The Addition of Sprint Interval Training to Field Lacrosse Training Increases Rate of Torque Development and Contractile Impulse in Female High School Field Lacrosse Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Procedures
2.2.1. Isometric and Isokinetic Testing
2.2.2. Data Analysis
2.3. Training
2.3.1. Sprint Interval Training
2.3.2. Field-Lacrosse-Specific Training
2.4. Statistical Analysis
3. Results
3.1. Isometric Muscle Strength and Rate of Torque Development
3.2. Contractile Impulse
3.3. Isokinetic Skeletal Muscle Strength
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lacrosse, C.S.W. Historic World Lacrosse Women’s Championship Concludes after 11 Days. Available online: https://worldlacrosse.sport/article/historic-world-lacrosse-championship-concludes/#:~:text=10th%20July%202022%20Historic%20World%20Lacrosse%20Women%27s%20Championship,with%20the%20United%20States%20claiming%20the%20gold%20medal (accessed on 1 January 2023).
- 2021–22 High School Athletics Participation Survey. Available online: https://www.nfhs.org/media/5989280/2021-22_participation_survey.pdf (accessed on 1 January 2023).
- Enemark-Miller, E.A.; Seegmiller, J.G.; Rana, S.R. Physiological profile of women’s Lacrosse players. J. Strength Cond. Res. 2009, 23, 39–43. [Google Scholar] [CrossRef]
- Hamlet, M.; Frick, M.; Bunn, J. High-speed running density in collegiate women’s lacrosse. Res. Sport. Med. 2021, 29, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Devine, N.F.; Hegedus, E.J.; Nguyen, A.-D.; Ford, K.R.; Taylor, J.B. External match load in women’s collegiate lacrosse. J. Strength Cond. Res. 2022, 36, 503–507. [Google Scholar] [CrossRef]
- Taylor, J.; Macpherson, T.; Spears, I.; Weston, M. The effects of repeated-sprint training on field-based fitness measures: A meta-analysis of controlled and non-controlled trials. Sport. Med. 2015, 45, 881–891. [Google Scholar] [CrossRef]
- Cossich, V.; Maffiuletti, N. Early vs. late rate of torque development: Relation with maximal strength and influencing factors. J. Electromyogr. Kinesiol. 2020, 55, 102486. [Google Scholar] [CrossRef] [PubMed]
- Kercher, V.M.; Kercher, K.; Bennion, T.; Yates, B.A.; Feito, Y.; Alexander, C.; Amaral, P.C.; Soares, W.; Li, Y.-M.; Han, J. Fitness trends from around the globe. ACSM’s Health Fit. J. 2021, 25, 20–31. [Google Scholar] [CrossRef]
- Ross, A.; Leveritt, M. Long-term metabolic and skeletal muscle adaptations to short-sprint training. Sport. Med. 2001, 31, 1063–1082. [Google Scholar] [CrossRef]
- Mero, A.; Komi, P.; Gregor, R. Biomechanics of sprint running. Sport. Med. 1992, 13, 376–392. [Google Scholar] [CrossRef]
- Grazioli, R.; Lopez, P.; Machado, C.L.; Farinha, J.B.; Fagundes, A.O.; Voser, R.; Reischak-Oliveira, Á.; Setuain, I.; Izquierdo, M.; Pinto, R.S. Moderate volume of sprint bouts does not induce muscle damage in well-trained athletes. J. Bodyw. Mov. Ther. 2020, 24, 206–211. [Google Scholar] [CrossRef]
- Keane, K.M.; Salicki, R.; Goodall, S.; Thomas, K.; Howatson, G. Muscle damage response in female collegiate athletes after repeated sprint activity. J. Strength Cond. Res. 2015, 29, 2802–2807. [Google Scholar] [CrossRef] [Green Version]
