Evaluation of Rehabilitation Outcomes in Patients with Chronic Neurological Health Conditions Using a Machine Learning Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Intervention
2.3. Assessment and Outcome Measures
2.4. Statistical Analysis
2.5. Artificial Neural Network
3. Results
3.1. Demographics
3.2. Physiatrist-Assessed Outcome Measures
3.3. Clinical and Rehabilitative Information
3.4. Predicting an Improvement in Barthel Index at Discharge from the Rehabilitation Project with an ANN
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
ANN | Artificial neural network |
ADL | Activity of daily living |
BI | Barthel Index |
mBI | Modified Barthel Index |
CND | Chronic neurological disease |
ICF | International Classification of Functioning, Disability and Health |
MLP | Multilayer perceptron |
PCND | Patient with chronic neurological disease |
PAOM | Physiatrist-assessed outcome measures |
SD | Standard deviation |
SPMSQ | Short portable mental status questionnaire |
SVaMAsc | Sensory and Communication of the second part of the Multidimensional Assessment Schedule |
References
- The Neurological Alliance. Neuro Numbers. 2019. Available online: https://www.neural.org.uk/wp-content/uploads/2019/07/neuro-numbers-2019.pdf (accessed on 18 September 2024).
- Public Health Agency of Canada. Mapping Connections: An Understanding of Neurological Conditions in Canada. 2014. Available online: https://www.canada.ca/content/dam/phac-aspc/migration/phac-aspc/publicat/cd-mc/mc-ec/assets/pdf/mc-ec-eng.pdf (accessed on 18 September 2024).
- Nas, K.; Yazmalar, L.; Şah, V.; Aydın, A.; Öneş, K. Rehabilitation of spinal cord injuries. World J. Orthop. 2015, 6, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Teasell, R.; Salbach, N.M.; Foley, N.; Mountain, A.; Cameron, J.I.; Jong, A.; Acerra, N.E.; Bastasi, D.; Carter, S.L.; Fung, J.; et al. Canadian Stroke Best Practice Recommendations: Rehabilitation, Recovery, and Community Participation following Stroke. Part One: Rehabilitation and Recovery Following Stroke; 6th Edition Update 2019. Int. J. Stroke 2020, 15, 763–788. [Google Scholar] [CrossRef] [PubMed]
- Teasell, R.W.; Murie Fernandez, M.; McIntyre, A.; Mehta, S. Rethinking the continuum of stroke rehabilitation. Arch. Phys. Med. Rehabil. 2014, 95, 595–596. [Google Scholar] [CrossRef] [PubMed]
- Barnes, M.P.; Radermacher, H. Neurological rehabilitation in the community. J. Rehabil. Med. 2001, 33, 244–248. [Google Scholar] [CrossRef] [PubMed]
- Compston, A.; Coles, A. Multiple sclerosis. Lancet 2008, 372, 1502–1517. [Google Scholar] [CrossRef]
- Cahn, D.A.; Sullivan, E.V.; Shear, P.K.; Pfefferbaum, A.; Heit, G.; Silverberg, G. Differential contributions of cognitive and motor component processes to physical and instrumental activities of daily living in Parkinson’s disease. Arch. Clin. Neuropsychol. 1998, 13, 575–583. [Google Scholar]
- Månsson, E.; Lexell, J. Performance of activities of daily living in multiple sclerosis. Disabil. Rehabil. 2004, 26, 576–585. [Google Scholar] [CrossRef]
- Mercier, L.; Audet, T.; Hébert, R.; Rochette, A.; Dubois, M.F. Impact of motor, cognitive, and perceptual disorders on ability to perform activities of daily living after stroke. Stroke 2001, 32, 2602–2608. [Google Scholar] [CrossRef]
- Mulligan, H.F.; Hale, L.A.; Whitehead, L.; Baxter, G.D. Barriers to physical activity for people with long-term neurological conditions: A review study. Adapt. Phys. Act. Q. 2012, 29, 243–265. [Google Scholar] [CrossRef]
- Bryant, M.S.; Rintala, D.H.; Hou, J.G.; Protas, E.J. Relationship of falls and fear of falling to activity limitations and physical inactivity in Parkinson’s disease. J. Aging Phys. Act. 2015, 23, 187–193. [Google Scholar] [CrossRef]
- Michael, K.M.; Allen, J.K.; Macko, R.F. Reduced ambulatory activity after stroke: The role of balance, gait, and cardiovascular fitness. Arch. Phys. Med. Rehabil. 2005, 86, 1552–1556. [Google Scholar] [CrossRef] [PubMed]
- Sandroff, B.M.; Klaren, R.E.; Motl, R.W. Relationships among physical inactivity, deconditioning, and walking impairment in persons with multiple sclerosis. J. Neurol. Phys. Ther. 2015, 39, 103–110. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. International Classification of Functioning, Disability and Health; World Health Organization: Geneva, Switzerland, 2001.
