The Nature of Unconscious Attention to Subliminal Cues
Abstract
:1. Introduction
2. Attentional Control Over Unconscious Processing
2.1. Spatial Orienting Studies with Unconscious Cues
2.2. Unconscious Effects on Oculomotor Selection
3. Possible Explanations for the Inconsistencies
3.1. Top-Down Control over Unconscious Stimuli Is More Prominently Seen with Feature-Based Attention, Than with Spatial Attention
3.2. Abrupt-Onset Cues Automatically Capture Attention
3.3. Inclusion of Both Matching and Non-Matching Cues
3.4. Attention Capture Can Be Triggered by Both Stimulus and Goal-Driven Factors—However, Attentional Engagement Is Goal-Driven
4. Neural Mechanisms of Top-Down Attention to Unconscious Stimuli
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Awh, E.; Belopolsky, A.V.; Theeuwes, J. Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends Cogn. Sci. 2012, 16, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Lamy, D.; Leber, A.B.; Egeth, H.E. Selective Attention. Handbook of Psychology, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012; Volume 4. [Google Scholar]
- Leber, A.B.; Egeth, H.E. It’s under control: Top-down search strategies can override attentional capture. Psychon. Bull. Rev. 2006, 13, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Theeuwes, J. Top–down and bottom–up control of visual selection. Acta Psychol. 2010, 135, 77–99. [Google Scholar] [CrossRef] [PubMed]
- Koch, C.; Tsuchiya, N. Attention and consciousness: Two distinct brain processes. Trends Cogn. Sci. 2007, 11, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Ansorge, U.; Neumann, O. Intentions Determine the Effect of Invisible Metacontrast-Masked Primes: Evidence for Top-Down Contingencies in a Peripheral Cuing Task. J. Exp. Psychol. Hum. Percept. Perform. 2005, 31, 762–777. [Google Scholar] [CrossRef]
- Schoeberl, T.; Fuchs, I.; Theeuwes, J.; Ansorge, U. Stimulus-driven attentional capture by subliminal onset cues. Atten. Percept. Psychophys. 2015, 77, 737–748. [Google Scholar] [CrossRef] [PubMed]
- Chica, A.B.; Bartolomeo, P. Attentional Routes to Conscious Perception. Front. Psychol. 2012, 3, 1. [Google Scholar] [CrossRef] [Green Version]
- Chun, M.M.; Wolfe, J.M. Chapter nine visual attention. In Blackwell Handbook of Sensation and Perception; Wiley-Blackwell: Hoboken, NJ, USA, 2001. [Google Scholar]
- Cohen, M.A.; Cavanagh, P.; Chun, M.M.; Nakayama, K. The attentional requirements of consciousness. Trends Cogn. Sci. 2012, 16, 411–417. [Google Scholar] [CrossRef]
- De Brigard, F.; Prinz, J. Attention and consciousness. Wiley Interdiscip. Rev. Cogn. Sci. 2010, 1, 51–59. [Google Scholar] [CrossRef]
- Dehaene, S.; Changeux, J.-P.; Naccache, L.; Sackur, J.; Sergent, C. Conscious, preconscious, and subliminal processing: A testable taxonomy. Trends Cogn. Sci. 2006, 10, 204–211. [Google Scholar] [CrossRef]
- Neisser, U. Cognitive Psychology (New York: Appleton-Century-Crofts); Yorkville University: Fredericton, NB, Canada, 1967. [Google Scholar]
- Norman, D.A.; Shallice, T. Attention to action. In Consciousness and Self-Regulation; Springer: Boston, MA, USA, 1986; pp. 1–18. [Google Scholar]
- Posner, M.I.; Snyder, C.R.R. Attention and cognitivecontrol. In Information Processing and Cognition: The Loyola Symposium; Solso, R.L., Ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1975; pp. 55–85. [Google Scholar]
