 2012, 8, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Carrasco, M. Visual attention: The past 25 years. Vis. Res. 2011, 51, 1484–1525. [Google Scholar] [CrossRef]
- McAdams, C.J.; Maunsell, J.H.R. Attention to Both Space and Feature Modulates Neuronal Responses in Macaque Area V4. J. Neurophysiol. 2000, 83, 1751–1755. [Google Scholar] [CrossRef] [PubMed]
- Hayden, B.Y.; Gallant, J.L. Time Course of Attention Reveals Different Mechanisms for Spatial and Feature-Based Attention in Area V4. Neuron 2005, 47, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Stevens, S.T.; Carrasco, M. Comparing the time course and efficacy of spatial and feature-based attention. Vis. Res. 2007, 47, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Theeuwes, J. Visual Selection: Usually Fast and Automatic; Seldom Slow and Volitional. J. Cogn. 2018, 1, 21. [Google Scholar] [CrossRef]
- Itti, L.; Koch, C.; Niebur, E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 1254–1259. [Google Scholar] [CrossRef]
- Nothdurft, H.-C. Salience from feature contrast: Additivity across dimensions. Vis. Res. 2000, 40, 1183–1201. [Google Scholar] [CrossRef]
- Kanai, R.; Tsuchiya, N.; Verstraten, F.A. The Scope and Limits of Top-Down Attention in Unconscious Visual Processing. Curr. Biol. 2006, 16, 2332–2336. [Google Scholar] [CrossRef]
- Held, B.; Ansorge, U.; Müller, H.J. Masked singleton effects. Atten. Percept. Psychophys. 2010, 72, 2069–2086. [Google Scholar] [CrossRef] [PubMed]
- Scharlau, I.; Ansorge, U. Direct parameter specification of an attention shift: Evidence from perceptual latency priming. Vis. Res. 2003, 43, 1351–1363. [Google Scholar] [CrossRef]
- Scharlau, I. Leading, but not trailing, primes influence temporal order perception: Further evidence for an attentional account of perceptual latency priming. Percept. Psychophys. 2002, 64, 1346–1360. [Google Scholar] [CrossRef] [PubMed]
- Scharlau, I. Evidence against response bias in temporal order tasks with attention manipulation by masked primes. Psychol. Res. 2004, 68, 224–236. [Google Scholar] [CrossRef]
- Scharlau, I. Perceptual latency priming: A measure of attentional facilitation. Psychol. Res. 2007, 71, 678–686. [Google Scholar] [CrossRef] [PubMed]
- Jaśkowski, P. Selective attention and temporal-order judgment. Perception 1993, 22, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Ansorge, U.; Horstmann, G.; Worschech, F. Attentional capture by masked colour singletons. Vis. Res. 2010, 50, 2015–2027. [Google Scholar] [CrossRef]
- Lamy, D.; Alon, L.; Carmel, T.; Shalev, N. The role of conscious perception in attentional capture and object-file updating. Psychol. Sci. 2015, 26, 48–57. [Google Scholar] [CrossRef]
- Travis, S.L.; Dux, P.E.; Mattingley, J.B. Neural correlates of goal-directed enhancement and suppression of visual stimuli in the absence of conscious perception. Atten. Percept. Psychophys. 2018, 81, 1346–1364. [Google Scholar] [CrossRef]
- Theeuwes, J. Feature-based attention: It is all bottom-up priming. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130055. [Google Scholar] [CrossRef]
- Belopolsky, A.V.; Schreij, D.; Theeuwes, J. What is top-down about contingent capture? Atten. Percept. Psychophys. 2010, 72, 326–341. [Google Scholar] [CrossRef] [PubMed]
- Lamy, D.F.; Kristjansson, A. Is goal-directed attentional guidance just intertrial priming? A review. J. Vis. 2013, 13, 14. [Google Scholar] [CrossRef] [PubMed]
