Differences in Body Composition and Maturity Status in Young Male Volleyball Players of Different Levels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Anthropometry
2.3. Maturity Status
2.4. Bioelectric Impedance Vector Analysis (BIVA)
2.5. Statistical Analysis
3. Results
Bioimpedance Vector Analysis (BIVA)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chamari, K.; Ahmaidi, S.; Blum, J.; Hue, O.; Temfemo, A.; Hertogh, C.; Mercier, B.; Préfaut, C.; Mercier, J. Venous Blood Lactate Increase after Vertical Jumping in Volleyball Athletes. Eur. J. Appl. Physiol. 2001, 85, 191–194. [Google Scholar] [CrossRef]
- Gabbett, T.; Georgieff, B. Physiological and Anthropometric Characteristics of Australian Junior National, State, and Novice Volleyball Players. J. Strength Cond. Res. 2007, 21, 902–908. [Google Scholar] [CrossRef] [PubMed]
- Mendes, F.G.; Lima, A.B.; Christofoletti, M.; Quinaud, R.T.; Collet, C.; Gonçalves, C.E.; Carvalho, H.M. Multidimensional Characteristics of Young Brazilian Volleyball Players: A Bayesian Multilevel Analysis. PLoS ONE 2021, 16, e0250953. [Google Scholar] [CrossRef] [PubMed]
- Fields, J.B.; Metoyer, C.J.; Casey, J.C.; Esco, M.R.; Jagim, A.R.; Jones, M.T. Comparison of Body Composition Variables Across a Large Sample of National Collegiate Athletic Association Women Athletes From 6 Competitive Sports. J. Strength Cond. Res. 2018, 32, 2452–2457. [Google Scholar] [CrossRef] [PubMed]
- Gaurav, V.; Singh, M.; Singh, S. Anthropometric Characteristics, Somatotyping and Body Composition of Volleyball and Basketball Players. J. Phy. Edu. Sports Man 2010, 1, 28–32. [Google Scholar]
- Zhao, K.; Hohmann, A.; Chang, Y.; Zhang, B.; Pion, J.; Gao, B. Physiological, Anthropometric, and Motor Characteristics of Elite Chinese Youth Athletes From Six Different Sports. Front. Physiol. 2019, 10, 405. [Google Scholar] [CrossRef]
- Rubajczyk, K.; Rokita, A. The Relative Age Effect and Talent Identification Factors in Youth Volleyball in Poland. Front. Psychol. 2020, 11, 1445. [Google Scholar] [CrossRef]
- Tsoukos, A.; Drikos, S.; Brown, L.E.; Sotiropoulos, K.; Veligekas, P.; Bogdanis, G.C. Anthropometric and Motor Performance Variables Are Decisive Factors for The Selection of Junior National Female Volleyball Players. J. Hum. Kinet. 2019, 67, 163–173. [Google Scholar] [CrossRef]
- Tsoukos, A.; Drikos, S.; Brown, L.E.; Sotiropoulos, K.; Veligekas, P.; Bogdanis, G.C. Upper and Lower Body Power Are Strong Predictors for Selection of Male Junior National Volleyball Team Players. J. Strength Cond. Res. 2019, 33, 2760–2767. [Google Scholar] [CrossRef]
- Carvalho, A.; Roriz, P.; Duarte, D. Comparison of Morphological Profiles and Performance Variables between Female Volleyball Players of the First and Second Division in Portugal. J. Hum. Kinet. 2020, 71, 109–117. [Google Scholar] [CrossRef]
- Papadopoulou, S.D.; Papadopoulou, S.K.; Rosemann, T.; Knechtle, B.; Nikolaidis, P.T. Relative Age Effect on Youth Female Volleyball Players: A Pilot Study on Its Prevalence and Relationship With Anthropometric and Physiological Characteristics. Front. Psychol. 2019, 10, 2737. [Google Scholar] [CrossRef] [PubMed]
