Application of a Custom Device to Measure Isometric Knee Strength: Possible Injury Correlation in Professional Soccer (Football) Players
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Association between Isometric Force and Injuries: Results of the Logistic Regression
3.2. Association between Isometric Force and Injuries: Survival Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- López-Valenciano, A.; Ruiz-Pérez, I.; Garcia-Gómez, A.; Vera-Garcia, F.J.; Croix, M.D.S.; Myer, G.D.; Ayala, F. Epidemiology of injuries in professional football: A systematic review and meta-analysis. Br. J. Sports Med. 2020, 54, 711–718. [Google Scholar] [CrossRef]
- Ekstrand, J.; Hägglund, M.; Waldén, M. Injury incidence and injury patterns in professional football: The UEFA injury study. Br. J. Sports Med. 2011, 45, 553–558. [Google Scholar] [CrossRef] [PubMed]
- Freckleton, G.; Pizzari, T. Risk factors for hamstring muscle strain injury in sport: A systematic review and meta-analysis. Br. J. Sports Med. 2013, 47, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Green, B.; Bourne, M.N.; Pizzari, T. Isokinetic strength assessment offers limited predictive validity for detecting risk of future hamstring strain in sport: A systematic review and meta-analysis. Br. J. Sports Med. 2018, 52, 329–336. [Google Scholar] [CrossRef] [PubMed]
- McCall, A.; Carling, C.; Davison, M.; Nedelec, M.; Le Gall, F.; Berthoin, S.; Dupont, G. Injury risk factors, screening tests and preventative strategies: A systematic review of the evidence that underpins the perceptions and practices of 44 football (soccer) teams from various premier leagues. Br. J. Sports Med. 2015, 49, 583–589. [Google Scholar] [CrossRef]
- McCall, A.; Davison, M.; Andersen, T.E.; Beasley, I.; Bizzini, M.; Dupont, G.; Duffield, R.; Carling, C.; Dvorak, J. Injury prevention strategies at the FIFA 2014 World Cup: Perceptions and practices of the physicians from the 32 participating national teams. Br. J. Sports Med. 2015, 49, 603–608. [Google Scholar] [CrossRef]
- Hamill, J.; Knutzen, K.M.; Derrick, T. Biomechanical Basis of Human Movement, 4th ed.; Lippincott Williams & Wilkins: Philadelphia, PE, USA, 2014. [Google Scholar]
- Bampouras, T.M.; Marrin, K.; Sankey, S.P.; Jones, P.A. Test-retest reliability and sensitivity of the Concept2 Dyno dynamometer: Practical applications. J. Strength Cond. Res. 2014, 28, 1381–1385. [Google Scholar] [CrossRef]
- Ricotti, L.; Rigosa, J.; Niosi, A.; Menciassi, A. Analysis of balance, rapidity, force and reaction times of soccer players at different levels of competition. PLoS ONE 2013, 8, e77264. [Google Scholar] [CrossRef]
- Thompson, B.J.; Cazier, C.S.; Bressel, E.; Dolny, D.G. A lower extremity strength-based profile of NCAA Division I women’s basketball and gymnastics athletes: Implications for knee joint injury risk assessment. J. Sports Sci. 2018, 36, 1749–1756. [Google Scholar] [CrossRef]