- Kristjánsson, Á.; Wang, D.; Nakayama, K. The role of priming in conjunctive visual search. Cognition 2002, 85, 37–52. [Google Scholar] [CrossRef]
- Lamy, D.; Bar-Anan, Y.; Egeth, H.E.; Carmel, T. Effects of top-down guidance and singleton-repetition priming on visual search. Psychon. Bull. Rev. 2006, 13, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Pinto, Y.; Olivers, C.N.L.; Theeuwes, J. Target uncertainty does not lead to more distraction by singletons: Intertrial priming does. Percept. Psychophys. 2005, 67, 1354–1361. [Google Scholar] [CrossRef] [PubMed]
- Jonides, J.; Yantis, S. Uniqueness of abrupt visual onset in capturing attention. Percept. Psychophys. 1988, 43, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Lien, M.-C.; Ruthruff, E.; Johnston, J.C. Attentional capture with rapidly changing attentional control settings. J. Exp. Psychol. Hum. Percept. Perform. 2010, 36, 1–16. [Google Scholar] [CrossRef]
- Gaspelin, N.; Ruthruff, E.; Lien, M.-C. The Problem of Latent Attentional Capture: Easy Visual Search Conceals Capture by Task-Irrelevant Abrupt Onsets. J. Exp. Psychol. Hum. Percept. Perform. 2016, 42, 1104–1120. [Google Scholar] [CrossRef]
- Fuchs, I.; Ansorge, U. Unconscious Cueing via the Superior Colliculi: Evidence from Searching for Onset and Color Targets. Brain Sci. 2012, 2, 33–60. [Google Scholar] [CrossRef]
- Fuchs, I.; Theeuwes, J.; Ansorge, U. Exogenous attentional capture by subliminal abrupt-onset cues: Evidence from contrast-polarity independent cueing effects. J. Exp. Psychol. Hum. Percept. Perform. 2013, 39, 974–988. [Google Scholar] [CrossRef]
- Leuthold, H.; Kopp, B. Mechanisms of Priming by Masked Stimuli: Inferences from Event-Related Brain Potentials. Psychol. Sci. 1998, 9, 263–269. [Google Scholar] [CrossRef]
- Schoeberl, T.; Ansorge, U. The impact of temporal contingencies between cue and target onset on spatial attentional capture by subliminal onset cues. Psychol. Res. 2018, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Folk, C.L.; Remington, R.W. Unexpected Abrupt Onsets Can Override a Top-Down Set for Color. J. Exp. Psychol. Hum. Percept. Perform. 2015, 41, 1153–1165. [Google Scholar] [CrossRef] [PubMed]
- Bacon, W.F.; Egeth, H.E. Overriding stimulus-driven attentional capture. Percept. Psychophys. 1994, 55, 485–496. [Google Scholar] [CrossRef] [PubMed]
- Carrasco, M.; Tai, J.; Eckstein, M.; Cameron, E.L. Signal detection theory applied to three visual search tasks—Identification, yes/no detection and localization. Spat. Vis. 2004, 17, 295–325. [Google Scholar] [CrossRef]
- Whiting, J.S.; Eckstein, M.P. Visual signal detection in structured backgrounds I.Effect of number of possible spatial locations and signal contrast. J. Opt. Soc. Am. A 1996, 13, 1777–1787. [Google Scholar]
- Foley, J.M.; Schwarz, W. Spatial attention: Effect of position uncertainty and number of distractor patterns on the threshold-versus-contrast function for contrast discrimination. J. Opt. Soc. Am. A 1998, 15, 1036–1047. [Google Scholar] [CrossRef]
- Schoeberl, T.; Ditye, T.; Ansorge, U. Same-location costs in peripheral cueing: The role of cue awareness and feature changes. J. Exp. Psychol. Hum. Percept. Perform. 2018, 44, 433–451. [Google Scholar] [CrossRef] [PubMed]