- Shiffrin, R.M.; Schneider, W. Controlled and automatic human information processing: II. Perceptual learning, automatic attending and a general theory. Psychol. Rev. 1977, 84, 127–190. [Google Scholar] [CrossRef]
- Bargh, J.A. The Ecology of Automaticity: Toward Establishing the Conditions Needed to Produce Automatic Processing Effects. Am. J. Psychol. 1992, 105, 181–199. [Google Scholar] [CrossRef] [PubMed]
- Bargh, J.A. The four horsemen of automaticity: Awareness, intention, efficiency, and control in social cognition. In Handbook of Social Cognition; Psychology Press: London, UK, 1994; Volume 1, pp. 1–40. [Google Scholar]
- Moors, A.; De Houwer, J. Automaticity: A Theoretical and Conceptual Analysis. Psychol. Bull. 2006, 132, 297–326. [Google Scholar] [CrossRef] [PubMed]
- Ansorge, U.; Kunde, W.; Kiefer, M. Unconscious vision and executive control: How unconscious processing and conscious action control interact. Conscious. Cogn. 2014, 27, 268–287. [Google Scholar] [CrossRef] [PubMed]
- Kiefer, M. Executive control over unconscious cognition: Attentional sensitization of unconscious information processing. Front. Hum. Neurosci. 2012, 6, 61. [Google Scholar] [CrossRef] [PubMed]
- Braver, T.S. The variable nature of cognitive control: A dual-mechanisms framework. Trends Cogn. Sci. 2012, 16, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Kiefer, M. Top-down modulation of unconscious ‘automatic’ processes: A gating framework. Adv. Cogn. Psychol. 2007, 3, 289–306. [Google Scholar] [CrossRef]
- Kouider, S.; Faivre, N. Conscious and unconscious perception. In The Blackwell Companion to Consciousness; Wiley: Hoboken, NJ, USA, 2017; pp. 551–561. [Google Scholar]
- Eriksen, C.W. Discrimination and learning without awareness: A methodological survey and evaluation. Psychol. Rev. 1960, 67, 279–300. [Google Scholar] [CrossRef]
- Greenwald, A.G. New Look 3: Unconscious cognition reclaimed. Am. Psychol. 1992, 47, 766–779. [Google Scholar] [CrossRef] [PubMed]
- Forster, K.I.; Davis, C. Repetition priming and frequency attenuation in lexical access. J. Exp. Psychol. Learn. Mem. Cogn. 1984, 10, 680–698. [Google Scholar] [CrossRef]
- Greenwald, A.G.; Draine, S.C.; Abrams, R.L. Three Cognitive Markers of Unconscious Semantic Activation. Science 1996, 273, 1699–1702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Posner, M.I. Orienting of attention. Q. J. Exp. Psychol. 1980, 32, 3–25. [Google Scholar] [CrossRef] [PubMed]
- Dehaene, S.; Naccache, L.; Le Clec’H, G.; Koechlin, E.; Mueller, M.; Dehaene-Lambertz, G.; Van De Moortele, P.-F.; Le Bihan, D. Imaging unconscious semantic priming. Nature 1998, 395, 597–600. [Google Scholar] [CrossRef] [PubMed]
- Eimer, M.; Schlaghecken, F. Effects of masked stimuli on motor activation: Behavioral and electrophysiological evidence. J. Exp. Psychol. Hum. Percept. Perform. 1998, 24, 1737–1747. [Google Scholar] [CrossRef] [PubMed]
- Neumann, O.; Klotz, W. Motor responses to nonreportable, masked stimuli: Where is the limit of direct parameter specification. In Attention and Performance XV: Conscious and Nonconscious Information Processing; MIT Press: Cambridge, MA, USA, 1994; pp. 123–150. [Google Scholar]
- Marcel, A.J. Conscious and unconscious perception: Experiments on visual masking and word recognition. Cogn. Psychol. 1983, 15, 197–237. [Google Scholar] [CrossRef]
