Reactive Strength Index, Rate of Torque Development, and Performance in Well-Trained Weightlifters: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Design
2.3. Olympic Weightlifting Performance
2.4. Countermovement Jumps
2.5. Squat Jumps
2.6. Drop Jumps
2.7. Isokinetic Knee Extension Peak Torque and Rate of Torque Development
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cunanan, A.J.; Hornsby, W.G.; South, M.A.; Ushakova, K.P.; Mizuguchi, S.; Sato, K.; Kyle, C.P.; Stone, M.H. Survey of barbell trajectory and kinematics of the snatch lift from the 2015 world and 2017 pan-American weightlifting championships. Sports 2020, 8, 118. [Google Scholar] [CrossRef]
- Kauhanen, H. A biomechanical analysis of the snatch and clean & jerk techniques of Finish elite and district level weightlifters. Scand. J. Sports Sci. 1984, 6, 47–56. [Google Scholar]
- Storey, A.; Smith, H.K. Unique aspects of competitive weightlifting. Sports Med. 2012, 42, 769–790. [Google Scholar] [CrossRef] [PubMed]
- Blazevich, A.J.; Wilson, C.J.; Alcaraz, P.E.; Rubio-Arias, J.A. Effects of resistance training movement pattern and velocity on isometric muscular rate of force development: A systematic review with meta-analysis and meta-regression. Sports Med. 2020, 50, 943–963. [Google Scholar] [CrossRef]
- Haff, G.G.; Jackson, J.R.; Kawamori, N.; Carlock, J.M.; Hartman, M.J.; Kilgore, J.L.; Morris, R.T.; Ramsey, M.W.; Sands, W.A.; Stone, M.H. Force-time curve characteristics and hormonal alterations during an eleven-week training period in elite women weightlifters. J. Strength Cond. Res. 2008, 22, 433–446. [Google Scholar] [CrossRef]
- Joffe, S.A.; Tallent, J. Neuromuscular predictors of competition performance in advanced international female weightlifters: A cross-sectional and longitudinal analysis. J. Sports Sci. 2020, 38, 985–993. [Google Scholar] [CrossRef]
- Zaras, N.; Stasinaki, A.N.; Spiliopoulou, P.; Arnaoutis, G.; Hadjicharalambous, M.; Terzis, G. Rate of force development, muscle architecture, and performance in elite weightlifters. Int. J. Sports Physiol. Perform. 2020, 16, 216–223. [Google Scholar] [CrossRef]
- Carlock, J.M.; Smith, S.L.; Hartman, M.J.; Morris, R.T.; Ciroslan, D.A.; Pierce, K.C.; Newton, R.U.; Harman, E.A.; Sands, W.A.; Stone, M.H. The relationship between vertical jump power estimates and weightlifting ability: A field-test approach. J. Strength Cond. Res. 2004, 18, 534–539. [Google Scholar]
- Haff, G.G.; Carlock, J.M.; Hartman, M.J.; Kilgore, J.L. Force-time curve characteristics of dynamic and isometric muscle actions of elite women olympic weightlifters. J. Strength Cond. Res. 2005, 19, 741. [Google Scholar]
- Kelekian, G.K.; Zaras, N.; Stasinaki, A.N.; Spiliopoulou, P.; Karampatsos, G.; Bogdanis, G.; Terzis, G. Preconditioning strategies before maximum clean performance in female weightlifters. J. Strength Cond. Res. 2022, 36, 2318–2321. [Google Scholar] [CrossRef]
- Zaras, N.; Stasinaki, A.N.; Spiliopoulou, P.; Hadjicharalambous, M.; Terzis, G. Lean body mass, muscle architecture, and performance in well-trained female weightlifters. Sports 2020, 8, 67. [Google Scholar] [CrossRef] [PubMed]
- Vizcaya, F.J.; Viana, O.; del Olmo, M.F.; Acero, R.M. Could the deep squat jump predict weightlifting performance? J. Strength Cond. Res. 2009, 23, 729–734. [Google Scholar] [CrossRef] [PubMed]
- Hornsby, W.G.; Gentles, J.A.; MacDonald, C.J.; Mizuguchi, S.; Ramsey, M.W.; Stone, M.H. Maximum strength, rate of force development, jump height, and peak power alterations in weightlifters across five months of training. Sports 2017, 5, 78. [Google Scholar] [CrossRef] [PubMed]