- Van Dyk, N.; Bahr, R.; Burnett, A.F.; Whiteley, R.; Bakken, A.; Mosler, A.; Farooq, A.; Witvrouw, E. A comprehensive strength testing protocol offers no clinical value in predicting risk of hamstring injury: A prospective cohort study of 413 professional football players. Br. J. Sports Med. 2017, 51, 1695–1702. [Google Scholar] [CrossRef]
- Thorlund, J.B.; Aagaard, P.; Madsen, K. Rapid muscle force capacity changes after soccer match play. Int. J. Sports Med. 2009, 30, 273–278. [Google Scholar] [CrossRef]
- Croisier, J.L.; Ganteaume, S.; Binet, J.; Genty, M.; Ferret, J.M. Strength imbalances and prevention of hamstring injury in professional soccer players: A prospective study. Am. J. Sports Med. 2008, 36, 1469–1475. [Google Scholar] [CrossRef] [PubMed]
- Drigny, J.; Gauthier, A.; Reboursière, E.; Guermont, H.; Gremeaux, V.; Edouard, P. Shoulder muscle imbalance as a risk for shoulder injury in elite adolescent swimmers: A prospective study. J. Hum. Kinet. 2020, 75, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Mellinger, S.; Neurohr, G.A. Evidence based treatment options for common knee injuries in runners. Ann. Transl. Med. 2019, 7 (Suppl. S7), S249. [Google Scholar] [CrossRef]
- Rahnama, N.; Lees, A.; Bambaecichi, E. A comparison of muscle strength and flexibility between the preferred and non-preferred leg in English soccer players. Ergonomics 2005, 48, 1568–1575. [Google Scholar] [CrossRef] [PubMed]
- Silvers-Granelli, H.J.; Cohen, M.; Espregueira-Mendes, J.; Mandelbaum, B. Hamstring muscle injury in the athlete: State of the art. J. ISAKOS 2021, 6, 170–181. [Google Scholar] [CrossRef]
- Pérez-Gómez, J.; Adsuar, J.C.; Alcaraz, P.E.; Carlos-Vivas, J. Physical exercises for preventing injuries among adult male football players: A systematic review. J. Sport. Health Sci. 2022, 11, 115–122. [Google Scholar] [CrossRef]
- Bahr, R. Why screening tests to predict injury do not work-and probably never will…: A critical review. Br. J. Sports Med. 2016, 50, 776–780. [Google Scholar] [CrossRef]
- Ransom, M.; Saunders, S.; Gallo, T.; Segal, J.; Jones, D.; Jones, M.; Milanese, S. Reliability of a portable fixed frame dynamometry system used to test lower limb strength in elite Australian Football League players. J. Sci. Med. Sport. 2020, 23, 826–830. [Google Scholar] [CrossRef]
- Danneskiold-Samsøe, B.; Bartels, E.M.; Bülow, P.M.; Lund, H.; Stockmarr, A.; Holm, C.C.; Wätjen, I.; Appleyard, M.; Bliddal, H. Isokinetic and isometric muscle strength in a healthy population with special reference to age and gender. Acta Physiol. 2009, 197 (Suppl. S673), 1–68. [Google Scholar] [CrossRef]
- Lord, J.P.; Aitkens, S.G.; McCrory, M.A.; Bernauer, E.M. Isometric and isokinetic measurement of hamstring and quadriceps strength. Arch. Phys. Med. Rehabil. 1992, 73, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Kelln, B.M.; McKeon, P.O.; Gontkof, L.M.; Hertel, J. Hand-held dynamometry: Reliability of lower extremity muscle testing in healthy, physically active, young adults. J. Sport. Rehabil. 2008, 17, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Fulcher, M.L.; Hanna, C.M.; Raina Elley, C. Reliability of handheld dynamometry in assessment of hip strength in adult male football players. J. Sci. Med. Sport. 