Physiological Profile Assessment and Self-Measurement of Healthy Students through Remote Protocol during COVID-19 Lockdown
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Protocol
- First day: A laboratory familiarization session was held to ensure adequate training for participants and to be sure that test execution was clearly defined for all participants. Overall, the system measures HR safely by placing the index and middle fingers on the neck, to the side of the windpipe, without too much pressure to avoid fainting due to the carotid body reflex.
- Second day: Previously, the supervisors recorded tutorial videos for the Home Familiarization, in which they explained the correct execution of battery tests and heart rate (HR) measurements at three different times (pre-test, immediate post-test and one-minute post-test).
- Third day: No activity was held during the day, as well as days 5, 7 and 9.
- Fourth day (as well as days 4, 6, 8 and 10): The battery test was performed, including tests to measure conditional and coordinative abilities. All participants have been engaged in remote or in laboratory execution of submaximal tests to assess physiological parameters after a 10-min warm-up, consisting of:
2.3. Statistical Analisis
3. Results
4. Discussion
4.1. Strengths of the Study
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grgic, J. Test–retest reliability of the EUROFIT test battery: A review. Sport Sci. Health 2023, 19, 381–388. [Google Scholar] [CrossRef]
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep. 1985, 100, 126. [Google Scholar] [PubMed]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.M.; Nieman, D.C.; Swain, D.P. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Action Plan on Physical Activity 2018–2030: More Active People for a Healthier World; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Szychlinska, M.A.; Castrogiovanni, P.; Trovato, F.M.; Nsir, H.; Zarrouk, M.; Lo Furno, D.; Di Rosa, M.; Imbesi, R.; Musumeci, G. Physical activity and Mediterranean diet based on olive tree phenolic compounds from two different geographical areas have protective effects on early osteoarthritis, muscle atrophy and hepatic steatosis. Eur. J. Nutr. 2019, 58, 565–581. [Google Scholar] [CrossRef] [PubMed]
- Romeo, J.; Wärnberg, J.; Pozo, T.; Marcos, A. Physical activity, immunity and infection. Proc. Nutr. Soc. 2010, 69, 390–399. [Google Scholar] [CrossRef]
- Nieman, D.C.; Wentz, L.M. The compelling link between physical activity and the body’s defense system. J. Sport Health Sci. 2019, 8, 201–217. [Google Scholar] [CrossRef]
- Pedersen, M.T.; Vorup, J.; Bangsbo, J. Effect of a 26-month floorball training on male elderly’s cardiovascular fitness, glucose control, body composition, and functional capacity. J. Sport Health Sci. 2018, 7, 149–158. [Google Scholar] [CrossRef]
- Yamasaki, T. Preventive strategies for cognitive decline and dementia: Benefits of aerobic physical activity, especially open-skill exercise. Brain Sci. 2023, 13, 521. [Google Scholar] [CrossRef]
- Iannaccone, A.; Fusco, A.; Jaime, S.J.; Baldassano, S.; Cooper, J.; Proia, P.; Cortis, C. Stay home, stay active with superjump®: A home-based activity to prevent sedentary lifestyle during COVID-19 outbreak. Sustainability 2020, 12, 10135. [Google Scholar] [CrossRef]
