Relationship between Respiratory Function and the Strength of the Abdominal Trunk Muscles Including the Diaphragm in Middle-Aged and Older Adult Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Patients
2.3. Description of the Device
2.4. Outcome Measures
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Courtney, R. The functions of breathing and its dysfunctions and their relationship to breathing therapy. Int. J. Osteopath. Med. 2009, 12, 78–85. [Google Scholar] [CrossRef]
- Hodges, P.W.; Gandevia, S.C. Changes in intra-abdominal pressure during postural and respiratory activation of the human diaphragm. J. Appl. Physiol. 2000, 89, 967–976. [Google Scholar] [CrossRef]
- Shirley, D.; Hodges, P.W.; Eriksson, A.E.; Gandevia, S.C. Spinal stiffness changes throughout the respiratory cycle. J. Appl. Physiol. 2003, 95, 1467–1475. [Google Scholar] [CrossRef]
- Kocjan, J.; Gzik-Zroska, B.; Nowakowska, K.; Burkacki, M.; Suchon, S.; Michnik, R.; Czyzewski, D.; Adamek, M. Impact of diaphragm function parameters on balance maintenance. PLoS ONE 2018, 13, e0208697. [Google Scholar] [CrossRef]
- Cholewicki, J.; Juluru, k.; Radebold, A.; Panjabi, M.M.; McGill, A.S. Lumbar spine stability can be augmented with an abdominal belt and/or increased intra-abdominal pressure. Eur. Spine J. 1999, 8, 388–395. [Google Scholar] [CrossRef]
- Kato, S.; Murakami, H.; Inaki, A.; Mochizuki, T.; Demura, S.; Nakase, J.; Yoshioka, K.; Yokogawa, N.; Igarashi, T.; Takahasi, N.; et al. Innovative exercise device for the abdominal trunk muscles: An early validation study. PLoS ONE 2017, 12, e0172934. [Google Scholar] [CrossRef]
- Kato, S.; Ianki, A.; Murakami, H.; Kurokawa, Y.; Mochizuki, T.; Demura, S.; Yoshioka, K.; Yokogawa, N.; Yonezawa, N.; Shimizu, T.; et al. Reliability of the muscle strength measurement and effects of the strengthening by an innovative exercise device for the abdominal trunk muscles. J. Back Musculoskelet. Rehabil. 2020, 33, 677–684. [Google Scholar] [CrossRef]
- Oh, Y.J.; Park, S.H.; Lee, M.M. Comparison of Effects of Abdominal Draw-In Lumbar Stabilization Exercises with and without Respiratory Resistance on Women with Low Back Pain: A Randomized Controlled Trial. Med. Sci. Monit. 2020, 26, e921295. [Google Scholar] [CrossRef]
- Ziaeifar, M.; Sarrafzadef, J.; Dehkordi, S.N.; Arab, A.M.; Haghighatkhah, H.; Jadehkenari, A.Z. Diaphragm thickness, thickness change, and excursion in subjects with and without nonspecific low back pain using B-mode and M-mode ultrasonography. Physiother. Theory Pract. 2022, 38, 2441–2451. [Google Scholar] [CrossRef]
- Yüksel, F.; Guzel, N.A.; Taspinar, B.; Balaban, A. Relationship between trunk muscle endurance, pulmonary function, and respiratory muscle strength in healthy individuals. Turk. J. Physiother. Rehabil. 2020, 31, 255–262. [Google Scholar] [CrossRef]
- Kanehisa, H.; Miyatani, M.; Azuma, K.; Kuno, S.; Fukunaga, T. Infuluences of age and sex on abdominal muscle and subcutaneous fat thickness. Eur. J. Appl. Physiol. 2004, 91, 534–537. [Google Scholar] [CrossRef]
- Bhagavatula, I.D.; Bhat, D.; Sasidharan, G.M.; Mishara, R.K.; Maste, P.S.; Vilanilam, G.C.; Sathyaprabha, T.N. Subclinical respiratory dysfunction in chronic cervical cord compression. Neurosurg. Focus 2016, 40, E3. [Google Scholar] [CrossRef]