2010, 13, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Wikholm, J.B.; Bohannon, R.W. Hand-held Dynamometer Measurements: Tester Strength Makes a Difference. J. Orthop. Sports Phys. Ther. 1991, 13, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Katoh, M.; Yamasaki, H. Test-Retest Reliability of Isometric Leg Muscle Strength Measurements Made Using a Hand-Held Dynamometer Restrained by a Belt: Comparisons during and between Sessions. J. Phys. Ther. Sci. 2009, 21, 239–243. [Google Scholar] [CrossRef]
- Goossens, L.; Witvrouw, E.; Vanden Bossche, L.; De Clercq, D. Lower eccentric hamstring strength and single leg hop for distance predict hamstring injury in PETE students. Eur. J. Sport. Sci. 2015, 15, 436–442. [Google Scholar] [CrossRef]
- Hickey, J.T.; Hickey, P.F.; Maniar, N.; Timmins, R.G.; Williams, M.D.; Pitcher, C.A.; Opar, D.A. A Novel Apparatus to Measure Knee Flexor Strength During Various Hamstring Exercises: A Reliability and Retrospective Injury Study. J. Orthop. Sports Phys. Ther. 2018, 48, 72–80. [Google Scholar] [CrossRef]
- Correia, P.; Santos, P.; Mil-Homens, P.; Gomes, M.; Dias, A.; Valamatos, M.J. Rapid hamstrings to quadriceps ratio at long muscle lengths in professional football players with previous hamstring strain injury. Eur. J. Sport. Sci. 2020, 20, 1405–1413. [Google Scholar] [CrossRef]
- Charlton, P.C.; Mentiplay, B.F.; Grimaldi, A.; Pua, Y.-H.; Clark, R.A. The reliability of a maximal isometric hip strength and simultaneous surface EMG screening protocol in elite, junior rugby league athletes. J. Sci. Med. Sport 2016, 20, 139–145. [Google Scholar] [CrossRef]
- Scott, D.A.; Bond, E.Q.; Sisto, S.A.; Nadler, S.F. The intra- and interrater reliability of hip muscle strength assessments using a handheld versus a portable dynamometer anchoring station. Arch. Phys. Med. Rehabil. 2004, 85, 598–603. [Google Scholar] [CrossRef]
- Sung, K.S.; Yi, Y.G.; Shin, H.I. Reliability and validity of knee extensor strength measurements using a portable dynamometer anchoring system in a supine position. BMC Musculoskelet. Disord. 2019, 20, 320. [Google Scholar] [CrossRef]
- Minuti, T.; Cigni, P.; Costagli, M.; Cucini, A.; Cione, E.; Melotto, S.; Rapetti, S.; Ricotti, L.; Cannataro, R. Reliability of a Custom Device Used to Measure Isometric Knee Flexor and Extensor Strength in Standing Position. Life 2023, 13, 458. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Pérez, V.; Travassos, B.; Calado, A.; Gonzalo-Skok, O.; Del Coso, J.; Mendez-Villanueva, A. Adductor squeeze test and groin injuries in elite football players: A prospective study. Phys. Ther. Sport. 2019, 37, 54–59. [Google Scholar] [CrossRef] [PubMed]
- López-Valenciano, A.; Raya-González, J.; Garcia-Gómez, J.A.; Aparicio-Sarmiento, A.; de Baranda, P.S.; Croix, M.D.S.; Ayala, F. Injury Profile in Women’s Football: A Systematic Review and Meta-Analysis. Sports Med. 2021, 51, 423–442. [Google Scholar] [CrossRef]