- Prontenko, K.; Griban, G.; Medvedeva, I.; Aloshyna, A.; Bloshchynskyi, I.; Bezpaliy, S.; Bychuk, O.; Mudryk, Z.; Bychuk, I.; Radziyevsky, V.; et al. Interrelation of students’ motivation for physical education and their physical fitness level. Int. J. Appl. Exerc. Physiol. 2019, 8, 896–900. [Google Scholar]
- Pedullà, L.; Santoyo-Medina, C.; Novotna, K.; Moumdjian, L.; Smedal, T.; Arntzen, E.C.; van der Linden, M.L.; Learmonth, Y.; Kalron, A.; Güngör, F.; et al. Physical activity in multiple sclerosis: Meeting the guidelines at the time of the COVID-19 pandemic. J. Neurol. Phys. Ther. 2023, 47, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Bozzola, E.; Barni, S.; Ficari, A.; Villani, A. Physical activity in the COVID-19 era and its impact on adolescents’ well-being. Int. J. Environ. Res. Public Health 2023, 20, 3275. [Google Scholar] [CrossRef] [PubMed]
- Bayles, M.P. ACSM’s Exercise Testing and Prescription; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2023. [Google Scholar]
- Liguori, G.; Feito, Y.; Fountaine, C.; Roy, B.; American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2020. [Google Scholar]
- Brooks, S.K.; Webster, R.K.; Smith, L.E.; Woodland, L.; Wessely, S.; Greenberg, N.; Rubin, G.J. The psychological impact of quarantine and how to reduce it: Rapid review of the evidence. Lancet 2020, 395, 912–920. [Google Scholar] [CrossRef] [PubMed]
- Woods, J.A.; Hutchinson, N.T.; Powers, S.K.; Roberts, W.O.; Gomez-Cabrera, M.C.; Radak, Z.; Berkes, I.; Boros, A.; Boldogh, I.; Leeuwenburgh, C.; et al. The COVID-19 pandemic and physical activity. Sports Med. Health Sci. 2020, 2, 55–64. [Google Scholar] [CrossRef]
- Qi, M.; Li, P.; Moyle, W.; Weeks, B.; Jones, C. Physical activity, health-related quality of life, and stress among the Chinese adult population during the COVID-19 pandemic. Int. J. Environ. Res. Public Health 2020, 17, 6494. [Google Scholar] [CrossRef]
- Qiu, J.; Shen, B.; Zhao, M.; Wang, Z.; Xie, B.; Xu, Y. A nationwide survey of psychological distress among Chinese people in the COVID-19 epidemic: Implications and policy recommendations. Gen. Psychiatry 2020, 33, e100213. [Google Scholar] [CrossRef]
- De Kock, J.H.; Latham, H.A.; Leslie, S.J.; Grindle, M.; Munoz, S.A.; Ellis, L.; Polson, R.; O’Malley, C.M. A rapid review of the impact of COVID-19 on the mental health of healthcare workers: Implications for supporting psychological well-being. BMC Public Health 2021, 21, 104. [Google Scholar] [CrossRef]
- Ivbijaro, G.; Brooks, C.; Kolkiewicz, L.; Sunkel, C.; Long, A. Psychological impact and psychosocial consequences of the COVID 19 pandemic Resilience, mental well-being, and the coronavirus pandemic. Indian J. Psychiatry 2020, 62, S395–S403. [Google Scholar] [CrossRef]
- Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W.; Barnaby, D.P.; Becker, L.B.; Chelico, J.D.; Cohen, S.L.; et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA 2020, 323, 2052–2059. [Google Scholar] [CrossRef]
- Sanchis-Gomar, F.; Lavie, C.J.; Mehra, M.R.; Henry, B.M.; Lippi, G. Obesity and outcomes in COVID-19: When an epidemic and pandemic collide. Mayo Clin. Proc. 2020, 95, 1445–1453. [Google Scholar] [CrossRef]
- Sharma, A.; Garg, A.; Rout, A.; Lavie, C.J. Association of obesity with more critical illness in COVID-19. Mayo Clin. Proc. 2020, 95, 2040–2042. [Google Scholar] [CrossRef] [PubMed]