- Zhang, T.; Liu, L.; Xie, R.; Peng, Y.; Wang, H.; Chen, Z.; Wu, S.; Ni, C.; Zheng, J.; Li, X.; et al. Value of using the international classification of functioning, disability, and health for stroke rehabilitation assessment: A multicenter clinical study. Medicine 2018, 97, e12802. [Google Scholar] [CrossRef] [PubMed]
- Cott, C.A. Client-centred rehabilitation: Client perspectives. Disabil. Rehabil. 2004, 26, 1411–1422. [Google Scholar] [CrossRef] [PubMed]
- Cott, C.A.; Devitt, R.M.; Falter, L.; Soever, L.J.; Passalent, L.A. Barriers to rehabilitation in primary health care in Ontario: Funding and wait times for physical therapy services. Physiother. Can. 2007, 59, 173–183. [Google Scholar] [CrossRef]
- Ho, J.W.; Kuluski, K.; Im, J. “It’s a fight to get anything you need”—Accessing care in the community from the perspectives of people with multimorbidity. Health Expect. 2017, 20, 1311–1319. [Google Scholar] [CrossRef]
- Tseng, S.H.; Chang, F.H. Transitioning from hospitals to the community: Perspectives of rehabilitation patients with neurological disorders and their service providers. Disabil. Rehabil. 2017, 39, 2420–2427. [Google Scholar] [CrossRef]
- Zampolini, M.; Selb, M.; Boldrini, P.; Branco, C.A.; Golyk, V.; Hu, X.; Kiekens, C.; Negrini, S.; Nulle, A.; Oral, A.; et al. The Individual Rehabilitation Project as the core of person-centered rehabilitation: The Physical and Rehabilitation Medicine Section and Board of the European Union of Medical Specialists Framework for Rehabilitation in Europe. Eur. J. Phys. Rehabil. Med. 2022, 58, 503–510. [Google Scholar] [CrossRef]
- Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.; Arshad, H. State-of-the-art in artificial neural network applications: A survey. Heliyon 2018, 4, e00938. [Google Scholar] [CrossRef]
- Santilli, V.; Mangone, M.; Diko, A.; Alviti, F.; Bernetti, A.; Agostini, F.; Palagi, L.; Servidio, M.; Paoloni, M.; Goffredo, M.; et al. The Use of Machine Learning for Inferencing the Effectiveness of a Rehabilitation Program for Orthopedic and Neurological Patients. Int. J. Environ. Res. Public Health 2023, 20, 5575. [Google Scholar] [CrossRef]
- Thakkar, H.K.; Liao, W.W.; Wu, C.Y.; Hsieh, Y.W.; Lee, T.H. Predicting clinically significant motor function improvement after contemporary task-oriented interventions using machine learning approaches. J. Neuroeng. Rehabil. 2020, 17, 131. [Google Scholar] [CrossRef] [PubMed]
- Iwamoto, Y.; Imura, T.; Tanaka, R.; Imada, N.; Inagawa, T.; Araki, H.; Araki, O. Development and Validation of Machine Learning-Based Prediction for Dependence in the Activities of Daily Living after Stroke Inpatient Rehabilitation: A Decision-Tree Analysis. J. Stroke Cerebrovasc. Dis. 2020, 29, 105332. [Google Scholar] [CrossRef] [PubMed]
- Santilli, G.; Vetrano, M.; Mangone, M.; Agostini, F.; Bernetti, A.; Coraci, D.; Paoloni, M.; de Sire, A.; Paolucci, T.; Latini, E.; et al. Predictive Prognostic Factors in Non-Calcific Supraspinatus Tendinopathy Treated with Focused Extracorporeal Shock Wave Therapy: An Artificial Neural Network Approach. Life 2024, 14, 681. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.Y.; Chen, C.H.; Tseng, Y.J.; Tsai, Y.T.; Chang, C.Y.; Wang, H.Y.; Chen, C.K. Predicting post-stroke activities of daily living through a machine learning-based approach on initiating rehabilitation. Int. J. Med. Inform. 2018, 111, 159–164. [Google Scholar] [CrossRef]
- Sale, P.; Ferriero, G.; Ciabattoni, L.; Cortese, A.M.; Ferracuti, F.; Romeo, L.; Piccione, F.; Masiero, S. Predicting Motor and Cognitive Improvement Through Machine Learning Algorithm in Human Subject that Underwent a Rehabilitation Treatment in the Early Stage of Stroke. J. Stroke Cerebrovasc. Dis. 2018, 27, 2962–2972, Erratum in: J. Stroke Cerebrovasc. Dis. 2018, 27, 3676. [Google Scholar] [CrossRef]
