Slant of a Surface Shifts Binocular Visual Direction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Apparatus
2.2. Stimuli
2.3. Procedure
2.4. Observers
3. Results
3.1. Experiment 1 Results
3.2. Experiment 2 Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hering, E. Spatial Sense and Movements of the Eye; American Academy of Optometry: Oxford, UK, 1942. [Google Scholar]
- LeConte, J. Sight: An Exposition of the Principles of Monocular and Binocular Vision; Appleton: New York, NY, USA, 1881. [Google Scholar]
- Wells, W. An Essay upon Single Vision with Two Eyes : Together with Experiments and Observations on Several Other Subjects in Optics; Cadell: London, UK, 1792. [Google Scholar]
- Howard, I.P.; Rogers, B.J. Perceiving in Depth, Vol. 2: Stereoscopic Vision; Oxford University Press: New York, NY, USA, 2012; ISBN 0-19-976415-8. [Google Scholar]
- Kusano, T.; Shimono, K. Current state and future directions of research on visual direction. Jpn. Psychol. Rev. 2013, 56, 392–413. [Google Scholar]
- Ono, H.; Wade, N.J. Two historical strands in studying visual direction1. Jpn. Psychol. Res. 2012, 54, 71–88. [Google Scholar] [CrossRef]
- Charnwood, J.P.R. Observations on ocular dominance. Optician 1949, 116, 85–88. [Google Scholar]
- Francis, J.L.; Harwood, K.A. The variation of the projection center with differential stimulus and its relation to ocular dominance. In Transactions of the International Congress; British Optical Association: London, UK, 1951; pp. 75–87. [Google Scholar]
- Sridhar, D.; Bedell, H.E. Relative contributions of the two eyes to perceived egocentric visual direction in normal binocular vision. Vis. Res. 2011, 51, 1075–1085. [Google Scholar] [CrossRef] [PubMed]
- Sridhar, D.; Bedell, H.E. Binocular retinal image differences influence eye-position signals for perceived visual direction. Vis. Res. 2012, 62, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Sperling, G. Binocular combination: Measurements and a model. In Computational Vision in Neural and Machine Systems; Cambridge University Press: Cambridge, UK, 2007; pp. 257–305. [Google Scholar]
- Mansfield, J.S.; Legge, G.E. The binocular computation of visual direction. Vis. Res. 1996, 36, 27–41. [Google Scholar] [CrossRef]
- Ono, H.; Angus, R.; Gregor, P. Binocular single vision achieved by fusion and suppression. Percept. Psychophys. 1977, 21, 513–521. [Google Scholar] [CrossRef]
- Stevens, K.A. Slant-tilt: The visual encoding of surface orientation. Biol. Cybern. 1983, 46, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Brainard, D.H. The Psychophysics Toolbox. Spat. Vis. 1997, 10, 433–436. [Google Scholar] [CrossRef] [PubMed]
- Kleiner, M.; Brainard, D.; Pelli, D. What’s new in psychtoolbox-3 ? Perception 2007, 36, 1–16. [Google Scholar] [CrossRef]
- Pelli, D.G. The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spat. Vis. 1997, 10, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Van Ee, R.; Erkelens, C.J. Temporal aspects of binocular slant perception. Vis. Res. 1996, 36, 43–51. [Google Scholar] [CrossRef]
- Ogle, K.N. On the limits of stereoscopic vision. J. Exp. Psychol. 1952, 44, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Erkelens, C.J. Fusional limits for a large random-dot stereogram. Vis. Res. 1988, 28, 345–353. [Google Scholar] [CrossRef]
- Fender, D.; Julesz, B. Extension of panum’s fusional area in binocularly stabilized vision. J. Opt. Soc. Am. 1967, 57, 819–830. [Google Scholar] [CrossRef] [PubMed]
- Abdi, H. Encyclopedia of Research Design; SAGE Publications Inc.: Thousand Oaks, CA, USA, 2018. [Google Scholar]
- Sato, M.; Howard, I.P. Effects of disparity–perspective cue conflict on depth contrast. Vis. Res. 2001, 41, 415–426. [Google Scholar] [CrossRef]
- Van Ee, R.; Banks, M.S.; Backus, B.T. An Analysis of Binocular Slant Contrast. Perception 1999, 28, 1121–1145. [Google Scholar] [CrossRef] [PubMed]
- Gillam, B.J.; Sedgwick, H.A.; Marlow, P. Local and non-local effects on surface-mediated stereoscopic depth. J. Vis. 2011, 11, 5. [Google Scholar] [CrossRef] [PubMed]
- Mitchison, G.J.; Westheimer, G. The perception of depth in simple figures. Vis. Res. 1984, 24, 1063–1073. [Google Scholar] [CrossRef]
- Mapp, A.P.; Ono, H.; Howard, I.P. 16.7 Binocular visual direction. In Perceiving in Depth: Vol. 2. Stereoscopic Vision; Oxford University Press: New York, NY, USA, 2012; pp. 230–247. [Google Scholar]
- Ono, H. Axiomatic summary and deductions from Hering’s principles of visual direction. Percept. Psychophys. 1979, 25, 473–477. [Google Scholar] [CrossRef] [PubMed]
- Ono, H.; Mapp, A.P. A Restatement and Modification of Wells-Hering’s Laws of Visual Direction. Perception 1995, 24, 237–252. [Google Scholar] [CrossRef] [PubMed]