- Joffe, S.A.; Price, P.; Chavda, S.; Shaw, J.; Tallent, J. The relationship of lower-body, multijoint, isometric and dynamic neuromuscular assessment variables with snatch, and clean and jerk performance in competitive weightlifters: A meta-analysis. Strength Cond. J. 2023, 45, 411–428. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Sole, C.J.; Stone, M.H. Comparison of methods that assess lower-body stretch-shortening cycle utilization. J. Strength Cond. Res. 2016, 30, 547–554. [Google Scholar] [CrossRef]
- Flanagan, E.P.; Comyns, T.M. The use of contact time and the reactive strength index to optimize fast stretch-shortening cycle training. Strength Cond. J. 2008, 30, 32–38. [Google Scholar] [CrossRef]
- Kipp, K.; Kiely, M.T.; Giordanelli, M.D.; Malloy, P.J.; Geiser, C.F. Biomechanical determinants of the reactive strength index during drop jumps. Int. J. Sports Physiol. Perform. 2018, 13, 44–49. [Google Scholar] [CrossRef]
- Garhammer, J. Biomechanical profiles of Olympic weightlifters. J. Appl. Biomech. 1985, 1, 122–130. [Google Scholar] [CrossRef]
- Isaka, T.; Okada, J.; Funato, K. Kinematic analysis of the barbell during the snatch movement of elite Asian weight lifters. J. Appl. Biomech. 1996, 12, 508–516. [Google Scholar] [CrossRef]
- Campos, J.; Poletaev, P.; Cuesta, A.; Pablos, C.; Carratalà, V. Kinematical analysis of the snatch in elite male junior weightlifters of different weight categories. J. Strength Cond. Res. 2006, 20, 843–850. [Google Scholar]
- Beckham, G.; Mizuguchi, S.; Carter, C.; Sato, K.; Ramsey, M.; Lamont, H.; Hornsby, G.; Haff, G.; Stone, M. Relationships of isometric mid-thigh pull variables to weightlifting performance. J. Sports Med. Phys. Fitness 2013, 53, 573–581. [Google Scholar] [PubMed]
- Zaras, N.; Stasinaki, A.N.; Spiliopoulou, P.; Mpampoulis, T.; Hadjicharalambous, M.; Terzis, G. Effect of inter-repetition rest vs. traditional strength training on lower body strength, rate of force development, and muscle architecture. Appl. Sci. 2021, 11, 45. [Google Scholar] [CrossRef]
- Ince, I.; Ulupinar, S. Prediction of competition performance via selected strength-power tests in junior weightlifters. J. Sports Med. Phys. Fitness 2020, 60, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Ammar, A.; Chtourou, H.; Trabelsi, K.; Padulo, J.; Turki, M.; El Abed, K.; Hoekelmann, A.; Hakim, A. Temporal specificity of training: Intra-day effects on biochemical responses and Olympic-Weightlifting performances. J. Sports Sci. 2015, 33, 358–368. [Google Scholar] [CrossRef]
- Sayers, S.P.; Harackiewicz, D.V.; Harman, E.A.; Frykman, P.N.; Rosenstein, M.T. Cross-validation of three jump power equations. Med. Sci. Sports Exerc. 1999, 31, 572–577. [Google Scholar] [CrossRef] [PubMed]
- Healy, R.; Kenny, I.C.; Harrison, A.J. Reactive strength index: A poor indicator of reactive strength? Int. J. Sports Physiol. Perform. 2018, 13, 802–809. [Google Scholar] [CrossRef] [PubMed]
- Tsoukos, A.; Veligekas, P.; Brown, L.E.; Terzis, G.; Bogdanis, G.C. Delayed effects of a low-volume, power-type resistance exercise session on explosive performance. J. Strength Cond. Res. 2018, 32, 643–650. [Google Scholar] [CrossRef]
- Elias, L.J.; Bryden, M.P.; Bulman-Fleming, M.B. Footedness is a better predictor than is handedness of emotional lateralization. Neuropsychologia 1998, 36, 37–43. [Google Scholar] [CrossRef]
- Ioannides, C.; Apostolidis, A.; Hadjicharalambous, M.; Zaras, N. Effect of a 6-week plyometric training on power, muscle strength, and rate of force development in young competitive karate athletes. J. Phys. Educ. Sport 2020, 20, 1740–1746. [Google Scholar] [CrossRef]
- Panteli, N.; Hadjicharalambous, M.; Zaras, N. Delayed potentiation effect on sprint, power and agility performance in well-trained soccer players. J. Sci. Sport Exerc. 2023, 5, 1–9. [Google Scholar] [CrossRef]