- Kiefer, M.; Spitzer, M. Time course of conscious and unconscious semantic brain activation. NeuroReport 2000, 11, 2401–2407. [Google Scholar] [CrossRef] [PubMed]
- Klein, R.M. Inhibition of return. Trends Cogn. Sci. 2000, 4, 138–147. [Google Scholar] [CrossRef]
- McCormick, P.A. Orienting attention without awareness. J. Exp. Psychol. Hum. Percept. Perform. 1997, 23, 168–180. [Google Scholar] [CrossRef]
- Ivanoff, J.; Klein, R.M. Orienting of attention without awareness is affected by measurement-induced attentional control settings. J. Vis. 2003, 3, 4. [Google Scholar] [CrossRef]
- Mulckhuyse, M.; Talsma, D.; Theeuwes, J. Grabbing attention without knowing: Automatic capture of attention by subliminal spatial cues. Vis. Cogn. 2007, 15, 779–788. [Google Scholar] [CrossRef]
- Fuchs, I.; Ansorge, U. Inhibition of return is no hallmark of exogenous capture by unconscious cues. Front. Hum. Neurosci. 2012, 6, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulckhuyse, M.; Theeuwes, J. Unconscious attentional orienting to exogenous cues: A review of the literature. Acta Psychol. 2010, 134, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Ansorge, U.; Kiss, M.; Eimer, M. Goal-driven attentional capture by invisible colors: Evidence from event-related potentials. Psychon. Bull. Rev. 2009, 16, 648–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folk, C.L.; Remington, R.W.; Johnston, J.C. Involuntary covert orienting is contingent on attentional control settings. J. Exp. Psychol. Hum. Percept. Perform. 1992, 18, 1030–1044. [Google Scholar] [CrossRef] [PubMed]
- Spering, M.; Carrasco, M. Acting without seeing: Eye movements reveal visual processing without awareness. Trends Neurosci. 2015, 38, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Pöppel, E.; Held, R.; Frost, D. Residual Visual Function after Brain Wounds involving the Central Visual Pathways in Man. Nature 1973, 243, 295–296. [Google Scholar] [CrossRef] [PubMed]
- Tamietto, M.; Cauda, F.; Corazzini, L.L.; Savazzi, S.; Marzi, C.A.; Goebel, R.; Weiskrantz, L.; De Gelder, B. Collicular Vision Guides Nonconscious Behavior. J. Cogn. Neurosci. 2010, 22, 888–902. [Google Scholar] [CrossRef] [Green Version]
- Van Der Stigchel, S.; Mulckhuyse, M.; Theeuwes, J. Eye cannot see it: The interference of subliminal distractors on saccade metrics. Vis. Res. 2009, 49, 2104–2109. [Google Scholar] [CrossRef] [Green Version]
- Mulckhuyse, M.; Theeuwes, J. Unconscious cueing effects in saccadic eye movements—Facilitation and inhibition in temporal and nasal hemifield. Vis. Res. 2010, 50, 606–613. [Google Scholar] [CrossRef]
- Weichselbaum, H.; Fuchs, I.; Ansorge, U. Oculomotor capture by supraliminal and subliminal onset singletons: The role of contrast polarity. Vis. Res. 2014, 100, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ansorge, U.; Horstmann, G.; Scharlau, I. Top-down contingent feature-specific orienting with and without awareness of the visual input. Adv. Cogn. Psychol. 2011, 7, 108–119. [Google Scholar] [CrossRef] [PubMed]
- Kunde, W.; Reuss, H.; Kiesel, A. Consciousness and cognitive control. Adv. Cogn. Psychol. 2012, 8, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Carrasco, M. Visual attention: The past 25 years. Vis. Res. 2011, 51, 1484–1525. [Google Scholar] [CrossRef] [Green Version]