- Beeckmans, N.; Vermeersch, A.; Lysens, R.; Wambeke, P.V.; Goossens, N.; Thys, T.; Brumagne, S.; Janssens, L. The presence of respiratory disorders in individuals with low back pain: A systematic review. Man. Ther. 2016, 26, 77–86. [Google Scholar] [CrossRef]
- Kavcic, N.; Grenier, S.; McGill, S.M. Determining the stabilizing role of individual torso muscles during rehabilitation exercises. Spine 2004, 29, 1254–1265. [Google Scholar] [CrossRef]
- Kitagawa, R.; Kato, S.; Demura, S.; Kurokawa, Y.; Shinmura, K.; Yokogawa, N.; Yonezawa, N.; Shimizu, T.; Oku, N.; Handa, M.; et al. Efficacy of abdominal trunk muscles-strengthening exercise using an innovative device in treating chronic low back pain: A controlled clinical trial. Sci. Rep. 2020, 10, 21883. [Google Scholar] [CrossRef]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Crapo, R.; Enright, P.; Grinten, C.P.M.; Gustafsson, P.; Jensen, R.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef]
- Suzuki, T. Reliabillity of measurements of knee extensor muscle strength using a pull-type hand-held dynamometer. J. Phys. Ther. Sci. 2015, 27, 967–971. [Google Scholar] [CrossRef]
- Nakamura, K.; Ogata, T. Locomotive syndrome: Definition and management. Clin. Rev. Bone Miner. Metab. 2016, 14, 56–67. [Google Scholar] [CrossRef]
- Wynants, L.; Bouwmeeter, W.; Moons, K.; Moerbeek, M.; Timmerman, D.; Huffel, S.V.; Calster, B.V.; Vergouwe, Y. A simulation study of sample size demonstrated the importance of number of events per variables to develop prediction models in clustered data. J. Clin. Epidemiol. 2015, 68, 1406–1414. [Google Scholar] [CrossRef]
- Buchman, A.S.; Boyle, P.A.; Wilson, R.S.; Gu, L.; Bienias, J.L.; Bennet, D.A. Pulmonary function, muscle strength and mortality in old age. Mech. Ageing Dev. 2008, 129, 625–631. [Google Scholar] [CrossRef]
- Sillanpää, E.; Stenroth, L.; Bijlsma, A.Y.; Rantanen, T.; McPhee, J.S.; Maden-Wikinson, T.M.; Jones, D.A.; Narici, M.V.; Gapeyeva, H.; Paasuke, M.; et al. Associations between muscle strength, spirometric pulmonary function and mobility in healthy older adults. Age 2014, 36, 9667. [Google Scholar] [CrossRef]
- Karpman, C.; Benzo, R. Gait speed as a measure of functional status in COPD patients. Int. J. Chron. Obstruct. Pulmon. Dis. 2014, 9, 1315–1320. [Google Scholar] [PubMed]
- Kon, S.S.; Benzo, R. Reliability and validity of 4-metre gait speed in COPD. Eur. Respir. J. 2013, 42, 333–340. [Google Scholar] [CrossRef]
- Granacher, U.; Gollhofer, A.; Hortobagyi, T.; Kressig, R.W.; Muehibauer, T. The importance of trunk muscle strength for balance, functional performance, and fall prevention in seniors: A systematic review. Sports Med. 2013, 43, 627–641. [Google Scholar] [CrossRef]
- Kato, S.; Murakami, H.; Demura, S.; Yoshioka, K.; Shinmura, K.; Yokogawa, N.; Igarashi, T.; Yonezawa, N.; Shimizu, T.; Tsuchiya, H. Abdominal trunk muscle weakness and its association with chronic low back pain and risk of falling in older women. BMC Musculoskelet. Disord. 2019, 20, 273. [Google Scholar] [CrossRef]
- Vogelmeier, C.F.; Criner, G.J.; Martinez, F.J.; Anzueto, A.; Barnes, P.J.; Bourbeau, J.; Celli, B.R.; Chen, R.; Decramer, M.; Fabbri, L.M.; et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017 report. GOLD Executive Summary. Am. J. Respir. Crit. Care Med. 2017, 195, 557–582. [Google Scholar] [CrossRef] [PubMed]