- Malina, R.M.; Cumming, S.P.; Kontos, A.P.; Eisenmann, J.C.; Ribeiro, B.; Aroso, J. Maturity-Associated Variation in Sport-Specific Skills of Youth Soccer Players Aged 13–15 Years. J. Sports Sci. 2005, 23, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Campa, F.; Silva, A.M.; Iannuzzi, V.; Mascherini, G.; Benedetti, L.; Toselli, S. The Role of Somatic Maturation on Bioimpedance Patterns and Body Composition in Male Elite Youth Soccer Players. Int. J. Environ. Res. Public Health 2019, 16, 4711. [Google Scholar] [CrossRef] [PubMed]
- Toselli, S.; Marini, E.; Maietta Latessa, P.; Benedetti, L.; Campa, F. Maturity Related Differences in Body Composition Assessed by Classic and Specific Bioimpedance Vector Analysis among Male Elite Youth Soccer Players. Int. J. Environ. Res. Public Health 2020, 17, 729. [Google Scholar] [CrossRef]
- Živković, M.; Stojiljković, N.; Trajković, N.; Stojanović, N.; Đošić, A.; Antić, V.; Stanković, N. Speed, Change of Direction Speed, and Lower Body Power in Young Athletes and Nonathletes According to Maturity Stage. Children 2022, 9, 242. [Google Scholar] [CrossRef]
- Toselli, S.; Mauro, M.; Grigoletto, A.; Cataldi, S.; Benedetti, L.; Nanni, G.; Di Miceli, R.; Aiello, P.; Gallamini, D.; Fischetti, F.; et al. Maturation Selection Biases and Relative Age Effect in Italian Soccer Players of Different Levels. Biology 2022, 11, 1559. [Google Scholar] [CrossRef]
- Barazetti, L.K.; Varoni, P.R.; Campos, F.d.S.; Demarchi, M.; Baumann, L.; Teixeira, A.S.; Nunes, R.F.H.; Flores, L.J.F. Comparison of Maturation and Physical Performance in Basketball Athletes of Different Playing Positions. Rev. Bras. De Cineantropometria Desempenho Hum. 2019, 21, e60248. [Google Scholar] [CrossRef]
- Romero-García, D.; Vaquero-Cristóbal, R.; Albaladejo-Saura, M.; Esparza-Ros, F.; Martínez-Sanz, J.M. Influence of Biological Maturation Status on Kinanthropometric Characteristics, Physical Fitness and Diet in Adolescent Male Handball Players. Appl. Sci. 2023, 13, 3012. [Google Scholar] [CrossRef]
- Te Wierike, S.C.M.; Elferink-Gemser, M.T.; Tromp, E.J.Y.; Vaeyens, R.; Visscher, C. Role of Maturity Timing in Selection Procedures and in the Specialisation of Playing Positions in Youth Basketball. J. Sports Sci. 2015, 33, 337–345. [Google Scholar] [CrossRef]
- Albaladejo-Saura, M.; Vaquero-Cristóbal, R.; García-Roca, J.A.; Esparza-Ros, F. Influence of Biological Maturation Status on Selected Anthropometric and Physical Fitness Variables in Adolescent Male Volleyball Players. PeerJ 2022, 10, e13216. [Google Scholar] [CrossRef]
- Lohman, T.; Roache, A.; Martorell, R. Anthropometric Standardization Reference Manual. J. Am. Diet. Assoc. 1988, 89, 872–874. [Google Scholar] [CrossRef]
- Slaughter, M.H.; Lohman, T.G.; Boileau, R.A.; Horswill, C.A.; Stillman, R.J.; Van Loan, M.D.; Bemben, D.A. Skinfold Equations for Estimation of Body Fatness in Children and Youth. Hum. Biol. 1988, 60, 709–723. [Google Scholar] [PubMed]