- McAdams, C.J.; Maunsell, J.H.R. Attention to Both Space and Feature Modulates Neuronal Responses in Macaque Area V4. J. Neurophysiol. 2000, 83, 1751–1755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayden, B.Y.; Gallant, J.L. Time Course of Attention Reveals Different Mechanisms for Spatial and Feature-Based Attention in Area V4. Neuron 2005, 47, 637–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, T.; Stevens, S.T.; Carrasco, M. Comparing the time course and efficacy of spatial and feature-based attention. Vis. Res. 2007, 47, 108–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theeuwes, J. Visual Selection: Usually Fast and Automatic; Seldom Slow and Volitional. J. Cogn. 2018, 1, 21. [Google Scholar] [CrossRef]
- Itti, L.; Koch, C.; Niebur, E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 1254–1259. [Google Scholar] [CrossRef] [Green Version]
- Nothdurft, H.-C. Salience from feature contrast: Additivity across dimensions. Vis. Res. 2000, 40, 1183–1201. [Google Scholar] [CrossRef]
- Kanai, R.; Tsuchiya, N.; Verstraten, F.A. The Scope and Limits of Top-Down Attention in Unconscious Visual Processing. Curr. Biol. 2006, 16, 2332–2336. [Google Scholar] [CrossRef] [Green Version]
- Held, B.; Ansorge, U.; Müller, H.J. Masked singleton effects. Atten. Percept. Psychophys. 2010, 72, 2069–2086. [Google Scholar] [CrossRef] [PubMed]
- Scharlau, I.; Ansorge, U. Direct parameter specification of an attention shift: Evidence from perceptual latency priming. Vis. Res. 2003, 43, 1351–1363. [Google Scholar] [CrossRef]
- Scharlau, I. Leading, but not trailing, primes influence temporal order perception: Further evidence for an attentional account of perceptual latency priming. Percept. Psychophys. 2002, 64, 1346–1360. [Google Scholar] [CrossRef] [PubMed]
- Scharlau, I. Evidence against response bias in temporal order tasks with attention manipulation by masked primes. Psychol. Res. 2004, 68, 224–236. [Google Scholar] [CrossRef]
- Scharlau, I. Perceptual latency priming: A measure of attentional facilitation. Psychol. Res. 2007, 71, 678–686. [Google Scholar] [CrossRef] [PubMed]
- Jaśkowski, P. Selective attention and temporal-order judgment. Perception 1993, 22, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Ansorge, U.; Horstmann, G.; Worschech, F. Attentional capture by masked colour singletons. Vis. Res. 2010, 50, 2015–2027. [Google Scholar] [CrossRef] [Green Version]
- Lamy, D.; Alon, L.; Carmel, T.; Shalev, N. The role of conscious perception in attentional capture and object-file updating. Psychol. Sci. 2015, 26, 48–57. [Google Scholar] [CrossRef]
- Travis, S.L.; Dux, P.E.; Mattingley, J.B. Neural correlates of goal-directed enhancement and suppression of visual stimuli in the absence of conscious perception. Atten. Percept. Psychophys. 2018, 81, 1346–1364. [Google Scholar] [CrossRef]
- Theeuwes, J. Feature-based attention: It is all bottom-up priming. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130055. [Google Scholar] [CrossRef]
- Belopolsky, A.V.; Schreij, D.; Theeuwes, J. What is top-down about contingent capture? Atten. Percept. Psychophys. 2010, 72, 326–341. [Google Scholar] [CrossRef] [PubMed]
- Lamy, D.F.; Kristjansson, A. Is goal-directed attentional guidance just intertrial priming? A review. J. Vis. 2013, 13, 14. [Google Scholar] [CrossRef] [PubMed]