- Heo, J.; Yoon, J.G.; Park, H.; Kim, Y.D.; Nam, H.S.; Heo, J.H. Machine Learning-Based Model for Prediction of Outcomes in Acute Stroke. Stroke 2019, 50, 1263–1265. [Google Scholar] [CrossRef]
- Wang, H.L.; Hsu, W.Y.; Lee, M.H.; Weng, H.H.; Chang, S.W.; Yang, J.T.; Tsai, Y.H. Automatic Machine-Learning-Based Outcome Prediction in Patients with Primary Intracerebral Hemorrhage. Front. Neurol. 2019, 10, 910. [Google Scholar] [CrossRef]
- Iosa, M.; Capodaglio, E.; Pelà, S.; Persechino, B.; Morone, G.; Antonucci, G.; Paolucci, S.; Panigazzi, M. Artificial Neural Network Analyzing Wearable Device Gait Data for Identifying Patients with Stroke Unable to Return to Work. Front. Neurol. 2021, 12, 650542. [Google Scholar] [CrossRef] [PubMed]
- Qie, X.; Kang, C.; Zong, G.; Chen, S. Trajectory Planning and Simulation Study of Redundant Robotic Arm for Upper Limb Rehabilitation Based on Back Propagation Neural Network and Genetic Algorithm. Sensors 2022, 22, 4071. [Google Scholar] [CrossRef]
- Shalin, G.; Pardoel, S.; Lemaire, E.D.; Nantel, J.; Kofman, J. Prediction and detection of freezing of gait in Parkinson’s disease from plantar pressure data using long short-term memory neural-networks. J. Neuroeng. Rehabil. 2021, 18, 167. [Google Scholar] [CrossRef]
- Wei, S.; Wu, Z. The Application of Wearable Sensors and Machine Learning Algorithms in Rehabilitation Training: A Systematic Review. Sensors 2023, 23, 7667. [Google Scholar] [CrossRef]
- Noé, F.; Korchi, K.; Bru, N.; Paillard, T. Does the time of day differently impact the effects of an exercise program on postural control in older subjects? A pilot study. BMC Sports Sci. Med. Rehabil. 2022, 14, 73. [Google Scholar] [CrossRef] [PubMed]
- Collin, C.; Wade, D.T.; Davies, S.; Horne, V. The Barthel ADL Index: A reliability study. Int. Disabil. Stud. 1988, 10, 61–63. [Google Scholar] [CrossRef]
- Fortuna, P.; Ceschin, E.; Mauri, L.; Gregori, E.; Viganò, G.; Maglio, M.; Chioatto, P.; Ruscitti, G. Determinazione dei carichi assistenziali e delle distanze relative dei profili SvaMA. Tend. Nuove 2008, 8, 591–616. [Google Scholar] [CrossRef]
- Marcadelli, S.; Dionisi, S. La continuità delle cure. In Assistenza Domiciliare e Cure Primarie. Il Nuovo Orizzonte della Professione Infermeristica; Marcadelli, S., Obbia, P., Prandi, C., Eds.; L’ospedalizzazione a Domicilio e in Comunità Milano; Edra: Perignano, Italy, 2018; pp. 195–205. [Google Scholar]
- Mahoney, F.; Barthel, D. Functional Evaluation: The Barthel Index. Md. State Med. J. 1965, 14, 61–65. [Google Scholar]
- Shah, S.; Vanclay, F.; Cooper, B. Improving the sensitivity of the Barthel Index for stroke rehabilitation. J. Clin. Epidemiol. 1989, 42, 703–709. [Google Scholar] [CrossRef]
- Wade, D.T.; Collin, C. The Barthel ADL Index: A standard measure of physical disability? Int. Disabil. Stud. 1988, 10, 64–67. [Google Scholar] [CrossRef] [PubMed]
- Hsueh, I.P.; Lin, J.H.; Jeng, J.S.; Hsieh, C.L. Comparison of the psychometric characteristics of the functional independence measure, 5 item Barthel index, and 10 item Barthel index in patients with stroke. J. Neurol. Neurosurg. Psychiatry 2002, 73, 188–190. [Google Scholar] [CrossRef]
- Shah, S.; Vanclay, F.; Cooper, B. Predicting discharge status at commencement of stroke rehabilitation. Stroke 1989, 20, 766–769. [Google Scholar] [CrossRef]
- Keith, R.A. Observations in the rehabilitation hospital: Twenty years of research. Arch. Phys. Med. Rehabil. 1988, 69, 625–631. [Google Scholar] [PubMed]
- Guerriero, F.; Orlando, V.; Tari, D.U.; Di Giorgio, A.; Cittadini, A.; Trifirò, G.; Menditto, E. How healthy is community-dwelling elderly population? Results from Southern Italy. Transl. Med. UniSa 2016, 13, 59–64. [Google Scholar] [PubMed]