- Brawner, C.A.; Ehrman, J.K.; Bole, S.; Kerrigan, D.J.; Parikh, S.S.; Lewis, B.K.; Gindi, R.M.; Keteyian, C.; Abdul-Nour, K.; Keteyian, S.J. Inverse relationship of maximal exercise capacity to hospitalization secondary to coronavirus disease 2019. Mayo Clin. Proc. 2021, 96, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Maltoni, G.; Zioutas, M.; Deiana, G.; Biserni, G.B.; Pession, A.; Zucchini, S. Gender differences in weight gain during lockdown due to COVID-19 pandemic in adolescents with obesity. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 2181–2185. [Google Scholar] [CrossRef] [PubMed]
- Cortis, C.; Giancotti, G.; Rodio, A.; Bianco, A.; Fusco, A. Home is the new gym: Exergame as a potential tool to maintain adequate fitness levels also during quarantine. Hum. Mov. 2020, 21, 79–87. [Google Scholar] [CrossRef]
- Sá Filho, A.S.; Miranda, T.G.; de Paula, C.C.; Barsanulfo, S.R.; Teixeira, D.; Monteiro, D.; Cid, L.; Imperatori, C.; Yamamoto, T.; Murillo-Rodriguez, E.; et al. COVID-19 and quarantine: Expanding understanding of how to stay physically active at home. Front. Psychol. 2020, 11, 566032. [Google Scholar] [CrossRef]
- Carissimo, C.; Cerro, G.; Di Libero, T.; Ferrigno, L.; Marino, A.; Rodio, A. Objective evaluation of coordinative abilities and training effectiveness in sports scenarios: An automated measurement protocol. IEEE Access 2023, 11, 76996–77008. [Google Scholar] [CrossRef]
- Di Libero, T.; Falese, L.; Corrado, S.; Tosti, B.; Diotaiuti, P.; Rodio, A. Italian Canyoning Guides: Physiological Profile and Cardiometabolic Demand during Rope Activities. Sports 2024, 12, 129. [Google Scholar] [CrossRef]
- Yen, J.M.; Lim, J.H. A clinical perspective on bespoke sensing mechanisms for remote monitoring and rehabilitation of neurological diseases: Scoping review. Sensors 2023, 23, 536. [Google Scholar] [CrossRef]
- Darcy, B.; Rashford, L.; Shultz, S.T.; Tsai, N.T.; Huizenga, D.; Reed, K.B.; Bamberg, S.J. Gait device treatment using telehealth for individuals with stroke during the COVID-19 pandemic: Nonrandomized pilot feasibility study. JMIR Form. Res. 2023, 7, e43008. [Google Scholar] [CrossRef]
- Di Libero, T.; Carissimo, C.; Cerro, G.; Abbatecola, A.; Marino, A.; Miele, G.; Ferrigno, L.; Rodio, A. Motor abilities analysis using a standardized tapping test enhanced by a detailed processing stage: Gender and age comparison. In Proceedings of the 2023 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Jeju, Republic of Korea, 14–16 June 2023; pp. 1–6. [Google Scholar]
- McArdle, W.D.; Katch, F.I.; Katch, V.L. Exercise Physiology: Nutrition, Energy, and Human Performance; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2010. [Google Scholar]
- Kuriyan, R. Body composition techniques. Indian J. Med. Res. 2018, 148, 648–658. [Google Scholar] [CrossRef]
- Jackson, A.W.; Morrow, J.R., Jr.; Brill, P.A.; Kohl, H.W., III; Gordon, N.F.; Blair, S.N. Relations of sit-up and sit-and-reach tests to low back pain in adults. J. Orthop. Sports Phys. Ther. 1998, 27, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Hui, S.C.; Yuen, P.Y. Validity of the modified back-saver sit-and-reach test: A comparison with other protocols. Med. Sci. Sports Exerc. 2000, 32, 1655–1659. [Google Scholar] [CrossRef] [PubMed]
- Kranti Panta, B. A study to associate the Flamingo Test and the Stork Test in measuring static balance on healthy adults. Foot Ankle Online J. 2015, 8, 1–8. [Google Scholar] [CrossRef]