- Gabbe, B.J.; Bennell, K.L.; Finch, C.F.; Wajswelner, H.; Orchard, J.W. Predictors of hamstring injury at the elite level of Australian football. Scand. J. Med. Sci. Sports. 2006, 16, 7–13. [Google Scholar] [CrossRef]
- Verrall, G.M.; Slavotinek, J.P.; Barnes, P.G.; Fon, G.T.; Esterman, A. Assessment of physical examination and magnetic resonance imaging findings of hamstring injury as predictors for recurrent injury. J. Orthop. Sports Phys. Ther. 2006, 36, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Koulouris, G.; Connell, D.A.; Brukner, P.; Schneider-Kolsky, M. Magnetic resonance imaging parameters for assessing risk of recurrent hamstring injuries in elite athletes. Am. J. Sports Med. 2007, 35, 1500–1506. [Google Scholar] [CrossRef] [PubMed]
- Fousekis, K.; Tsepis, E.; Vagenas, G. Intrinsic risk factors of noncontact ankle sprains in soccer: A prospective study on 100 professional players. Am. J. Sports Med. 2012, 40, 1842–1850. [Google Scholar] [CrossRef]
- Mendiguchia, J.; Alentorn-Geli, E.; Brughelli, M. Hamstring strain injuries: Are we heading in the right direction? Br. J. Sports Med. 2011, 46, 81–85. [Google Scholar] [CrossRef]
- Fousekis, K.; Tsepis, E.; Poulmedis, P.; Athanasopoulos, S.; Vagenas, G. Intrinsic risk factors of non-contact quadriceps and hamstring strains in soccer: A prospective study of 100 professional players. Br. J. Sports Med. 2010, 45, 709–714. [Google Scholar] [CrossRef]
- Opar, D.A.; Williams, M.D.; Shield, A.J. Hamstring strain injuries: Factors that lead to injury and re-injury. Sports Med. 2012, 42, 209–226. [Google Scholar] [CrossRef] [PubMed]
- Heckman, M.G.; Davis, J.M., 3rd; Crowson, C.S. Post Hoc Power Calculations: An Inappropriate Method for Interpreting the Findings of a Research Study. J. Rheumatol. 2022, 49, 867–870. [Google Scholar] [CrossRef]
- Althouse, A.D. Post Hoc Power: Not Empowering, Just Misleading. J. Surg. Res. 2021, 259, A3–A6. [Google Scholar] [CrossRef] [PubMed]
- Goodman, S.N.; Berlin, J.A. The use of predicted confidence intervals when planning experiments and the misuse of power when interpreting results. Ann Intern Med. 1994, 121, 200–206, Erratum in Ann. Intern. Med. 1995, 122, 478. [Google Scholar] [CrossRef] [PubMed]
- Cannataro, R.; Cione, E.; Bonilla, D.A.; Cerullo, G.; Angelini, F.; D’Antona, G. Strength training in elderly: An useful tool against sarcopenia. Front. Sports Act. Living 2022, 4, 950949. [Google Scholar] [CrossRef] [PubMed]
Injured (n = 22) | Uninjured (n = 85) | |
---|---|---|
Anthropometric data (mean ± SD) | ||
Age, years | 25.54 (±4.72) | 25.57 (±5.04) |
Height, m | 1.82 (±0.06) | 1.83 (±0.07) |
Weight, kg | 78.92 (±6.84) | 78.15 (±6.74) |
BMI, kg/m | 23.65 (±1.76) | 22.98 (±2.78) |
Player position | ||
Goalkeeper | 0 (0%) | 11 (12.95%) |
Defender | 9 (40.91%) | 28 (32.94%) |
Midfielder | 6 (27.27%) | 28 (32.94%) |
Forward | 7 (31.82%) | 18 (21.17%) |
Regression Coefficients (B) | Standard Error | Wald Test | p-Value | Odds Ratio (OR) | OR Confidence Interval 95% | Nagelkerke | ||
---|---|---|---|---|---|---|---|---|
Lower | Upper | |||||||
Age | −0.01 | 0.04 | 0.01 | 0.92 | 0.99 | 0.91 | 1.08 | 0.01 |