- Pfeiffer, E. A short portable mental status questionnaire for the assessment of organic brain deficit in elderly patients. J. Am. Geriatr. Soc. 1975, 23, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Erkinjuntti, T.; Sulkava, R.; Wikström, J.; Autio, L. Short Portable Mental Status Questionnaire as a screening test for dementia and delirium among the elderly. J. Am. Geriatr. Soc. 1987, 35, 412–416. [Google Scholar] [CrossRef] [PubMed]
- Dalton, J.E.; Pederson, S.L.; Blom, B.E.; Holmes, N.R. Diagnostic errors using the Short Portable Mental Status Questionnaire with a mixed clinical population. J. Gerontol. 1987, 42, 512–514. [Google Scholar] [CrossRef] [PubMed]
- Albert, M.; Smith, L.A.; Scherr, P.A.; Taylor, J.O.; Evans, D.A.; Funkenstein, H.H. Use of brief cognitive tests to identify individuals in the community with clinically diagnosed Alzheimer’s disease. Int. J. Neurosci. 1991, 57, 167–178. [Google Scholar] [CrossRef]
- Fillenbaum, G.G.; Landerman, L.R.; Simonsick, E.M. Equivalence of two screens of cognitive functioning: The Short Portable Mental Status Questionnaire and the Orientation-Memory-Concentration test. J. Am. Geriatr. Soc. 1998, 46, 1512–1518. [Google Scholar] [CrossRef]
- Martínez de la Iglesia, J.; Dueñas Herrero, R.; Onís Vilches, M.C.; Aguado Taberné, C.; Albert Colomer, C.; Luque Luque, R. Adaptación y validación al castellano del cuestionario de Pfeiffer (SPMSQ) para detectar la existencia de deterioro cognitivo en personas mayores de 65 años [Spanish language adaptation and validation of the Pfeiffer’s questionnaire (SPMSQ) to detect cognitive deterioration in people over 65 years of age]. Med. Clin. 2001, 117, 129–134. (In Spanish) [Google Scholar] [CrossRef]
- World Health Organization (WHO), 2014. Available online: https://www.who.int/publications/i/item/who-global-disability-action-plan-2014-2021 (accessed on 22 September 2024).
- Gutenbrunner, C.; Negrini, S.; Kiekens, C.; Zampolini, M.; Nugraha, B. The Global Disability Action Plan 2014–2021 of the World Health Organisation (WHO): A major step towards better health for all people with disabilities. Chance and challenge for Physical and Rehabilitation Medicine (PRM). Eur. J. Phys. Rehabil. Med. 2015, 51, 1–4. [Google Scholar]
- Schepers, V.P.; Ketelaar, M.; van de Port, I.G.; Visser-Meily, J.M.; Lindeman, E. Comparing contents of functional outcome measures in stroke rehabilitation using the International Classification of Functioning, Disability and Health. Disabil. Rehabil. 2007, 29, 221–230. [Google Scholar] [CrossRef]
- Okamoto, M.; Kito, M.; Yoshimura, Y.; Aoki, K.; Suzuki, S.; Tanaka, A.; Takazawa, A.; Yoshida, K.; Ido, Y.; Ishida, T.; et al. Using the Barthel Index to Assess Activities of Daily Living after Musculoskeletal Tumour Surgery: A Single-centre Observational Study. Prog. Rehabil. Med. 2019, 4, 20190010. [Google Scholar] [CrossRef]
- IBM Corp. IBM SPSS Statistics for Windows, Version 27.0.; IBM Corp: Armonk, NY, USA, 2020. [Google Scholar]
- Wojtusiak, J.; Asadzadehzanjani, N.; Levy, C.; Alemi, F.; Williams, A.E. Computational Barthel Index: An automated tool for assessing and predicting activities of daily living among nursing home patients. BMC Med. Inform. Decis. Mak. 2021, 21, 17. [Google Scholar] [CrossRef] [PubMed]
- Sui, H.; Wu, J.; Zhou, Q.; Liu, L.; Lv, Z.; Zhang, X.; Yang, H.; Shen, Y.; Liao, S.; Shi, F.; et al. Nomograms predict prognosis and hospitalization time using non-contrast CT and CT perfusion in patients with ischemic stroke. Front. Neurosci. 2022, 16, 912287. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Y.; Hsu, Y.L.; Tu, Y.C.; Lin, C.H.; Wang, S.C.; Lee, Y.W.; Shih, Y.T.; Chou, M.C.; Lin, C.M. Functional outcome prediction of ischemic stroke patients with atrial fibrillation accepting post-acute care training. Front. Neurol. 2022, 13, 954212. [Google Scholar] [CrossRef]