- van Schooten, K.S.; Duran, L.; Visschedijk, M.; Pijnappels, M.; Lord, S.R.; Richardson, J.; Delbaere, K. Catch the ruler: Concurrent validity and test–retest reliability of the ReacStick measures of reaction time and inhibitory executive function in older people. Aging Clin. Exp. Res. 2019, 31, 1147–1154. [Google Scholar] [CrossRef]
- Zanevskyy, I.; Janiszewska, R.; Zanevska, L. Validity of Ruffier test in evaluation of resistance to the physical effort. J. Test. Eval. 2017, 45, 2193–2199. [Google Scholar] [CrossRef]
- Alahmari, K.A.; Rengaramanujam, K.; Reddy, R.S.; Samuel, P.S.; Kakaraparthi, V.N.; Ahmad, I.; Tedla, J.S. Cardiorespiratory fitness as a correlate of cardiovascular, anthropometric, and physical risk factors: Using the ruffier test as a template. Can. Respir. J. 2020, 2020, 3407345. [Google Scholar] [CrossRef]
- Acero, R.M.; Fernández-del Olmo, M.; Sánchez, J.A.; Otero, X.L.; Aguado, X.; Rodríguez, F.A. Reliability of squat and countermovement jump tests in children 6 to 8 years of age. Pediatr. Exerc. Sci. 2011, 23, 151–160. [Google Scholar] [CrossRef]
- Haynes, T.; Bishop, C.; Antrobus, M.; Brazier, J. The validity and reliability of the My Jump 2 app for measuring the reactive strength index and drop jump performance. J. Sports Med. Phys. Fitness 2019, 59, 253–258. [Google Scholar] [CrossRef]
- Amasay, T.; Mier, C.M.; Foley, K.K.; Carswell, T.L. Gender differences in performance of equivalently loaded push-up and bench-press exercises. J. Sport 2016, 5, 4. [Google Scholar] [CrossRef]
- Matias, G.H.d.L.; Guerra, A.C.C.G.; Souza Filho, B.A.B.d.; Lima, J.T.d.O.; Carmo, C.N.d.; Mattos, I.E. Repetibilidade e reprodutibilidade de um manual de exercícios físicos domiciliares. Fisioter. Pesqui. 2018, 25, 209–216. [Google Scholar] [CrossRef]
- Hopkins, W. A Scale of Magnitudes for Effect Statistics. A New View of Statistics. Internet. 2002. Available online: http://sportsci.org/resource/stats/effectmag.html (accessed on 10 October 2013).
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Currell, K.; Jeukendrup, A.E. Validity, reliability and sensitivity of measures of sporting performance. Sports Med. 2008, 38, 297–316. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G. Measures of reliability in sports medicine and science. Sports Med. 2000, 30, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Di Libero, T.; Carissimo, C.; Cerro, G.; Abbatecola, A.M.; Marino, A.; Miele, G.; Ferrigno, L.; Rodio, A. An Overall Automated Architecture Based on the Tapping Test Measurement Protocol: Hand Dexterity Assessment through an Innovative Objective Method. Sensors 2024, 24, 4133. [Google Scholar] [CrossRef]
- Hoenemeyer, T.W.; Cole, W.W.; Oster, R.A.; Pekmezi, D.W.; Pye, A.; Demark-Wahnefried, W. Test/retest reliability and validity of remote vs. in-person anthropometric and physical performance assessments in cancer survivors and supportive partners. Cancers 2022, 14, 1075. [Google Scholar] [CrossRef]
- Blair, C.K.; Harding, E.; Herman, C.; Boyce, T.; Demark-Wahnefried, W.; Davis, S.; Kinney, A.Y.; Pankratz, V.S. Remote assessment of functional mobility and strength in older cancer survivors: Protocol for a validity and reliability study. JMIR Res. Protoc. 2020, 9, e20834. [Google Scholar] [CrossRef]
- Bargon, C.A.; Batenburg, M.C.; van Stam, L.E.; Mink van der Molen, D.R.; van Dam, I.E.; van der Leij, F.; Baas, I.O.; Ernst, M.F.; Maarse, W.; Vermulst, N.; et al. Impact of the COVID-19 pandemic on patient-reported outcomes of breast cancer patients and survivors. JNCI Cancer Spectr. 2021, 5, pkaa104. [Google Scholar] [CrossRef]