- Markovic, G.; Jukic, I.; Milanovic, D.; Metikos, D. Effects of sprint and plyometric training on muscle function and athletic performance. J. Strength Cond. Res. 2007, 21, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Los Arcos, A.; Yanci, J.; Mendiguchia, J.; Salinero, J.J.; Brughelli, M.; Castagna, C. Short-term training effects of vertically and horizontally oriented exercises on neuromuscular performance in professional soccer players. Int. J. Sport. Physiol. Perform. 2014, 9, 480–488. [Google Scholar] [CrossRef]
- Morin, J.-B.; Bourdin, M.; Edouard, P.; Peyrot, N.; Samozino, P.; Lacour, J.-R. Mechanical determinants of 100-m sprint running performance. Eur. J. Appl. Physiol. 2012, 112, 3921–3930. [Google Scholar] [CrossRef] [Green Version]
- Peltonen, H.; Walker, S.; Hackney, A.C.; Avela, J.; Häkkinen, K. Increased rate of force development during periodized maximum strength and power training is highly individual. Eur. J. Appl. Physiol. 2018, 118, 1033–1042. [Google Scholar] [CrossRef]
- Rodríguez-Rosell, D.; Pareja-Blanco, F.; Aagaard, P.; González-Badillo, J.J. Physiological and methodological aspects of rate of force development assessment in human skeletal muscle. Clin. Physiol. Funct. Imaging 2018, 38, 743–762. [Google Scholar] [CrossRef]
- Aagaard, P.; Simonsen, E.B.; Andersen, J.L.; Magnusson, P.; Dyhre-Poulsen, P. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J. Appl. Physiol. 2002, 93, 1318–1326. [Google Scholar] [CrossRef]
- Aagaard, P.; Magnusson, P.S.; Larsson, B.; Kjoer, M.; Krustrup, P. Mechanical muscle function, morphology, and fiber type in lifelong trained elderly. Med. Sci. Sport. Exerc. 2007, 39, 1989. [Google Scholar] [CrossRef]
- Maffiuletti, N.A.; Aagaard, P.; Blazevich, A.J.; Folland, J.; Tillin, N.; Duchateau, J. Rate of force development: Physiological and methodological considerations. Eur. J. Appl. Physiol. 2016, 116, 1091–1116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenkins, N.; Housh, T.; Traylor, D.; Cochrane, K.; Bergstrom, H.; Lewis, R.; Schmidt, R.; Johnson, G.; Cramer, J. The rate of torque development: A unique, non-invasive indicator of eccentric-induced muscle damage? Int. J. Sport. Med. 2014, 35, 1190–1195. [Google Scholar] [CrossRef] [PubMed]
- Peñailillo, L.; Blazevich, A.; Numazawa, H.; Nosaka, K. Rate of force development as a measure of muscle damage. Scand. J. Med. Sci. Sports 2015, 25, 417–427. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, F.B.; Oliveira, A.S.; Rizatto, G.F.; Denadai, B.S. Resistance training for explosive and maximal strength: Effects on early and late rate of force development. J. Sport. Sci. Med. 2013, 12, 402. [Google Scholar]
- Kubo, K.; Kanehisa, H.; Ito, M.; Fukunaga, T. Effects of isometric training on the elasticity of human tendon structures in vivo. J. Appl. Physiol. 2001, 91, 26–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Häkkinen, K.; Alen, M.; Kraemer, W.; Gorostiaga, E.; Izquierdo, M.; Rusko, H.; Mikkola, J.; Häkkinen, A.; Valkeinen, H.; Kaarakainen, E. Neuromuscular adaptations during concurrent strength and endurance training versus strength training. Eur. J. Appl. Physiol. 2003, 89, 42–52. [Google Scholar] [CrossRef]
- Tillin, N.A.; Pain, M.T.; Folland, J.P. Short-term training for explosive strength causes neural and mechanical adaptations. Exp. Physiol. 2012, 97, 630–641. [Google Scholar] [CrossRef]
- Astorino, T.A.; Allen, R.P.; Roberson, D.W.; Jurancich, M. Effect of high-intensity interval training on cardiovascular function, Vo2max, and muscular force. J. Strength Cond. Res. 2012, 26, 138–145. [Google Scholar] [CrossRef]