- Abuhaija, B.; Alloubani, A.; Almatari, M.; Jaradat, G.M.; Hemn, B.A.; Abualkishik, A.M.; Alsmadi, M.K. A comprehensive study of machine learning for predicting cardiovascular disease using Weka and SPSStools. Int. J. Electr. Comput. Eng. (IJECE) 2023, 13, 1891–1902. [Google Scholar] [CrossRef]
- Fontanari, T.; Fróes, T.C.; Recamonde-Mendoza, M. Cross-validation Strategies for Balanced and Imbalanced Datasets. In Intelligent Systems. Proceedings of the 11th Brazilian Conference, BRACIS 2022, Campinas, Brazil, 28 November–1 December 2022, Proceedings, Part I; Springer-Verlag: Berlin/Heidelberg, Germany, 2022; pp. 626–640. [Google Scholar] [CrossRef]
- Sejuti, Z.A.; Islam, M.S. A hybrid CNN-KNN approach for identification of COVID-19 with 5-fold cross validation. Sens. Int. 2023, 4, 100229. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.C.; Chang, P.F.; Chen, Y.M.; Lee, Y.C.; Huang, S.L.; Chen, M.H.; Hsieh, C.L. Comparison of responsiveness of the Barthel Index and modified Barthel Index in patients with stroke. Disabil. Rehabil. 2022, 45, 1097–1102. [Google Scholar] [CrossRef]
- Hernández-Quiles, C.; Bernabeu-Wittel, M.; Pérez-Belmonte, L.M.; Macías-Mir, P.; Camacho-González, D.; Massa, B.; Maiz-Jiménez, M.; Ollero-Baturone, M.; PALIAR investigators. Concordance of Barthel Index, ECOG-PS, and Palliative Performance Scale in the assessment of functional status in patients with advanced medical diseases. BMJ Support Palliat. Care 2017, 7, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Strini, V.; Piazzetta, N.; Gallo, A.; Schiavolin, R. Barthel Index: Creation and validation of two cut-offs using the BRASS Index. Acta Biomed. 2020, 91, 19–26. [Google Scholar] [CrossRef]
- Nakao, S.; Takata, S.; Uemura, H.; Kashihara, M.; Osawa, T.; Komatsu, K.; Masuda, Y.; Okahisa, T.; Nishikawa, K.; Kondo, S.; et al. Relationship between Barthel Index scores during the acute phase of rehabilitation and subsequent ADL in stroke patients. J. Med. Investig. 2010, 57, 81–88. [Google Scholar] [CrossRef]
- Uyttenboogaart, M.; Stewart, R.E.; Vroomen, P.C.; De Keyser, J.; Luijckx, G.J. Optimizing cutoff scores for the Barthel index and the modified Rankin scale for defining outcome in acute stroke trials. Stroke 2005, 36, 1984–1987. [Google Scholar] [CrossRef]
- Villafañe, J.H.; Pirali, C.; Dughi, S.; Testa, A.; Manno, S.; Bishop, M.D.; Negrini, S. Association between malnutrition and Barthel Index in a cohort of hospitalized older adults article information. J. Phys. Ther. Sci. 2016, 28, 607–612. [Google Scholar] [CrossRef] [PubMed]
- De Wit, L.; Putman, K.; Devos, H.; Brinkmann, N.; Dejaeger, E.; De Weerdt, W.; Jenni, W.; Lincoln, N.; Schuback, B.; Schupp, W. Long-term prediction of functional outcome after stroke using single items of the Barthel Index at discharge from rehabilitation centre. Disabil. Rehabil. 2014, 36, 353–358. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, Y.; Li, D.; Zhao, J.; Dong, Z.; Zhou, J.; Fu, G.; Zhang, J. Disability assessment in stroke: Relationship among the pictorial-based Longshi Scale, the Barthel Index, and the modified Rankin Scale. Clin. Rehabil. 2021, 35, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Joseph, V.R. Optimal ratio for data splitting. Stat. Anal. Data Min. ASA Data Sci. J. 2022, 15, 531–538. [Google Scholar] [CrossRef]
- Nahm, F.S. Receiver operating characteristic curve: Overview and practical use for clinicians. Korean J. Anesthesiol. 2022, 75, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Harari, Y.; O’Brien, M.K.; Lieber, R.L.; Jayaraman, A. Inpatient stroke rehabilitation: Prediction of clinical outcomes using a machine-learning approach. J. NeuroEng. Rehabil. 2020, 17, 71. [Google Scholar] [CrossRef] [PubMed]