- Haase, K.R.; Kain, D.; Merchant, S.; Booth, C.; Koven, R.; Brundage, M.; Galica, J. Older survivors of cancer in the COVID-19 pandemic: Reflections and recommendations for future care. J. Geriatr. Oncol. 2021, 12, 461–466. [Google Scholar] [CrossRef]
- Prasad, M.; Goswami, S.; Deodhar, J.; Chinnaswamy, G. Impact of the COVID pandemic on survivors of childhood cancer and survivorship care: Lessons for the future. Support. Care Cancer 2022, 30, 3303–3311. [Google Scholar] [CrossRef]
- Tabaczynski, A.; Bastas, D.; Whitehorn, A.; Trinh, L. Changes in physical activity and associations with quality of life among a global sample of cancer survivors during the COVID-19 pandemic. J. Cancer Surviv. 2023, 17, 1191–1201. [Google Scholar] [CrossRef]
- Di Libero, T.; Langiano, E.; Dimeo, C.; Abbatecola, A.M. Physical activity programs in older persons with Alzheimer’s disease: A need for dedicated trials. J. Gerontol. Geriatr. 2021, 69, 133–136. [Google Scholar] [CrossRef]
- Matteucci, I. Sport, physical activity and social health in older adults. Caring with technology in the COVID-19 pandemic. Int. Rev. Sociol. Sport 2022, 57, 960–979. [Google Scholar] [CrossRef]
- Symons, M.; Meira Cunha, C.; Poels, K.; Vandebosch, H.; Dens, N.; Alida Cutello, C. Physical activity during the first lockdown of the COVID-19 pandemic: Investigating the reliance on digital technologies, perceived benefits, barriers and the impact of affect. Int. J. Environ. Res. Public Health 2021, 18, 5555. [Google Scholar] [CrossRef] [PubMed]
- Di Libero, T.; Langiano, E.; Carissimo, C.; Ferrara, M.; Diotaiuti, P.; Rodio, A. Technological support for people with parkinson’s disease: A narrative review. J. Gerontol. Geriatr. 2023, 71, 87–101. [Google Scholar] [CrossRef]
- Stockwell, S.; Trott, M.; Tully, M.; Shin, J.; Barnett, Y.; Butler, L.; McDermott, D.; Schuch, F.; Smith, L. Changes in physical activity and sedentary behaviours from before to during the COVID-19 pandemic lockdown: A systematic review. BMJ Open Sport Exerc. Med. 2021, 7, e000960. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.; Kim, D.; Kim, S.; Kim, H.J.; Chung, U.S.; Lee, J.J. Cognitive training based on functional near-infrared spectroscopy neurofeedback for the elderly with mild cognitive impairment: A preliminary study. Front. Aging Neurosci. 2023, 15, 1168815. [Google Scholar] [CrossRef]
- Tosti, B.; Corrado, S.; Mancone, S.; Di Libero, T.; Rodio, A.; Andrade, A.; Diotaiuti, P. Integrated use of biofeedback and neurofeedback techniques in treating pathological conditions and improving performance: A narrative review. Front. Neurosci. 2024, 18, 1358481. [Google Scholar] [CrossRef]
- Carissimo, C.; Cerro, G.; Debelle, H.; Packer, E.; Yarnall, A.; Rochester, L.; Alcock, L.; Ferrigno, L.; Marino, A.; Di Libero, T.; et al. Enhancing remote monitoring and classification of motor state in Parkinson’s disease using Wearable Technology and Machine Learning. In Proceedings of the 2023 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Jeju, Republic of Korea, 14–16 June 2023; pp. 1–6. [Google Scholar]
- Aubertin-Leheudre, M.; Rolland, Y. The importance of physical activity to care for frail older adults during the COVID-19 pandemic. J. Am. Med. Dir. Assoc. 2020, 21, 973. [Google Scholar] [CrossRef]