Height | −1.41 | 3.69 | 0.14 | 0.71 | 0.25 | 0.01 | 2.21 | 0.01 |
Weight | 0.02 | 0.04 | 0.23 | 0.63 | 1.02 | 0.95 | 1.09 | 0.01 |
BMI | 0.21 | 0.17 | 1.52 | 0.22 | 1.24 | 0.88 | 1.73 | 0.03 |
Player position | 0.31 | 0.26 | 1.46 | 0.23 | 1.37 | 0.82 | 2.28 | 0.21 |
Regression Coefficients (B) | Standard Error | Wald Test | p-Value | Odds Ratio (OR) | OR Confidence Interval 95% | Nagelkerke | |||
---|---|---|---|---|---|---|---|---|---|
Lower | Upper | ||||||||
Right extensor | 0.01 | 0.01 | 4.74 | 0.03 * | 1.00 | 1.00 | 1.01 | 0.05 | |
−1.92 | 2.65 | 0.52 | 0.47 | 0.14 | 0.01 | 26.83 | 0.01 | ||
0.12 | 0.05 | 4.44 | 0.03 * | 1.13 | 1.01 | 1.27 | 0.05 | ||
Left extensor | 0.01 | 0.01 | 3.03 | 0.08 | 1.00 | 1.00 | 1.01 | 0.03 | |
2.56 | 2.27 | 1.27 | 0.26 | 13.01 | 0.15 | 1130.26 | 0.01 | ||
0.09 | 0.05 | 2.50 | 0.11 | 1.09 | 0.98 | 1.23 | 0.02 | ||
Right flexor | −0.01 | 0.01 | 4.97 | 0.03 * | 0.99 | 0.98 | 1.00 | 0.05 | |
−0.11 | 0.41 | 0.07 | 0.77 | 0.89 | 0.39 | 2.01 | 0.01 | ||
−0.19 | 0.07 | 6.24 | 0.01 * | 0.82 | 0.71 | 0.959 | 0.07 | ||
Left flexor | 0.01 | 0.00 | 0.01 | 0.92 | 1.00 | 0.99 | 1.01 | 0.01 | |
0.39 | 1.67 | 0.05 | 0.81 | 1.48 | 0.06 | 39.99 | 0.01 | ||
0.01 | 0.06 | 0.01 | 0.98 | 1.00 | 0.87 | 1.14 | 0.01 | ||
Muscle imbalances | EBR | −0.06 | 0.04 | 2.20 | 0.13 | 0.93 | 0.86 | 1.02 | 0.02 |
FBR | 0.09 | 0.03 | 11.79 | 0.01 * | 1.10 | 1.04 | 1.16 | 0.10 | |
RUR | 0.08 | 0.02 | 14.39 | 0.01 * | 1.08 | 1.04 | 1.13 | 0.19 | |
LUR | 0.03 | 0.02 | 2.68 | 0.10 | 1.03 | 0.99 | 1.07 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cigni, P.; Minuti, T.; Mannini, A.; Cucini, A.; Costagli, M.; Rapetti, S.; Alimonta, L.; Cione, E.; Cannataro, R.; Ricotti, L. Application of a Custom Device to Measure Isometric Knee Strength: Possible Injury Correlation in Professional Soccer (Football) Players. J. Funct. Morphol. Kinesiol. 2023, 8, 141. https://doi.org/10.3390/jfmk8040141
Cigni P, Minuti T, Mannini A, Cucini A, Costagli M, Rapetti S, Alimonta L, Cione E, Cannataro R, Ricotti L. Application of a Custom Device to Measure Isometric Knee Strength: Possible Injury Correlation in Professional Soccer (Football) Players. Journal of Functional Morphology and Kinesiology. 2023; 8(4):141. https://doi.org/10.3390/jfmk8040141
Chicago/Turabian StyleCigni, Paolo, Tommaso Minuti, Andrea Mannini, Alessandro Cucini, Michele Costagli, Stefano Rapetti, Luca Alimonta, Erika Cione, Roberto Cannataro, and Leonardo Ricotti. 2023. "Application of a Custom Device to Measure Isometric Knee Strength: Possible Injury Correlation in Professional Soccer (Football) Players" Journal of Functional Morphology and Kinesiology 8, no. 4: 141. https://doi.org/10.3390/jfmk8040141
APA StyleCigni, P., Minuti, T., Mannini, A., Cucini, A., Costagli, M., Rapetti, S., Alimonta, L., Cione, E., Cannataro, R., & Ricotti, L. (2023). Application of a Custom Device to Measure Isometric Knee Strength: Possible Injury Correlation in Professional Soccer (Football) Players. Journal of Functional Morphology and Kinesiology, 8(4), 141. https://doi.org/10.3390/jfmk8040141