- Akuthota, V.; Ferreiro, A.; Moore, T.; Fredericson, M. Core stability exercise principles. Curr. Sports Med. Rep. 2008, 7, 39–44. [Google Scholar] [CrossRef]
- Kurokawa, Y.; Kato, S.; Demura, S.; Shinmura, K.; Yokogawa, N.; Yonezawa, N.; Shimizu, T.; Kitagawa, R.; Miaki, H.; Tsuchiya, H. Validation and comparison of trunk muscle activities in male participants during exercise using an innovative device and abdominal bracing maneuvers. J. Back Musculoskelet. Rehabil. 2022, 35, 589–596. [Google Scholar] [CrossRef]
- De Troyer, A. Actions of the respiratory muscles or how the chest wall moves in upright man. Bull. Eur. Physiopathol. Respir. 1984, 20, 409–413. [Google Scholar]
- Hodges, P.W.; Butler, J.E.; Mckenzie, D.K.; Gandevia, S.C. Contraction of the human diaphragm during rapid postural adjustments. J. Physiol. 1997, 505, 539–548. [Google Scholar] [CrossRef]
- Ishida, H.; Suehiro, T.; Kurozumi, C.; Watanabe, S. Comparison between the effectiveness of expiration and abdominal bracing maneuvers in maintaining spinal stability following sudden trunk loading. J. Electromyogr. Kinesiol. 2016, 26, 125–129. [Google Scholar] [CrossRef] [PubMed]
- De Troyer, A.; Estenne, M.; Ninane, V.; Gansbeke, D.V.; Gorini, M. Transversus abdominis muscle function in humans. J. Appl. Physiol. 1990, 68, 1010–1016. [Google Scholar] [CrossRef] [PubMed]
- Hodges, P.W.; Cresswell, A.G.; Daggfeldt, K.; Thorstensson, A. In vivo measurement of the effect of intra-abdominal pressure on the human spine. J. Biomech. 2001, 34, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Hodges, P.W.; Gandevia, S.C. Activation of the human diaphragm during a repetitive postural task. J. Physiol. 2000, 522, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Kolar, P.; Sulc, J.; Kyncl, M.; Sanda, J.; Cakrt, O.; Andel, R.; Kumagai, K.; Kobesova, A. Postural function of the diaphragm in persons with and without chronic low back pain. J. Orthop. Sports Phys. Ther. 2012, 42, 352–362. [Google Scholar] [CrossRef]
- Kato, S.; Demura, S.; Kurokawa, Y.; Takahashi, N.; Shinmura, K.; Yokogawa, N.; Yonezawa, N.; Shimizu, T.; Kitagawa, R.; Tsuchiya, H. Efficacy and Safety of Abdominal Trunk Muscle Strengthening Using an Innovative Device in Elderly Patients with Chronic Low Back Pain: A Pilot Study. Ann. Rehabil. Med. 2020, 44, 246–255. [Google Scholar] [CrossRef]
- Lee, J.H.; Hoshino, Y.; Nakamura, K.; Kariya, Y.; Saita, K.; Ito, K. Trunk muscle weakness as a risk factor for low back pain. A 5-year prospective study. Spine 1999, 24, 54–57. [Google Scholar] [CrossRef]
- Cho, K.H.; Beom, J.W.; Lee, T.S.; Lim, J.H.; Lee, T.H.; Yuk, J.H. Trunk muscles strength as a risk factor for nonspecific low back pain: A pilot study. Ann. Rehabil. Med. 2014, 38, 234–240. [Google Scholar] [CrossRef]
- Hodges, P.W.; Richardson, C.A. Feedforward contraction of transversus abdominis is not influenced by the direction of arm movement. Exp. Brain Res. 1997, 114, 362–370. [Google Scholar] [CrossRef]
- Jamison, S.T.; McNeilan, R.J.; Young, G.S.; Givens, D.L.; Best, T.M.; Chaudhari, A.M. Randomized controlled trial of the effects of a trunk stabilization program on trunk control and knee loading. Med. Sci. Sports Exerc. 2012, 44, 1924–1934. [Google Scholar] [CrossRef]