Shapiro–Wilk | ||||
---|---|---|---|---|
Gender | Mean | SD | p | |
Age (y) | F | 24.4 | 1.62 | 0.013 |
M | 24.1 | 2.29 | 0.260 | |
Weight (kg) | F | 58.8 | 10.49 | 0.671 |
M | 73.2 | 6.81 | 0.007 | |
Height (cm) | F | 165.5 | 6.96 | 0.333 |
M | 177.1 | 8.57 | 0.651 | |
BMI (kg/m2) | F | 21.4 | 3.04 | 0.514 |
M | 23.4 | 1.73 | 0.504 | |
FM (%) | F | 23.6 | 6.5 | 0.421 |
M | 15.9 | 5.74 | 0.238 |
L1 | R1 | L2 | R2 | |
---|---|---|---|---|
VS&R (cm) | 37.6 ± 16.83 | 38.5 ± 16.65 | 38.1 ± 16.65 | 39.0 ± 16.56 |
SBTR (s) | 4.2 ± 2.6 | 4.0 ± 2.74 | 4.8 ± 3.05 | 4.7 ± 2.90 |
SBTL (s) | 4.1 ± 2.91 | 4.2 ± 2.98 | 4.1 ± 3.09 | 4.4 ± 3.01 |
RDTR (cm) | 14.6 ± 10.9 | 13.8 ± 10.6 | 14.5 ± 10.6 | 14.3 ± 10.62 |
RDTL (cm) | 15.9 ± 9.66 | 14.1 ± 8.98 | 14.8 ± 10.67 | 15.0 ± 9.79 |
RT (ua) | 7.7 ± 3.59 | 7.1 ± 2.98 | 7.0 ± 2.67 | 6.8 ± 2.55 |
SJ (cm) | 29.9 ± 8.17 | 30.5 ± 7.75 | 31.6 ± 7.28 | 31.8 ± 6.96 |
PUp (rep) | 24.6 ± 11.2 | 25.2 ± 11.3 | 25.3 ± 10.8 | 25.6 ± 11.5 |
L1 vs. R1 | L1 vs. R2 | L1 vs. L2 | L2 vs. R1 | L2 vs. R2 | R1 vs. R2 | |
---|---|---|---|---|---|---|
Diff% (p) | ||||||
VS&R (cm) | 2.39 (0.263) | 3.72 (0.060) | 1.33 (0.768) | 1.05 (0.699) | 2.36 (0.244) | 1.30 (0.845) |
SBTR (s) | −4.76 (0.937) | 11.90 (0.367) | 14.29 (0.375) | −16.67 (0.062) | −2.08 (0.997) | 17.50 (0.080) |
SBTL (s) | 2.44 (0.974) | 7.32 (0.947) | 0.00 (1.000) | 2.44 (0.972) | 7.32 (0.682) | 4.76 (0.985) |
RDTR (cm) | −5.48 (0.642) | −2.05 (0.914) | −0.68 (0.999) | −4.83 (0.721) | −1.38 (0.947) | 3.62 (0.878) |
RDTL (cm) | −11.32 (0.104) | −10.69 (0.084) | −6.92 (0.083) | −4.73 (0.357) | −4.05 (0.301) | 0.71 (0.843) |
RT (ua) | 2.01 (0.472) | 6.35 (0.473) | 5.69 (0.530) | −3.48 (0.989) | 0.63 (0.984) | 4.26 (0.880) |
SJ (cm) | −7.79 (0.818) | −11.69 (0.179) | −9.09 (0.279) | 1.43 (0.517) | −2.86 (0.956) | −4.23 (0.390) |
PUp (rep) | 2.44 (0.518) | 10.98 (0.987) | 2.85 (0.973) | −0.40 (0.214) | 7.91 (0.904) | 8.33 (0.656) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Libero, T.D.; Falese, L.; D’Ermo, A.; Tosti, B.; Corrado, S.; Iannaccone, A.; Diotaiuti, P.; Rodio, A. Physiological Profile Assessment and Self-Measurement of Healthy Students through Remote Protocol during COVID-19 Lockdown. J. Funct. Morphol. Kinesiol. 2024, 9, 170. https://doi.org/10.3390/jfmk9030170
Libero TD, Falese L, D’Ermo A, Tosti B, Corrado S, Iannaccone A, Diotaiuti P, Rodio A. Physiological Profile Assessment and Self-Measurement of Healthy Students through Remote Protocol during COVID-19 Lockdown. Journal of Functional Morphology and Kinesiology. 2024; 9(3):170. https://doi.org/10.3390/jfmk9030170
Chicago/Turabian StyleLibero, Tommaso Di, Lavinia Falese, Annalisa D’Ermo, Beatrice Tosti, Stefano Corrado, Alice Iannaccone, Pierluigi Diotaiuti, and Angelo Rodio. 2024. "Physiological Profile Assessment and Self-Measurement of Healthy Students through Remote Protocol during COVID-19 Lockdown" Journal of Functional Morphology and Kinesiology 9, no. 3: 170. https://doi.org/10.3390/jfmk9030170
APA StyleLibero, T. D., Falese, L., D’Ermo, A., Tosti, B., Corrado, S., Iannaccone, A., Diotaiuti, P., & Rodio, A. (2024). Physiological Profile Assessment and Self-Measurement of Healthy Students through Remote Protocol during COVID-19 Lockdown. Journal of Functional Morphology and Kinesiology, 9(3), 170. https://doi.org/10.3390/jfmk9030170