- Yantis, S.; Jonides, J. Abrupt visual onsets and selective attention: Voluntary versus automatic allocation. J. Exp. Psychol. Hum. Percept. Perform. 1990, 16, 121–134. [Google Scholar] [CrossRef] [PubMed]
- Folk, C.L.; Ester, E.F.; Troemel, K. How to keep attention from straying: Get engaged! Psychon. Bull. Rev. 2009, 16, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Nieuwenstein, M.R.; Chun, M.M.; Van Der Lubbe, R.H.J.; Hooge, I.T.C. Delayed Attentional Engagement in the Attentional Blink. J. Exp. Psychol. Hum. Percept. Perform. 2005, 31, 1463–1475. [Google Scholar] [CrossRef] [PubMed]
- Zivony, A.; Lamy, D. Contingent Attentional Engagement: Stimulus- and Goal-Driven Capture Have Qualitatively Different Consequences. Psychol. Sci. 2018, 29, 1930–1941. [Google Scholar] [CrossRef]
- Hickey, C.; McDonald, J.J.; Theeuwes, J. Electrophysiological Evidence of the Capture of Visual Attention. J. Cogn. Neurosci. 2006, 18, 604–613. [Google Scholar] [CrossRef] [PubMed]
- Sawaki, R.; Luck, S.J. Capture versus Suppression of Attention by Salient Singletons: Electrophysiological Evidence for an Automatic Attend-to-Me Signal. Atten. Percept. Psychophys. 2010, 72, 1455–1470. [Google Scholar] [CrossRef] [PubMed]
- Gaspelin, N.; Luck, S.J. The Role of Inhibition in Avoiding Distraction by Salient Stimuli. Trends Cogn. Sci. 2018, 22, 79–92. [Google Scholar] [CrossRef]
- Cosman, J.D.; Lowe, K.A.; Woodman, G.F.; Schall, J.D. Prefrontal control of visual distraction. Curr. Biol. 2018, 28, 414–420. [Google Scholar] [CrossRef] [PubMed]
- Sakai, K.; Passingham, R.E. Prefrontal interactions reflect future task operations. Nat. Neurosci. 2003, 6, 75–81. [Google Scholar] [CrossRef]
- Lau, H.C.; Passingham, R.E. Unconscious Activation of the Cognitive Control System in the Human Prefrontal Cortex. J. Neurosci. 2007, 27, 5805–5811. [Google Scholar] [CrossRef]
- Van Gaal, S.; Ridderinkhof, R.; Scholte, S.; Lamme, V. Unconscious Activation of the Prefrontal No-Go Network. J. Neurosci. 2010, 30, 4143–4150. [Google Scholar] [CrossRef]
- Sumner, P.; Nachev, P.; Morris, P.; Peters, A.M.; Jackson, S.R.; Kennard, C.; Husain, M. Human Medial Frontal Cortex Mediates Unconscious Inhibition of Voluntary Action. Neuron 2007, 54, 697–711. [Google Scholar] [CrossRef]
- Van Gaal, S.; Ridderinkhof, K.R.; Fahrenfort, J.; Scholte, H.S.; Lamme, V.A.F. Frontal Cortex Mediates Unconsciously Triggered Inhibitory Control. J. Neurosci. 2008, 28, 8053–8062. [Google Scholar] [CrossRef] [PubMed]
- Van Gaal, S.; Ridderinkhof, K.R.; Wildenberg, W.P.M.V.D.; Lamme, V.A.F. Dissociating consciousness from inhibitory control: Evidence for unconsciously triggered response inhibition in the stop-signal task. J. Exp. Psychol. Hum. Percept. Perform. 2009, 35, 1129–1139. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, M.; Adams, S.C.; Kiefer, M. Flexible establishment of functional brain networks supports attentional modulation of unconscious cognition. Hum. Brain Mapp. 2014, 35, 5500–5516. [Google Scholar] [CrossRef] [PubMed]
Sl No. | Study | Cue | Target | Task |
---|---|---|---|---|
[36] | McCormick (1997) | Abrupt onset | Abrupt onset | Discrimination |
[79] | Leuthold and Kopp (1998) | Abrupt onset | Abrupt onset | Localisation |
[37] | Ivanoff and Klein (2003) | Abrupt onset | Abrupt onset | Go/No-go |
[38] | Mulckhuyse, Talsma, and Theeuwes (2007) | Abrupt onset | Abrupt onset | Detection |