- Butcher, S.J.; Craven, B.R.; Chilibeck, P.D.; Spink, K.S.; Grona, S.L.; Sprigings, E.J. The effect of trunk stability training on vertical takeoff velocity. J. Orthop. Sports Phys. Ther. 2007, 37, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Myer, G.D.; Ford, K.R.; Brent, J.L.; Hewett, T.E. The effects of plyometric vs. dynamic stabilization and balance training on power, balance, and landing force in female athletes. J. Strength Cond. Res. 2006, 20, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Schilling, J.F.; Murphy, J.C.; Bonnet, J.R.; Thich, J.L. Effect of core strength and endurance training on performance in college students: Randomized pilot study. J. Bodyw. Mov. Ther. 2013, 17, 278–290. [Google Scholar] [CrossRef]
- Sharma, A.; Geovinson, S.G.; Singh Sandhu, J. Effects of a nine-week core strengthening exercise program on vertical jump performances and static balance in volleyball players with trunk instability. J. Sports Med. Phys. Fitness 2012, 52, 606–615. [Google Scholar]
- Tayashiki, K.; Maeo, S.; Usui, S.; Miyamoto, N.; Kanehisa, H. Effect of abdominal bracing training on strength and power of trunk and lower limb muscles. Eur. J. Appl. Physiol. 2016, 116, 1703–1713. [Google Scholar] [CrossRef]
- Hoshikawa, Y.; Iida, T.; Muramatsu, M.; Li, N.; Nakajima, Y.; Chumank, K.; Kanehisa, H. Effects of stabilization training on trunk muscularity and physical performances in youth soccer players. J. Strength Cond. Res. 2013, 27, 3142–3149. [Google Scholar] [CrossRef]
- Finta, R.; Nagy, E.; Bender, T. The effect of diaphragm training on lumbar stabilizer muscles: A new concept for improving segmental stability in the case of low back pain. J. Pain Res. 2018, 11, 3031–3045. [Google Scholar] [CrossRef] [PubMed]
- Iidaka, T.; Muraki, S.; Akune, T.; Oka, H.; Kodama, R.; Tanaka, S.; Kawaguchi, H.; Nakamura, K.; Yoshimura, N. Prevalence of radiographic hip osteoarthritis and its association with hip pain in Japanese men and women: The ROAD study. Osteoarthr. Cartil. 2016, 24, 117–123. [Google Scholar] [CrossRef]
- Muraki, S.; Oka, H.; Akune, T.; Mabuchi, A.; En-Yo, Y.; Yoshida, M.; Saika, A.; Suzuki, T.; Yoshida, H.; Ishibashi, H.; et al. Prevalence of radiographic knee osteoarthritis and its association with knee pain in the elderly of Japanese population-based cohorts: The ROAD study. Osteoarthr. Cartil. 2009, 17, 1137–1143. [Google Scholar] [CrossRef]
Characteristics | |
---|---|
No. of patients | 398 |
Sex | Male (68) |
Female (330) | |
Age (years), mean ± SD [range] | 65.6 ± 9.5 [41–88] |
Height (cm), mean ± SD [range] | 154.9 ± 8.4 [129.8–186.2] |
Weight (kg), mean ± SD [range] | 58.2 ± 11.4 [31.6–104.6] |
Body mass index (kg/cm2), mean ± SD [range] | 24.2 ± 4.2 [14.1–43.5] |
FVC, mean ± SD [range] | 2.99 ± 0.74 [1.57–5.93] |
FEV1, mean ± SD [range] | 2.21 ± 0.55 [1.1–4.54] |
FEV1%, mean ± SD [range] | 73.8 ± 97.5 [48.2–97.5] |
Degenerative diseases of the lower extremities treated with subjects | Hip joint diseases (251) |
Knee joint diseases (81) | |
Foot and ankle joint diseases (66) |
Age Groups (Years) (Number of Male/Female) | Male (n = 68) | Female (n = 328) | p-Value | r |
---|---|---|---|---|
40–49 (5/20) | 12.8 ± 3.7 | 5.8 ± 4.0 | <0.01 | 0.60 |