- Cerasa, A.; Tartarisco, G.; Bruschetta, R.; Ciancarelli, I.; Morone, G.; Calabrò, R.S.; Pioggia, G.; Tonin, P.; Iosa, M. Predicting Outcome in Patients with Brain Injury: Differences between Machine Learning versus Conventional Statistics. Biomedicines 2022, 10, 2267. [Google Scholar] [CrossRef]
- Iosa, M.; Morone, G.; Antonucci, G.; Paolucci, S. Prognostic Factors in Neurorehabilitation of Stroke: A Comparison among Regression, Neural Network, and Cluster Analyses. Brain Sci. 2021, 11, 1147. [Google Scholar] [CrossRef]
- Oh, B.; Cho, B.; Choi, H.C.; Son, K.Y.; Park, S.M.; Chun, S.; Cho, S.I. The influence of lower-extremity function in elderly individuals’ quality of life (QOL): An analysis of the correlation between SPPB and EQ-5D. Arch. Gerontol. Geriatr. 2014, 58, 278–282. [Google Scholar] [CrossRef]
- Guralnik, J.M.; Ferrucci, L.; Simonsick, E.M.; Salive, M.E.; Wallace, R.B. Lower-extremity function in persons over the age of 70 years as a predictor of subsequent disability. N. Engl. J. Med. 1995, 332, 556–561. [Google Scholar] [CrossRef]
- Lauretani, F.; Ticinesi, A.; Gionti, L.; Prati, B.; Nouvenne, A.; Tana, C.; Meschi, T.; Maggio, M. Short-Physical Performance Battery (SPPB) score is associated with falls in older outpatients. Aging Clin. Exp. Res. 2019, 31, 1435–1442. [Google Scholar] [CrossRef] [PubMed]
- Penninx, B.W.; Ferrucci, L.; Leveille, S.G.; Rantanen, T.; Pahor, M.; Guralnik, J.M. Lower extremity performance in nondisabled older persons as a predictor of subsequent hospitalization. J. Gerontol. A Biol. Sci. Med. Sci. 2000, 55, M691–M697. [Google Scholar] [CrossRef] [PubMed]
- Pavasini, R.; Guralnik, J.; Brown, J.C.; di Bari, M.; Cesari, M.; Landi, F.; Vaes, B.; Legrand, D.; Verghese, J.; Wang, C.; et al. Short Physical Performance Battery and all-cause mortality: Systematic review and meta-analysis. BMC Med. 2016, 14, 215. [Google Scholar] [CrossRef]
- Völter, C.; Thomas, J.P.; Maetzler, W.; Guthoff, R.; Grunwald, M.; Hummel, T. Sensory Dysfunction in Old Age. Dtsch. Arztebl. Int. 2021, 118, 512–520. [Google Scholar] [CrossRef]
- Cygańska, M.; Kludacz-Alessandri, M.; Pyke, C. Healthcare Costs and Health Status: Insights from the SHARE Survey. Int. J. Environ. Res. Public Health 2023, 20, 1418. [Google Scholar] [CrossRef]
- Hammill, B.G.; Curtis, L.H.; Schulman, K.A.; Whellan, D.J. Relationship between cardiac rehabilitation and long-term risks of death and myocardial infarction among elderly Medicare beneficiaries. Circulation 2010, 121, 63–70. [Google Scholar] [CrossRef]
- Rossi-Izquierdo, M.; Santos-Pérez, S.; Rubio-Rodríguez, J.P.; Lirola-Delgado, A.; Zubizarreta-Gutiérrez, A.; San Román-Rodríguez, E.; Juíz-López, P.; Soto-Varela, A. What is the optimal number of treatment sessions of vestibular rehabilitation? Eur. Arch. Otorhinolaryngol. 2014, 271, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Kemp, A.H.; Tree, J.; Gracey, F.; Fisher, Z. Editorial: Improving Wellbeing in Patients with Chronic Conditions: Theory, Evidence, and Opportunities. Front. Psychol. 2022, 13, 868810. [Google Scholar] [CrossRef]
- Wakabayashi, H.; Sashika, H. Malnutrition is associated with poor rehabilitation outcome in elderly inpatients with hospital-associated deconditioning a prospective cohort study. J. Rehabil. Med. 2014, 46, 277–282. [Google Scholar] [CrossRef]
- Beam, C.R.; Kaneshiro, C.; Jang, J.Y.; Reynolds, C.A.; Pedersen, N.L.; Gatz, M. Differences between Women and Men in Incidence Rates of Dementia and Alzheimer’s Disease. J. Alzheimers Dis. 2018, 64, 1077–1083. [Google Scholar] [CrossRef]