- Frisancho, A.R. Anthropometric Standards: An Interactive Nutritional Reference of Body Size and Body Composition for Children and Adults; University of Michigan Press: Ann Arbor, MI, USA, 2008; ISBN 978-0-472-11591-4. [Google Scholar]
- Mirwald, R.L.; Baxter-Jones, A.D.G.; Bailey, D.A.; Beunen, G.P. An Assessment of Maturity from Anthropometric Measurements. Med. Sci. Sports Exerc. 2002, 34, 689–694. [Google Scholar] [CrossRef]
- Drenowatz, C.; Wartha, O.; Klenk, J.; Brandstetter, S.; Wabitsch, M.; Steinacker, J. Differences in Health Behavior, Physical Fitness, and Cardiovascular Risk in Early, Average, and Late Mature Children. Pediatr. Exerc. Sci. 2013, 25, 69–83. [Google Scholar] [CrossRef]
- Piccoli, A.; Rossi, B.; Pillon, L.; Bucciante, G. A New Method for Monitoring Body Fluid Variation by Bioimpedance Analysis: The RXc Graph. Kidney. Intl. 1994, 46, 534–539. [Google Scholar] [CrossRef] [PubMed]
- Micheli, M.L.; Pagani, L.; Marella, M.; Gulisano, M.; Piccoli, A.; Angelini, F.; Burtscher, M.; Gatterer, H. Bioimpedance and Impedance Vector Patterns as Predictors of League Level in Male Soccer Players. Int. J. Sports Physiol. Perform. 2014, 9, 532–539. [Google Scholar] [CrossRef]
- Campa, F.; Toselli, S.; Mazzilli, M.; Gobbo, L.A.; Coratella, G. Assessment of Body Composition in Athletes: A Narrative Review of Available Methods with Special Reference to Quantitative and Qualitative Bioimpedance Analysis. Nutrients 2021, 13, 1620. [Google Scholar] [CrossRef] [PubMed]
- Barners, C.; Archer, B.; Hogg, B.; Busch, M.; Bradley, P. The Evolution of Physical and Tech-nical Performance Parameters in the English Premier League. Int. J. Sports Med. 2014, 35, 1095–1100. [Google Scholar] [CrossRef]
- Pion, J.; Segers, V.; Fransen, J.; Debuyck, G.; Deprez, D.; Haerens, L.; Vaeyens, R.; Philippaerts, R.; Lenoir, M. Generic Anthropometric and Performance Characteristics among Elite Adolescent Boys in Nine Different Sports. Eur. J. Sport Sci. 2015, 15, 357–366. [Google Scholar] [CrossRef]
- Parr, J.; Winwood, K.; Hodson-Tole, E.; Deconinck, F.J.A.; Hill, J.P.; Teunissen, J.W.; Cumming, S.P. The Main and Interactive Effects of Biological Maturity and Relative Age on Physical Performance in Elite Youth Soccer Players. J. Sports Med. 2020, 2020, e1957636. [Google Scholar] [CrossRef]
- Peña-González, I.; Fernández-Fernández, J.; Moya-Ramón, M.; Cervelló, E. Relative Age Effect, Biological Maturation, and Coaches’ Efficacy Expectations in Young Male Soccer Players. Res. Quart. Exer. Sport 2018, 89, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.; Farooq, A.; Whiteley, R. Skeletal Maturation Status Is More Strongly Associated with Academy Selection than Birth Quarter. Sci. Med. Footb. 2017, 1, 157–163. [Google Scholar] [CrossRef]
- Radnor, J.M.; Staines, J.; Bevan, J.; Cumming, S.P.; Kelly, A.L.; Lloyd, R.S.; Oliver, J.L. Maturity Has a Greater Association than Relative Age with Physical Performance in English Male Academy Soccer Players. Sports 2021, 9, 171. [Google Scholar] [CrossRef] [PubMed]
- Toselli, S.; Campa, F. Anthropometry and Functional Movement Patterns in Elite Male Volleyball Players of Different Competitive Levels. J. Strength Cond. Res. 2018, 32, 2601. [Google Scholar] [CrossRef]