[6] | Ansorge and Neumann (2005) | Abrupt onset (Colour: match/mismatch) | Colour-defined target | Search followed by localisation |
[41] | Ansorge, Kiss and Eimer (2009) | Colour singleton (Colour: match) | Colour-defined target 1 | Search followed by discrimination |
[65] | Ansorge, Horstmann, and Worschech (2010) | Colour singleton (Colour: match/mismatch) | Colour-defined target | Go/No-go followed by discrimination |
[46] | Van der Stigchel, Mulckhuyse, and Theeuwes (2009) | Abrupt onset | Abrupt onset | Localisation (eye movement) |
[59] | Held, Ansorge, and Mueller, 2010 (Experiments 1–4) | Feature-singleton | Feature-singleton | Localisation |
[59] | Held, Ansorge, and Mueller, 2010 (Experiment 5) | Colour singleton (Colour: match/mismatch) | Colour- and shape defined target | Search followed by discrimination |
[47] | Mulckhuyse and Theeuwes, 2010 | Abrupt onset | Abrupt onset | Search followed by localisation (eye movement) |
[39] | Fuchs and Ansorge, 2012a (Experiments 1–4) | Abrupt onset (contrast polarity: match/mismatch) | Abrupt onset | Detection |
[77] | Fuchs and Ansorge, 2012b (Experiments 1–3) | Abrupt onset (contrast polarity: match/mismatch) | Abrupt onset | Detection |
[77] | Fuchs and Ansorge, 2012b (Experiments 4 and 5) 2 | Abrupt onset (Colour: mismatch) | Colour-defined target (non-singleton in Expt 4 and singleton in Expt 5) | Search |
[77] | Fuchs and Ansorge, 2012b (Experiments 6) 2 | Colour singleton (Colour: mismatch) | Colour-defined target | Search |
[78] | Fuchs, Theeuwes, and Ansorge, 2013(Experiments 1 and 2) | Abrupt onset (contrast polarity: match/mismatch) | Abrupt onset | Detection |
[78] | Fuchs, Theeuwes, and Ansorge, 2013(Experiment 3) | Abrupt onset (contrast polarity: match/mismatch) | Abrupt onset | Go/No-go |
[48] | Weichselbaum, Fuchs, and Ansorge, 2014 | Abrupt onset (contrast polarity: match/mismatch) | Abrupt onset | Detection (eye movement) |
[7] | Schoeberl, Fuchs, Theeuwes, and Ansorge (2015) | Abrupt onset | Colour-defined target | Search followed by discrimination |
[66] | Lamy, Alon, Carmel, and Shalev (2015) | Colour singleton (colour: match/mismatch) | Colour-defined target | Search followed by discrimination |
[80] | Schoeberl and Ansorge (2018) | Abrupt onset (temporally predictive/unpredictive) | Colour-defined target | Search followed by discrimination |
[67] | Travis, Dux, and Mattingley (2018) | Colour singleton (colour: match/mismatch) | Colour-defined target | Search followed by discrimination |
[86] | Schoeberl, Ditye and Ansorge (2018) | High or low frequency cue (frequency: match/mismatch) | Frequency-defined target | Search followed by discrimination |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prasad, S.; Mishra, R.K. The Nature of Unconscious Attention to Subliminal Cues. Vision 2019, 3, 38. https://doi.org/10.3390/vision3030038
Prasad S, Mishra RK. The Nature of Unconscious Attention to Subliminal Cues. Vision. 2019; 3(3):38. https://doi.org/10.3390/vision3030038
Chicago/Turabian StylePrasad, Seema, and Ramesh Kumar Mishra. 2019. "The Nature of Unconscious Attention to Subliminal Cues" Vision 3, no. 3: 38. https://doi.org/10.3390/vision3030038
APA StylePrasad, S., & Mishra, R. K. (2019). The Nature of Unconscious Attention to Subliminal Cues. Vision, 3(3), 38. https://doi.org/10.3390/vision3030038