- Stone, M.H.; Sands, W.A.; Pierce, K.C.; Carlock, J.O.N.; Cardinale, M.; Newton, R.U. Relationship of maximum strength to weightlifting performance. Med. Sci. Sports Exerc. 2005, 37, 1037–1043. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G. Measures of reliability in sports medicine and science. Sports Med. 2000, 30, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Beattie, K.; Carson, B.P.; Lyons, M.; Kenny, I.C. The relationship between maximal strength and reactive strength. Int. J. Sports Physiol. Perform. 2017, 12, 548–553. [Google Scholar] [CrossRef] [PubMed]
Snatch (kg) | 100.1 ± 11.2 |
Clean and Jerk (kg) | 124.0 ± 16.0 |
Total (kg) | 224.1 ± 26.1 |
Snatch (Sinclair) | 122.3 ± 12.0 |
Clean and Jerk (Sinclair) | 151.6 ± 18.0 |
Total (Sinclair) | 274.0 ± 28.6 |
CMJ height (cm) | 48.6 ± 9.9 |
CMJ power (W) | 4448.2 ± 659.1 |
CMJ power/body mass (W/kg) | 55.2 ± 6.2 |
SJ height (cm) | 44.3 ± 10.0 |
SJ power (W) | 4278.7 ± 744.0 |
SJ power per body mass (W/kg) | 53.1 ± 7.3 |
IPT (N·m−1) | 331.4 ± 51.7 |
RTD40 (N·m−1·s−1) | 1873.1 ± 444.6 |
RTD60 (N·m−1·s−1) | 1946.6 ± 439.8 |
RTD80 (N·m−1·s−1) | 1978.3 ± 397.3 |
RTD100 (N·m−1·s−1) | 1848.4 ± 331.8 |
RTD120 (N·m−1·s−1) | 1770.6 ± 342.0 |
RTD150 (N·m−1·s−1) | 1651.2 ± 314.4 |
RTD200 (N·m−1·s−1) | 1403.6 ± 255.6 |
RTD250 (N·m−1·s−1) | 1173.3 ± 215.6 |
Squat Jump | Countermovement Jump | |||||
---|---|---|---|---|---|---|
Jump Height | Power | Power per Body Mass | Jump Height | Power | Power per Body Mass | |
Snatch | 0.885 **# | 0.753 # | 0.890 **# | 0.797 *# | 0.661 ‡ | 0.794 *# |
Clean and Jerk | 0.765 *# | 0.634 ‡ | 0.780 *# | 0.754 # | 0.602 ‡ | 0.762 *# |
Total | 0.852 *# | 0.715 # | 0.864 *# | 0.808 *# | 0.656 ‡ | 0.813 *# |
Drop Jump 20 cm | Drop Jump 30 cm | Drop Jump 40 cm | |||||||
---|---|---|---|---|---|---|---|---|---|
Contact Time | RSI | RSR | Contact Time | RSI | RSR | Contact Time | RSI | RSR | |
Snatch | −0.885 **# | 0.866 *# | 0.892 **# | −0.899 **# | 0.875 **# | 0.912 **# | −0.879 **# | 0.922 **§ | 0.920 **# |
Clean and Jerk | −0.617 ‡ | 0.704 # | 0.684 ‡ | −0.599 ‡ | 0.673 ‡ | 0.665 ‡ | −0.610 ‡ | 0.710 # | 0.689 ‡ |
Total | −0.759 *# | 0.806 *# | 0.804 *# | −0.754 # | 0.790 *# | 0.801 *# | −0.753 # | 0.833 *# | 0.819 *# |
RTD 20 ms | RTD 40 ms | RTD 60 ms | RTD 80 ms | RTD 100 ms | RTD 120 ms | RTD 150 ms | RTD 200 ms | RTD 250 ms | |
---|---|---|---|---|---|---|---|---|---|
Snatch | −0.254 ˠ | 0.315 † | 0.718 # | 0.725 # | 0.726 # | 0.751 # | 0.766 *# | 0.749 # | 0.703 # |
Clean and Jerk | −0.347 † | 0.349 † | 0.681 ‡ | 0.583 ‡ | 0.660 ‡ | 0.668 ‡ | 0.650 ‡ | 0.651 ‡ | 0.623 ‡ |
Total | −0.325 † | 0.352 † | 0.730 # | 0.671 ‡ | 0.720 # | 0.735 # | 0.730 # | 0.724 # | 0.687 ‡ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anastasiou, G.; Hadjicharalambous, M.; Terzis, G.; Zaras, N. Reactive Strength Index, Rate of Torque Development, and Performance in Well-Trained Weightlifters: A Pilot Study. J. Funct. Morphol. Kinesiol. 2023, 8, 161. https://doi.org/10.3390/jfmk8040161
Anastasiou G, Hadjicharalambous M, Terzis G, Zaras N. Reactive Strength Index, Rate of Torque Development, and Performance in Well-Trained Weightlifters: A Pilot Study. Journal of Functional Morphology and Kinesiology. 2023; 8(4):161. https://doi.org/10.3390/jfmk8040161
Chicago/Turabian StyleAnastasiou, Giorgos, Marios Hadjicharalambous, Gerasimos Terzis, and Nikolaos Zaras. 2023. "Reactive Strength Index, Rate of Torque Development, and Performance in Well-Trained Weightlifters: A Pilot Study" Journal of Functional Morphology and Kinesiology 8, no. 4: 161. https://doi.org/10.3390/jfmk8040161
APA StyleAnastasiou, G., Hadjicharalambous, M., Terzis, G., & Zaras, N. (2023). Reactive Strength Index, Rate of Torque Development, and Performance in Well-Trained Weightlifters: A Pilot Study. Journal of Functional Morphology and Kinesiology, 8(4), 161. https://doi.org/10.3390/jfmk8040161