- Kristjánsson, Á.; Wang, D.; Nakayama, K. The role of priming in conjunctive visual search. Cognition 2002, 85, 37–52. [Google Scholar] [CrossRef] [Green Version]
- Lamy, D.; Bar-Anan, Y.; Egeth, H.E.; Carmel, T. Effects of top-down guidance and singleton-repetition priming on visual search. Psychon. Bull. Rev. 2006, 13, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Pinto, Y.; Olivers, C.N.L.; Theeuwes, J. Target uncertainty does not lead to more distraction by singletons: Intertrial priming does. Percept. Psychophys. 2005, 67, 1354–1361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jonides, J.; Yantis, S. Uniqueness of abrupt visual onset in capturing attention. Percept. Psychophys. 1988, 43, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Lien, M.-C.; Ruthruff, E.; Johnston, J.C. Attentional capture with rapidly changing attentional control settings. J. Exp. Psychol. Hum. Percept. Perform. 2010, 36, 1–16. [Google Scholar] [CrossRef]
- Gaspelin, N.; Ruthruff, E.; Lien, M.-C. The Problem of Latent Attentional Capture: Easy Visual Search Conceals Capture by Task-Irrelevant Abrupt Onsets. J. Exp. Psychol. Hum. Percept. Perform. 2016, 42, 1104–1120. [Google Scholar] [CrossRef]
- Fuchs, I.; Ansorge, U. Unconscious Cueing via the Superior Colliculi: Evidence from Searching for Onset and Color Targets. Brain Sci. 2012, 2, 33–60. [Google Scholar] [CrossRef]
- Fuchs, I.; Theeuwes, J.; Ansorge, U. Exogenous attentional capture by subliminal abrupt-onset cues: Evidence from contrast-polarity independent cueing effects. J. Exp. Psychol. Hum. Percept. Perform. 2013, 39, 974–988. [Google Scholar] [CrossRef]
- Leuthold, H.; Kopp, B. Mechanisms of Priming by Masked Stimuli: Inferences from Event-Related Brain Potentials. Psychol. Sci. 1998, 9, 263–269. [Google Scholar] [CrossRef]
- Schoeberl, T.; Ansorge, U. The impact of temporal contingencies between cue and target onset on spatial attentional capture by subliminal onset cues. Psychol. Res. 2018, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Folk, C.L.; Remington, R.W. Unexpected Abrupt Onsets Can Override a Top-Down Set for Color. J. Exp. Psychol. Hum. Percept. Perform. 2015, 41, 1153–1165. [Google Scholar] [CrossRef] [PubMed]
- Bacon, W.F.; Egeth, H.E. Overriding stimulus-driven attentional capture. Percept. Psychophys. 1994, 55, 485–496. [Google Scholar] [CrossRef] [PubMed]
- Carrasco, M.; Tai, J.; Eckstein, M.; Cameron, E.L. Signal detection theory applied to three visual search tasks—Identification, yes/no detection and localization. Spat. Vis. 2004, 17, 295–325. [Google Scholar] [CrossRef]
- Whiting, J.S.; Eckstein, M.P. Visual signal detection in structured backgrounds I.Effect of number of possible spatial locations and signal contrast. J. Opt. Soc. Am. A 1996, 13, 1777–1787. [Google Scholar]
- Foley, J.M.; Schwarz, W. Spatial attention: Effect of position uncertainty and number of distractor patterns on the threshold-versus-contrast function for contrast discrimination. J. Opt. Soc. Am. A 1998, 15, 1036–1047. [Google Scholar] [CrossRef]
- Schoeberl, T.; Ditye, T.; Ansorge, U. Same-location costs in peripheral cueing: The role of cue awareness and feature changes. J. Exp. Psychol. Hum. Percept. Perform. 2018, 44, 433–451. [Google Scholar] [CrossRef] [PubMed]