- Pocek, S.; Milosevic, Z.; Lakicevic, N.; Pantelic-Babic, K.; Imbronjev, M.; Thomas, E.; Bianco, A.; Drid, P. Anthropometric Characteristics and Vertical Jump Abilities by Player Position and Performance Level of Junior Female Volleyball Players. Int. J. Environ. Res. Public Health 2021, 18, 8377. [Google Scholar] [CrossRef]
- Bernal-Orozco, M.F.; Posada-Falomir, M.; Quiñónez-Gastélum, C.M.; Plascencia-Aguilera, L.P.; Arana-Nuño, J.R.; Badillo-Camacho, N.; Márquez-Sandoval, F.; Holway, F.E.; Vizmanos-Lamotte, B. Anthropometric and Body Composition Profile of Young Professional Soccer Players. J. Strength Cond. Res. 2020, 34, 1911–1923. [Google Scholar] [CrossRef]
- Toselli, S.; Campa, F.; Maietta Latessa, P.; Greco, G.; Loi, A.; Grigoletto, A.; Zaccagni, L. Differences in Maturity and Anthropometric and Morphological Characteristics among Young Male Basketball and Soccer Players and Non-Players. Int. J. Environ. Res. Public Health 2021, 18, 3902. [Google Scholar] [CrossRef]
- Deprez, D.; Coutts, A.J.; Fransen, J.; Deconinck, F.; Lenoir, M.; Vaeyens, R.; Philippaerts, R. Relative Age, Biological Maturation and Anaerobic Characteristics in Elite Youth Soccer Players. Int. J. Sports Med. 2013, 34, 897–903. [Google Scholar] [CrossRef]
- Müller, L.; Gonaus, C.; Perner, C.; Müller, E.; Raschner, C. Maturity Status Influences the Relative Age Effect in National Top Level Youth Alpine Ski Racing and Soccer. PLoS ONE 2017, 12, e0181810. [Google Scholar] [CrossRef]
MS (Z ± 1) | Ranking Frequency | ∆ Ranks | |||
---|---|---|---|---|---|
HL | LL | Z or χ2 | p | RR | |
E | 7 | 5 | 1.529 | 0.126 | 2.256 |
OT | 25 | 37 | 0.562 | 0.574 | 1.089 |
L | 4 | 16 | −1.901 | 0.05 * | 0.403 |
Total | 36 | 58 | 4.98 | 0.083 |
HL | LL | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
E (n = 7) | OT (n = 25) | L (n = 4) | E (n = 5) | OT (n = 37) | L (n = 16) | Ranking | MS | Ranking * MS | ||||
Variable | Mean (±SD) | Mean (±SD) | Mean (±SD) | Mean (±SD) | Mean (±SD) | Mean (±SD) | F (1, 88) | P | F (2, 88) | P | F (2, 88) | P |
Age (year) # | 12.49 (0.81) | 12.01 (0.37) | 12.75 (0.51) | 11.68 (1.82) | 13.04 (0.26) | 12.40 (0.85) | 0.354 | 0.552 | 2.865 | 0.239 | 3.680 | <0.001 * |
Weight (Kg) | 64.07 (7.97) | 52.32 (9.29) | 38.00 (4.00) | 59.40 (13.99) | 45.78 (7.99) | 49.88 (9.19) | 0.010 | 0.931 | 14.540 | <0.001 * | 1.910 | 0.154 |
Stature (cm) | 175.89 (7.29) | 161.79 (5.30) | 148.98 (3.48) | 162.36 (16.84) | 155.83 (6.71) | 159.91 (8.83) | 1.580 | 0.212 | 13.330 | <0.001 * | 4.970 | 0.001 * |
Trunk height (cm) | 86.81 (3.21) | 79.24 (2.65) | 70.80 (1.60) | 85.68 (8.30) | 74.15 (1.46) | 80.35 (4.24) | 1.130 | 0.291 | 43.020 | <0.001 * | 1.130 | 0.327 |
Leg length (cm) | 89.07 (5.30) | 82.55 (3.74 | 78.18 (2.32)) | 76.68 (8.95) | 81.68 (6.83) | 79.56 (6.39) | 5.720 | 0.019 * | 0.800 | 0.454 | 5.710 | 0.005 * |
BMI (kg/m2) | 20.64 (1.43) | 19.99 (3.49) | 17.13 (1.74) | 22.24 (1.69) | 19.18 (3.26) | 19.37 (2.42) | 1.730 | 0.192 | 4.860 | 0.010 * | 1.560 | 0.216 |
HL | LL | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