- Bako, A.T.; Potter, T.; Tannous, J.; Pan, A.P.; Johnson, C.; Baig, E.; Downer, B.; Vahidy, F.S. Sex differences in post-stroke cognitive decline: A population-based longitudinal study of nationally representative data. PLoS ONE 2022, 17, e0268249. [Google Scholar] [CrossRef] [PubMed]
- De-Rosende-Celeiro, I.; Rey-Villamayor, A.; Francisco-de-Miguel, I.; Ávila-Álvarez, A. Independence in Daily Activities after Stroke among Occupational Therapy Patients and Its Relationship with Unilateral Neglect. Int. J. Environ. Res. Public Health 2021, 18, 7537. [Google Scholar] [CrossRef] [PubMed]
- Zisberg, A.; Sinoff, G.; Agmon, M.; Tonkikh, O.; Gur-Yaish, N.; Shadmi, E. Even a small change can make a big difference: The case of in-hospital cognitive decline and new IADL dependency. Age Ageing 2016, 45, 500–504. [Google Scholar] [CrossRef]
- Lee, E.Y.; Sohn, M.K.; Lee, J.M.; Kim, D.Y.; Shin, Y.I.; Oh, G.J.; Lee, Y.S.; Lee, S.Y.; Song, M.K.; Han, J.H.; et al. Changes in Long-Term Functional Independence in Patients with Moderate and Severe Ischemic Stroke: Comparison of the Responsiveness of the Modified Barthel Index and the Functional Independence Measure. Int. J. Environ. Res. Public Health 2022, 19, 9612. [Google Scholar] [CrossRef]
- Wei, X.; Sun, S.; Zhang, M.; Zhao, Z. A systematic review and meta-analysis of clinical efficacy of early and late rehabilitation interventions for ischemic stroke. BMC Neurol. 2024, 24, 91. [Google Scholar] [CrossRef] [PubMed]
- Setton, R.; Mwilambwe-Tshilobo, L.; Girn, M.; Lockrow, A.W.; Baracchini, G.; Hughes, C.; Lowe, A.J.; Cassidy, B.N.; Li, J.; Luh, W.M.; et al. Age differences in the functional architecture of the human brain. Cereb. Cortex 2022, 33, 114–134. [Google Scholar] [CrossRef]
- Liew, S.L.; Schweighofer, N.; Cole, J.H.; Zavaliangos-Petropulu, A.; Tavenner, B.P.; Han, L.K.M.; Hahn, T.; Schmaal, L.; Donnelly, M.R.; Jeong, J.N.; et al. Association of Brain Age, Lesion Volume, and Functional Outcome in Patients with Stroke. Neurology 2023, 100, e2103–e2113. [Google Scholar] [CrossRef] [PubMed]
- Pavelka, L.; Rauschenberger, A.; Landoulsi, Z.; Pachchek, S.; May, P.; Glaab, E.; Krüger, R.; NCER-PD Consortium. Age at onset as stratifier in idiopathic Parkinson’s disease—Effect of ageing and polygenic risk score on clinical phenotypes. NPJ Parkinsons. Dis. 2022, 8, 102, Erratum in: NPJ Parkinsons. Dis. 2022, 8, 112. [Google Scholar] [CrossRef]
- Bookman, A.; Harrington, M. Family caregivers: A shadow workforce in the geriatric health care system? J. Health Polit Policy Law 2007, 32, 1005–1041. [Google Scholar] [CrossRef]
Layer | Variables |
---|---|
Input Layer | |
Demographic Factors | - Age - Gender |
Clinical Variables | - Macroarea of Pathology - ICF CODES S, B, D1 AND D2, E1 and E2 |
Treatment Factors | - Planned sessions of neuromotor rehabilitation - Number of rehabilitation projects per patient - Planned days of absence - Years from pathology |
Physiatrist-Reported Outcome Measures (PROMs) | - Admission SVaMA SC Total - Threshold ≤ 30 points mBI admission - Threshold ≤ 45 points mBI admission - Admission short portable mental status questionnaire (SPMSQ) |
Output Layer | - Improvement in mBI or not |
Category | Details |
---|---|
Modified Barthel Index (mBI) | Baseline: 40.28 (±29.08) Discharge: 42.53 (±30.02) Improvement: p < 0.001 |
mBI Outcomes | Improvement: 62 patients No change: 50 patients Worsening: 16 patients |
SVaMA Sensory and Communication Total | No significant differences in Lp, U, and S |
Understanding of Language (Lc) | Baseline: 2.56 (±0.7) Discharge: 2.52 (±0.9) Improvement: p < 0.05 |
SPMSQ Score | Baseline: 3.5 (±4.5) Discharge: 3.8 (±4.4) Improvement: p < 0.05 |
SPMSQ Score admission levels Gender differences | Female: 1.48 ± 0.5 Male: 1.33 ± 0.4 (p < 0.05) |