- Yantis, S.; Jonides, J. Abrupt visual onsets and selective attention: Voluntary versus automatic allocation. J. Exp. Psychol. Hum. Percept. Perform. 1990, 16, 121–134. [Google Scholar] [CrossRef] [PubMed]
- Folk, C.L.; Ester, E.F.; Troemel, K. How to keep attention from straying: Get engaged! Psychon. Bull. Rev. 2009, 16, 127–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieuwenstein, M.R.; Chun, M.M.; Van Der Lubbe, R.H.J.; Hooge, I.T.C. Delayed Attentional Engagement in the Attentional Blink. J. Exp. Psychol. Hum. Percept. Perform. 2005, 31, 1463–1475. [Google Scholar] [CrossRef] [PubMed]
- Zivony, A.; Lamy, D. Contingent Attentional Engagement: Stimulus- and Goal-Driven Capture Have Qualitatively Different Consequences. Psychol. Sci. 2018, 29, 1930–1941. [Google Scholar] [CrossRef] [Green Version]
- Hickey, C.; McDonald, J.J.; Theeuwes, J. Electrophysiological Evidence of the Capture of Visual Attention. J. Cogn. Neurosci. 2006, 18, 604–613. [Google Scholar] [CrossRef] [PubMed]
- Sawaki, R.; Luck, S.J. Capture versus Suppression of Attention by Salient Singletons: Electrophysiological Evidence for an Automatic Attend-to-Me Signal. Atten. Percept. Psychophys. 2010, 72, 1455–1470. [Google Scholar] [CrossRef] [PubMed]
- Gaspelin, N.; Luck, S.J. The Role of Inhibition in Avoiding Distraction by Salient Stimuli. Trends Cogn. Sci. 2018, 22, 79–92. [Google Scholar] [CrossRef]
- Cosman, J.D.; Lowe, K.A.; Woodman, G.F.; Schall, J.D. Prefrontal control of visual distraction. Curr. Biol. 2018, 28, 414–420. [Google Scholar] [CrossRef] [PubMed]
- Sakai, K.; Passingham, R.E. Prefrontal interactions reflect future task operations. Nat. Neurosci. 2003, 6, 75–81. [Google Scholar] [CrossRef]
- Lau, H.C.; Passingham, R.E. Unconscious Activation of the Cognitive Control System in the Human Prefrontal Cortex. J. Neurosci. 2007, 27, 5805–5811. [Google Scholar] [CrossRef]
- Van Gaal, S.; Ridderinkhof, R.; Scholte, S.; Lamme, V. Unconscious Activation of the Prefrontal No-Go Network. J. Neurosci. 2010, 30, 4143–4150. [Google Scholar] [CrossRef] [Green Version]
- Sumner, P.; Nachev, P.; Morris, P.; Peters, A.M.; Jackson, S.R.; Kennard, C.; Husain, M. Human Medial Frontal Cortex Mediates Unconscious Inhibition of Voluntary Action. Neuron 2007, 54, 697–711. [Google Scholar] [CrossRef] [Green Version]
- Van Gaal, S.; Ridderinkhof, K.R.; Fahrenfort, J.; Scholte, H.S.; Lamme, V.A.F. Frontal Cortex Mediates Unconsciously Triggered Inhibitory Control. J. Neurosci. 2008, 28, 8053–8062. [Google Scholar] [CrossRef] [PubMed]
- Van Gaal, S.; Ridderinkhof, K.R.; Wildenberg, W.P.M.V.D.; Lamme, V.A.F. Dissociating consciousness from inhibitory control: Evidence for unconsciously triggered response inhibition in the stop-signal task. J. Exp. Psychol. Hum. Percept. Perform. 2009, 35, 1129–1139. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, M.; Adams, S.C.; Kiefer, M. Flexible establishment of functional brain networks supports attentional modulation of unconscious cognition. Hum. Brain Mapp. 2014, 35, 5500–5516. [Google Scholar] [CrossRef] [PubMed]
Sl No. | Study | Cue | Target | Task |
---|---|---|---|---|
[36] | McCormick (1997) | Abrupt onset | Abrupt onset | Discrimination |
[79] | Leuthold and Kopp (1998) | Abrupt onset | Abrupt onset | Localisation |
[37] | Ivanoff and Klein (2003) | Abrupt onset | Abrupt onset | Go/No-go |
[38] | Mulckhuyse, Talsma, and Theeuwes (2007) | Abrupt onset | Abrupt onset | Detection |