- Durgin, F.H.; Li, Z.; Hajnal, A. Slant perception in near space is categorically biased: Evidence for a vertical tendency. Atten. Percept. Psychophys. 2010, 72, 1875–1889. [Google Scholar] [CrossRef] [PubMed]
- Gibson, J.J. The perception of visual surfaces. Am. J. Psychol. 1950, 63, 367–384. [Google Scholar] [CrossRef] [PubMed]
- Ooi, T.L.; Wu, B.; He, Z.J. Perceptual Space in the Dark Affected by the Intrinsic Bias of the Visual System. Perception 2006, 35, 605–624. [Google Scholar] [CrossRef] [PubMed]
- Proffitt, D.R.; Bhalla, M.; Gossweiler, R.; Midgett, J. Perceiving geographical slant. Psychon. Bull. Rev. 1995, 2, 409–428. [Google Scholar] [CrossRef] [PubMed]
- Gillam, B.; Blackburn, S.; Brooks, K. Hinge versus twist: The effects of “reference surfaces” and discontinuities on stereoscopic slant perception. Perception 2007, 36, 596–616. [Google Scholar] [CrossRef] [PubMed]
- Gillam, B.; Chambers, D.; Russo, T. Postfusional latency in stereoscopic slant perception and the primitives of stereopsis. J. Exp. Psychol. Hum. Percept. Perform. 1988, 14, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Gillam, B.; Flagg, T.; Finlay, D. Evidence for disparity change as the primary stimulus for stereoscopic processing. Percept. Psychophys. 1984, 36, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Matin, L.; Fox, C.R. Visually perceived eye level and perceived elevation of objects: Linearly additive influences from visual field pitch and from gravity. Vis. Res. 1989, 29, 315–324. [Google Scholar] [CrossRef]
- Matin, L.; Li, W. Visually perceived eye level: Changes induced by a pitched-from-vertical 2-line visual field. J. Exp. Psychol. Hum. Percept. Perform. 1992, 18, 257–289. [Google Scholar] [CrossRef] [PubMed]
- O’Shea, R.P.; Ross, H.E. Judgments of visually perceived eye level (VPEL) in outdoor scenes: Effects of slope and height. Perception 2007, 36, 1168–1178. [Google Scholar] [CrossRef] [PubMed]
- Rogers, B.J.; Bradshaw, M.F. Disparity Minimisation, Cyclovergence, and the Validity of Nonius Lines as a Technique for Measuring Torsional Alignment. Perception 1999, 28, 127–141. [Google Scholar] [CrossRef] [PubMed]
- Erkelens, C.J.; van Ee, R. Capture of Visual Direction: An Unexpected Phenomenon in Binocular Vision. Vis. Res. 1997, 37, 1193–1196. [Google Scholar] [CrossRef]
- Erkelens, C.J.; van Ee, R. Capture of the visual direction of monocular objects by adjacent binocular objects. Vis. Res. 1997, 37, 1735–1745. [Google Scholar] [CrossRef]
- Domini, F.; Braunstein, M.L. Influence of a stereo surface on the perceived tilt of a monocular line. Percept. Psychophys. 2001, 63, 607–624. [Google Scholar] [CrossRef] [PubMed]
- Hariharan-Vilupuru, S.; Bedell, H.E. The perceived visual direction of monocular objects in random-dot stereograms is influenced by perceived depth and allelotropia. Vis. Res. 2009, 49, 190–201. [Google Scholar] [CrossRef] [PubMed]
- Raghunandan, A. Binocular capture: The effects of spatial frequency and contrast polarity of the monocular target. Vis. Res. 2011, 51, 2369–2377. [Google Scholar] [CrossRef] [PubMed]
- Raghunandan, A.; Andrus, J. Binocular capture: The role of non-linear position mechanisms. Vis. Res. 2014, 102, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Shimono, K.; Tam, W.J.; Asakura, N.; Ohmi, M. Localization of monocular stimuli in different depth planes. Vis. Res. 2005, 45, 2631–2641. [Google Scholar] [CrossRef] [PubMed]
- Shimono, K.; Wade, N.J. Monocular alignment in different depth planes. Vis. Res. 2002, 42, 1127–1135. [Google Scholar] [CrossRef]
- Shimono, K.; Ono, H.; Saida, S.; Mapp, A.P. Methodological caveats for monitoring binocular eye position with Nonius stimuli. Vis. Res. 1998, 38, 591–600. [Google Scholar] [CrossRef]
- Shimono, K.; Tam, W.J.; Ono, H. Apparent motion of monocular stimuli in different depth planes with lateral head movements. Vis. Res. 2007, 47, 1027–1035. [Google Scholar] [CrossRef] [PubMed]
- Ono, H.; Mapp, A.P.; Howard, I.P. The cyclopean eye in vision: The new and old data continue to hit you right between the eyes. Vis. Res. 2002, 42, 1307–1324. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kusano, T.; Shimono, K. Slant of a Surface Shifts Binocular Visual Direction. Vision 2018, 2, 20. https://doi.org/10.3390/vision2020020
Kusano T, Shimono K. Slant of a Surface Shifts Binocular Visual Direction. Vision. 2018; 2(2):20. https://doi.org/10.3390/vision2020020
Chicago/Turabian StyleKusano, Tsutomu, and Koichi Shimono. 2018. "Slant of a Surface Shifts Binocular Visual Direction" Vision 2, no. 2: 20. https://doi.org/10.3390/vision2020020
APA StyleKusano, T., & Shimono, K. (2018). Slant of a Surface Shifts Binocular Visual Direction. Vision, 2(2), 20. https://doi.org/10.3390/vision2020020