ICF B—Body Functions | Severe muscle strength impairment (b730.3) 69.72% Complete muscle strength impairment (b730.4) 20.27% |
ICF S—Structure | Complete impairment of structures of the nervous system (s110.40) 64.14% Complete impairment of spinal cord and related structures (s120.40) 20.27% |
ICF D—Mobility | Difficulty in walking (d450) 32.73% Difficulty in transferring oneself (d420) 25.45% Difficulty in speaking (d330) 9.09% |
Disease Macroareas | Non-Specified Quadriplegia: 30.4% Paraplegia, Diplegia, Monoplegia: 29.6% Basal Ganglia Pathology: 22.6% Myelin Pathology: 8.6% Senile Degenerative Brain: 2.3% |
Duration of Pathology | Mean: 19.172 years (±16.1) |
Rehabilitation Sessions | Planned Neuromotor sessions: Mean 43.73 (±17.6) |
Days of Absence | Mean: 3.7 days (±4.4) |
SPMSQ Scores (Males) | Improved (n = 28): Mean admission score 2.8 Not improved (n = 29): Mean admission score 3.4 |
SPMSQ Scores (Females) | Improved (n = 34): Mean admission score 3.5 Not improved (n = 37): Mean admission score 4.7 |
mBI Improvement | Improved: 48% Maintained: 39% Statistically significant improvement (p value < 0.05) |
GLM Analysis | Significant effect for binary value of improvement mBI by time (admission and discharge SPMSQ) (p < 0.05) Significant effect for binary value of improvement mBI by time (admission and discharge mBI) (p < 0.001) |
Model Type | Multilayer Perceptron (MLP) |
---|---|
Training Group | 80.4% of total sample |
Testing Group | 19.6% of total sample |
Model Accuracy | 86.4% |
Incorrect Predictions | 13.6% |
Area Under ROC Curve (AUC) | 0.729 |
Influential Factor Weights | ICF D Code: 100% ICF B Code: 94.7% Rehabilitation Projects Performed: 94.5% ICF S Code: 91% Macroareas of Pathology: 91% Planned Sessions of Neurorehabilitation: 83.8% ICF E Code: 77.8% Years from Pathology: 74.7% Total Sum of SVaMA SC Admission: 48.2% Admission SPMSQ Score: 45.9% Age: 45.5% mBI Admission Threshold > 30: 25.9% mBI Admission Threshold > 45: 17.2% Gender: 15.9% |
Performance Metrics | Positive Predictive Value: 73.7% Sensitivity: 71.2% Negative Predictive Value: 69.1% Specificity: 71.7% Overall Accuracy: 86.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santilli, G.; Mangone, M.; Agostini, F.; Paoloni, M.; Bernetti, A.; Diko, A.; Tognolo, L.; Coraci, D.; Vigevano, F.; Vetrano, M.; et al. Evaluation of Rehabilitation Outcomes in Patients with Chronic Neurological Health Conditions Using a Machine Learning Approach. J. Funct. Morphol. Kinesiol. 2024, 9, 176. https://doi.org/10.3390/jfmk9040176
Santilli G, Mangone M, Agostini F, Paoloni M, Bernetti A, Diko A, Tognolo L, Coraci D, Vigevano F, Vetrano M, et al. Evaluation of Rehabilitation Outcomes in Patients with Chronic Neurological Health Conditions Using a Machine Learning Approach. Journal of Functional Morphology and Kinesiology. 2024; 9(4):176. https://doi.org/10.3390/jfmk9040176
Chicago/Turabian StyleSantilli, Gabriele, Massimiliano Mangone, Francesco Agostini, Marco Paoloni, Andrea Bernetti, Anxhelo Diko, Lucrezia Tognolo, Daniele Coraci, Federico Vigevano, Mario Vetrano, and et al. 2024. "Evaluation of Rehabilitation Outcomes in Patients with Chronic Neurological Health Conditions Using a Machine Learning Approach" Journal of Functional Morphology and Kinesiology 9, no. 4: 176. https://doi.org/10.3390/jfmk9040176
APA StyleSantilli, G., Mangone, M., Agostini, F., Paoloni, M., Bernetti, A., Diko, A., Tognolo, L., Coraci, D., Vigevano, F., Vetrano, M., Vulpiani, M. C., Fiore, P., & Gimigliano, F. (2024). Evaluation of Rehabilitation Outcomes in Patients with Chronic Neurological Health Conditions Using a Machine Learning Approach. Journal of Functional Morphology and Kinesiology, 9(4), 176. https://doi.org/10.3390/jfmk9040176