[6] | Ansorge and Neumann (2005) | Abrupt onset (Colour: match/mismatch) | Colour-defined target | Search followed by localisation |
[41] | Ansorge, Kiss and Eimer (2009) | Colour singleton (Colour: match) | Colour-defined target 1 | Search followed by discrimination |
[65] | Ansorge, Horstmann, and Worschech (2010) | Colour singleton (Colour: match/mismatch) | Colour-defined target | Go/No-go followed by discrimination |
[46] | Van der Stigchel, Mulckhuyse, and Theeuwes (2009) | Abrupt onset | Abrupt onset | Localisation (eye movement) |
[59] | Held, Ansorge, and Mueller, 2010 (Experiments 1–4) | Feature-singleton | Feature-singleton | Localisation |
[59] | Held, Ansorge, and Mueller, 2010 (Experiment 5) | Colour singleton (Colour: match/mismatch) | Colour- and shape defined target | Search followed by discrimination |
[47] | Mulckhuyse and Theeuwes, 2010 | Abrupt onset | Abrupt onset | Search followed by localisation (eye movement) |
[39] | Fuchs and Ansorge, 2012a (Experiments 1–4) | Abrupt onset (contrast polarity: match/mismatch) | Abrupt onset | Detection |
[77] | Fuchs and Ansorge, 2012b (Experiments 1–3) | Abrupt onset (contrast polarity: match/mismatch) | Abrupt onset | Detection |
[77] | Fuchs and Ansorge, 2012b (Experiments 4 and 5) 2 | Abrupt onset (Colour: mismatch) | Colour-defined target (non-singleton in Expt 4 and singleton in Expt 5) | Search |
[77] | Fuchs and Ansorge, 2012b (Experiments 6) 2 | Colour singleton (Colour: mismatch) | Colour-defined target | Search |
[78] | Fuchs, Theeuwes, and Ansorge, 2013(Experiments 1 and 2) | Abrupt onset (contrast polarity: match/mismatch) | Abrupt onset | Detection |
[78] | Fuchs, Theeuwes, and Ansorge, 2013(Experiment 3) | Abrupt onset (contrast polarity: match/mismatch) | Abrupt onset | Go/No-go |
[48] | Weichselbaum, Fuchs, and Ansorge, 2014 | Abrupt onset (contrast polarity: match/mismatch) | Abrupt onset | Detection (eye movement) |
[7] | Schoeberl, Fuchs, Theeuwes, and Ansorge (2015) | Abrupt onset | Colour-defined target | Search followed by discrimination |
[66] | Lamy, Alon, Carmel, and Shalev (2015) | Colour singleton (colour: match/mismatch) | Colour-defined target | Search followed by discrimination |
[80] | Schoeberl and Ansorge (2018) | Abrupt onset (temporally predictive/unpredictive) | Colour-defined target | Search followed by discrimination |
[67] | Travis, Dux, and Mattingley (2018) | Colour singleton (colour: match/mismatch) | Colour-defined target | Search followed by discrimination |
[86] | Schoeberl, Ditye and Ansorge (2018) | High or low frequency cue (frequency: match/mismatch) | Frequency-defined target | Search followed by discrimination |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prasad, S.; Mishra, R.K. The Nature of Unconscious Attention to Subliminal Cues. Vision 2019, 3, 38. https://doi.org/10.3390/vision3030038
Prasad S, Mishra RK. The Nature of Unconscious Attention to Subliminal Cues. Vision. 2019; 3(3):38. https://doi.org/10.3390/vision3030038
Chicago/Turabian StylePrasad, Seema, and Ramesh Kumar Mishra. 2019. "The Nature of Unconscious Attention to Subliminal Cues" Vision 3, no. 3: 38. https://doi.org/10.3390/vision3030038
APA StylePrasad, S., & Mishra, R. K. (2019). The Nature of Unconscious Attention to Subliminal Cues. Vision, 3(3), 38. https://doi.org/10.3390/vision3030038