50–59 (17/66) | 12.9 ± 6.3 | 5.5 ±3.7 | <0.01 | 0.57 |
60–69 (22/118) | 10.7 ± 3.3 | 5.3 ± 3.4 | <0.01 | 0.51 |
70–79 (19/105) | 9.5 ± 3.9 | 5.2 ± 3.2 | <0.01 | 0.41 |
80–89 (5/19) | 9.2 ± 3.7 | 3.4 ± 2.4 | <0.01 | 0.67 |
ATMS | Age | BMI | FVC | FEV1 | FEV1% | Grip Power | KEMS | OLS | Gait Speed | NRS for LBP | |
---|---|---|---|---|---|---|---|---|---|---|---|
ATMS | −0.15 ** | −0.34 | 0.54 ** | 0.46 ** | 0.14 ** | 0.54 ** | 0.55 ** | 0.27 ** | 0.32 ** | −0.09 | |
Age | −0.15 ** | 0.08 | −0.34 ** | −0.40 ** | −0.12 ** | −0.38 ** | −0.22 ** | −0.46 ** | −0.26 ** | 0.01 | |
BMI | −0.02 | 0.08 | −0.03 | −0.02 | −0.01 | 0.07 | 0.13 ** | −0.22 ** | −0.14 ** | 0.07 | |
FVC | 0.54 ** | −0.33 ** | −0.03 | 0.91 ** | −0.23 ** | 0.71 | 0.57 ** | 0.32 ** | 0.30 ** | −0.11 * | |
FEV1 | 0.46 ** | −0.40 ** | −0.02 | 0.91 ** | 0.06 | 0.66 ** | 0.51 ** | 0.33 ** | 0.27 ** | −0.09 | |
FEV1% | −0.14 ** | −0.12 ** | −0.01 | −0.23 ** | 0.06 | −0.13 ** | −0.10 ** | 0.04 | −0.02 | 0.05 | |
Grip power | 0.54 ** | −0.38 ** | 0.07 | 0.71 ** | 0.66 ** | 0.13 ** | 0.65 ** | 0.43 ** | 0.39 ** | −0.01 | |
KEMS | 0.55 ** | −0.22 ** | 0.13 ** | 0.57 ** | 0.51 ** | 0.10 ** | 0.65 ** | 0.36 ** | 0.41 ** | −0.10 * | |
OLS | 0.27 ** | −0.46 ** | −0.22 ** | 0.32 ** | 0.33 ** | 0.04 | 0.43 ** | 0.36 ** | 0.41 ** | −0.01 | |
Gait speed | 0.32 ** | −0.26 ** | −0.14 ** | 0.30 ** | 0.27 ** | −0.02 | 0.39 ** | 0.41 ** | 0.41 ** | −0.12 ** | |
NRS for LBP | −0.09 | 0.009 | 0.07 | −0.11 | −0.09 | 0.05 | −0.01 | −0.10 * | −0.01 | −0.12 * |
Independent Variable | Standardized β | p-Value | VIF |
---|---|---|---|
Sex (Female) | −0.18 | <0.01 | 2.13 |
BMI | −0.06 | 0.12 | 1.12 |
FVC | 0.34 | <0.01 | 7.61 |
FEV1 | 0.19 | 0.04 | 6.14 |
Grip power | 0.10 | 0.12 | 2.83 |
Strength of the knee extensor | 0.26 | <0.01 | 2.10 |
Gait speed | 0.09 | 0.06 | 1.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurokawa, Y.; Kato, S.; Yokogawa, N.; Shimizu, T.; Matsubara, H.; Kabata, T.; Demura, S. Relationship between Respiratory Function and the Strength of the Abdominal Trunk Muscles Including the Diaphragm in Middle-Aged and Older Adult Patients. J. Funct. Morphol. Kinesiol. 2024, 9, 175. https://doi.org/10.3390/jfmk9040175
Kurokawa Y, Kato S, Yokogawa N, Shimizu T, Matsubara H, Kabata T, Demura S. Relationship between Respiratory Function and the Strength of the Abdominal Trunk Muscles Including the Diaphragm in Middle-Aged and Older Adult Patients. Journal of Functional Morphology and Kinesiology. 2024; 9(4):175. https://doi.org/10.3390/jfmk9040175
Chicago/Turabian StyleKurokawa, Yuki, Satoshi Kato, Noriaki Yokogawa, Takaki Shimizu, Hidenori Matsubara, Tamon Kabata, and Satoru Demura. 2024. "Relationship between Respiratory Function and the Strength of the Abdominal Trunk Muscles Including the Diaphragm in Middle-Aged and Older Adult Patients" Journal of Functional Morphology and Kinesiology 9, no. 4: 175. https://doi.org/10.3390/jfmk9040175
APA StyleKurokawa, Y., Kato, S., Yokogawa, N., Shimizu, T., Matsubara, H., Kabata, T., & Demura, S. (2024). Relationship between Respiratory Function and the Strength of the Abdominal Trunk Muscles Including the Diaphragm in Middle-Aged and Older Adult Patients. Journal of Functional Morphology and Kinesiology, 9(4), 175. https://doi.org/10.3390/jfmk9040175