E (n = 7) | OT (n = 25) | L (n = 4) | E (n = 5) | OT (n = 37) | L (n = 16) | Ranking | MS | Ranking * MS | ||||
Variable | Mean (±SD) | Mean (±SD) | Mean (±SD) | Mean (±SD) | Mean (±SD) | Mean (±SD) | F (1, 88) | P | F (2, 88) | P | F (2, 88) | P |
str. Arm circ. (cm) | 24.97 (2.68) | 20.98 (2.12) | 22.48 (2.18) | 26.90 (2.72) | 22.93 (2.96) | 23.60 (2.54) | 5.420 | 0.022 * | 8.460 | <0.001 * | 0.230 | 0.796 |
con. Arm circ. (cm) | 26.66 (2.34) | 22.00 (1.92) | 23.85 (2.34) | 27.76 (2.40) | 23.71 (3.01) | 24.61 (2.68) | 2.610 | 0.110 | 9.230 | <0.001 * | 0.180 | 0.832 |
Calf circ. (cm) | 35.69 (1.99) | 29.88 (0.38) | 32.61 (2.44) | 35.06 (3.77) | 31.33 (3.65) | 32.32 (2.40) | 0.060 | 0.813 | 9.890 | <0.001 * | 0.630 | 0.533 |
Waist circ. (cm) | 70.24 (6.69) | 60.55 (1.97) | 65.90 (5.87) | 73.82 (5.82) | 64.74 (6.42) | 66.19 (5.22) | 2.800 | 0.098 | 8.740 | <0.001 * | 0.860 | 0.428 |
Hip circ. (cm) | 89.89 (6.60) | 71.95 (7.48) | 82.62 (6.51) | 91.16 (8.20) | 80.32 (7.21) | 82.72 (6.27) | 2.950 | 0.089 | 14.240 | <0.001 * | 2.030 | 0.137 |
Humeral diamet. (mm) # | 6.79 (0.59) | 6.15 (0.44) | 6.34 (0.38) | 6.50 (0.44) | 6.62 (1.47) | 6.43 (0.39) | 0.001 | 0.991 | 6.015 | 0.050 * | 0.740 | 0.595 |
Femoral diamet. (mm) # | 9.50 (0.58) | 8.10 (0.48) | 9.40 (1.28) | 8.56 (0.85) | 8.35 (0.60) | 8.59 (0.55) | 17.366 | <0.001 * | 12.647 | 0.001 * | 5.610 | <0.001 * |
Triceps SK (mm) | 10.14 (3.53) | 9.25 (2.06) | 12.44 (4.3) | 16.40 (1.52) | 12.31 (4.88) | 11.68 (4.12) | 5.680 | 0.019 * | 1.160 | 0.318 | 3.950 | 0.023 * |
Subscapular SK (mm) | 9.29 (2.69) | 6.00 (2.16) | 10.40 (4.61) | 11.20 (1.79) | 9.94 (3.02) | 8.82 (2.89) | 4.400 | 0.039 * | 2.870 | 0.062 | 5.600 | 0.005 * |
Supraspinal SK (mm) | 11.71 (5.68) | 6.50 (2.65) | 12.80 (7.05) | 15.00 (3.32) | 11.06 (4.37) | 10.22 (5.10) | 2.850 | 0.095 | 3.010 | 0.054 | 3.970 | 0.022 * |
Suprailiac SK (mm) | 13.00 (6.32) | 9.25 (3.69) | 14.40 (6.84) | 16.60 (2.30) | 14.31 (5.87) | 11.95 (5.34) | 2.510 | 0.117 | 1.150 | 0.320 | 3.350 | 0.039 * |
Medial calf SK (mm) | 10.86 (4.02) | 11.25 (1.71) | 12.68 (4.43) | 15.60 (1.52) | 13.44 (3.61) | 12.65 (3.81) | 4.440 | 0.038 * | 0.170 | 0.846 | 2.060 | 0.133 |
Lateral calf SK (mm) | 10.57 (2.15) | 12.25 (1.26) | 12.80 (3.54) | 15.60 (1.34) | 12.88 (3.40) | 12.97 (2.87) | 5.100 | 0.026 * | 0.100 | 0.909 | 3.140 | 0.048 * |
TUA (cm2) | 50.11 (10.41) | 35.28 (7.22) | 40.56 (7.90) | 58.05 (11.83) | 42.50 (10.82) | 44.81 (9.81) | 5.680 | 0.019 * | 8.790 | <0.001 * | 0.260 | 0.768 |
UMA (cm2) | 38.11 (7.77) | 26.13 (4.67) | 27.66 (5.07) | 38.11 (9.56) | 29.25 (6.34) | 31.88 (6.06) | 1.950 | 0.166 | 9.140 | <0.001 * | 0.680 | 0.508 |
UFA (cm2) | 12.00 (4.77) | 9.15 (2.78) | 12.91 (5.02) | 19.94 (2.90) | 13.25 (6.26) | 12.93 (5.58) | 6.450 | 0.013 * | 2.710 | 0.072 | 2.810 | 0.066 |
UFI (%) | 23.59 (6.36) | 25.59 (3.49) | 31.20 (8.32) | 34.82 (4.14) | 30.10 (8.55) | 28.15 (7.12) | 3.980 | 0.049 * | 0.320 | 0.729 | 5.100 | <0.001 * |
TCA (cm2) | 101.61 (11.08) | 71.03 (1.80) | 85.09 (12.66) | 98.72 (20.35) | 79.11 (17.11) | 83.58 (12.16) | 0.100 | 0.749 | 10.940 | <0.001 * | 0.730 | 0.483 |
CMA (cm2) | 67.23 (12.97) | 40.31 (3.46) | 48.74 (10.7) | 51.62 (14.34) | 43.09 (10.46) | 47.33 (9.14) | 2.670 | 0.106 | 9.480 | <0.001 * | 2.880 | 0.061 |
CFA (cm2) | 34.37 (8.26) | 30.72 (1.80) | 36.34 (10.83) | 47.10 (7.34) | 36.02 (10.22) | 36.25 (8.98) | 4.340 | 0.040 * | 1.700 | 0.189 | 1.910 | 0.155 |
CFI (%) | 34.06 (8.24) | 43.31 (3.46) | 42.57 (9.88) | 48.32 (4.88) | 45.64 (7.99) | 43.27 (7.93) | 5.980 | 0.016 * | 0.470 | 0.624 | 3.240 | 0.044 * |
HL | LL | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
E (n = 7) | OT (n = 25) | L (n = 4) | E (n = 5) | OT (n = 37) | L (n = 16) | Ranking | MS | Ranking * MS | ||||
Variable | Mean (±SD) | Mean (±SD) | Mean (±SD) | Mean (±SD) | Mean (±SD) | Mean (±SD) | F (1, 88) | P | F (2, 88) | P | F (2, 88) | P |
%F | 18.54 (5.21) | 14.79 (3.88) | 21.23 (6.65) | 25.56 (1.95) | 20.87 (5.97) | 19.40 (5.35) | 6.510 | 0.012 * | 2.160 | 0.121 | 4.900 | 0.010 * |
FM (kg) | 11.94 (3.79) | 5.71 (2.05) | 11.54 (5.49) | 15.29 (4.09) | 9.85 (4.06) | 9.90 (3.99) | 3.350 | 0.071 | 6.980 | 0.001 * | 3.780 | 0.027 * |
FFM (kg) | 52.13 (6.88) | 32.29 (2.32) | 40.78 (5.13) | 44.11 (10.05) | 35.93 (5.05) | 39.98 (6.70) | 0.690 | 0.410 | 14.450 | <0.001 * | 2.590 | 0.081 |
R (Ω) | 458.14 (50.11) | 578.60 (74.45) | 505.38 (54.37) | 526.92 (43.87) | 520.34 (71.54) | 529.48 (63.68) | 0.440 | 0.510 | 2.670 | 0.075 | 3.520 | 0.034 * |
Xc (Ω) | 61.66 (12.79) | 68.63 (18.91) | 61.72 (7.59) | 59.70 (5.15) | 61.21 (8.97) | 63.21 (9.55) | 0.570 | 0.453 | 0.460 | 0.631 | 0.840 | 0.437 |
PA # | 7.73 (1.93) | 6.50 (0.97) | 6.74 (0.83) | 6.48 (0.39) | 6.61 (0.85) | 6.78 (0.70) | 0.318 | 0.572 | 3.022 | 0.221 | 1.880 | 0.106 |
R/H (Ω/cm) | 260.88 (30.86) | 388.98 (55.30) | 428.79 (582.32) | 329.06 (57.49) | 335.26 (53.83) | 333.65 (55.06) | 0.100 | 0.758 | 0.390 | 0.681 | 0.350 | 0.708 |
Xc/H (Ω/cm) | 34.89 (5.83) | 46.03 (12.45) | 38.18 (4.77) | 37.20 (6.07) | 39.45 (6.77) | 39.74 (6.90) | 0.240 | 0.627 | 3.270 | 0.043 * | 2.180 | 0.119 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grigoletto, A.; Mauro, M.; Toselli, S. Differences in Body Composition and Maturity Status in Young Male Volleyball Players of Different Levels. J. Funct. Morphol. Kinesiol. 2023, 8, 162. https://doi.org/10.3390/jfmk8040162
Grigoletto A, Mauro M, Toselli S. Differences in Body Composition and Maturity Status in Young Male Volleyball Players of Different Levels. Journal of Functional Morphology and Kinesiology. 2023; 8(4):162. https://doi.org/10.3390/jfmk8040162
Chicago/Turabian StyleGrigoletto, Alessia, Mario Mauro, and Stefania Toselli. 2023. "Differences in Body Composition and Maturity Status in Young Male Volleyball Players of Different Levels" Journal of Functional Morphology and Kinesiology 8, no. 4: 162. https://doi.org/10.3390/jfmk8040162
APA StyleGrigoletto, A., Mauro, M., & Toselli, S. (2023). Differences in Body Composition and Maturity Status in Young Male Volleyball Players of Different Levels. Journal of Functional Morphology and Kinesiology, 8(4), 162. https://doi.org/10.3390/jfmk8040162