- Laursen, P.B.; Jenkins, D.G. The scientific basis for high-intensity interval training. Sport. Med. 2002, 32, 53–73. [Google Scholar] [CrossRef]
- Carskadon, M.A.; Acebo, C. A self-administered rating scale for pubertal development. J. Adolesc. Health 1993, 14, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Marshall, W.A.; Tanner, J.M. Variations in pattern of pubertal changes in girls. Arch. Dis. Child. 1969, 44, 291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapman, D.W.; Newton, M.J.; McGuigan, M.R. Efficacy of interval-based training on conditioning of amateur field hockey players. J. Strength Cond. Res. 2009, 23, 712–717. [Google Scholar] [CrossRef] [PubMed]
- Briani, R.V.; de Oliveira Silva, D.; Ducatti, M.H.; Lopes, H.S.; Ferreira, A.S.; Mentiplay, B.F.; de Azevedo, F.M.; Barton, C.J. Knee flexor strength and rate of torque development deficits in women with patellofemoral pain are related to poor objective function. Gait Posture 2021, 83, 100–106. [Google Scholar] [CrossRef]
- Ferreira, A.S.; de Oliveira Silva, D.; Barton, C.J.; Briani, R.V.; Taborda, B.; Pazzinatto, M.F.; de Azevedo, F.M. Impaired isometric, concentric, and eccentric rate of torque development at the hip and knee in patellofemoral pain. J. Strength Cond. Res. 2021, 35, 2492–2497. [Google Scholar] [CrossRef]
- Webber, S.C.; Porter, M.M. Reliability of ankle isometric, isotonic, and isokinetic strength and power testing in older women. Phys. Ther. 2010, 90, 1165–1175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorlund, J.; Michalsik, L.; Madsen, K.; Aagaard, P. Acute fatigue-induced changes in muscle mechanical properties and neuromuscular activity in elite handball players following a handball match. Scand. J. Med. Sci. Sport. 2008, 18, 462–472. [Google Scholar] [CrossRef] [PubMed]
- De Ruiter, C.; Kooistra, R.; Paalman, M.; De Haan, A. Initial phase of maximal voluntary and electrically stimulated knee extension torque development at different knee angles. J. Appl. Physiol. 2004, 97, 1693–1701. [Google Scholar] [CrossRef] [Green Version]
- McNeil, C.J.; Allman, B.L.; Symons, T.B.; Vandervoort, A.A.; Rice, C.L. Torque loss induced by repetitive maximal eccentric contractions is marginally influenced by work-to-rest ratio. Eur. J. Appl. Physiol. 2004, 91, 579–585. [Google Scholar] [CrossRef] [PubMed]
- Symons, T.B.; Vandervoort, A.A.; Rice, C.L.; Overend, T.J.; Marsh, G.D. Reliability of a single-session isokinetic and isometric strength measurement protocol in older men. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2005, 60, 114–119. [Google Scholar] [CrossRef] [Green Version]
- Müller, D.C.; Izquierdo, M.; Boeno, F.P.; Aagaard, P.; Teodoro, J.L.; Grazioli, R.; Radaelli, R.; Bayer, H.; Neske, R.; Pinto, R.S. Adaptations in mechanical muscle function, muscle morphology, and aerobic power to high-intensity endurance training combined with either traditional or power strength training in older adults: A randomized clinical trial. Eur. J. Appl. Physiol. 2020, 120, 1165–1177. [Google Scholar] [CrossRef]
- Grazioli, R.; Lopez, P.; Andersen, L.L.; Machado, C.L.F.; Pinto, M.D.; Cadore, E.L.; Pinto, R.S. Hamstring rate of torque development is more affected than maximal voluntary contraction after a professional soccer match. Eur. J. Sport Sci. 2019, 19, 1336–1341. [Google Scholar] [CrossRef]
- Gerstner, G.R.; Thompson, B.J.; Rosenberg, J.G.; Sobolewski, E.J.; Scharville, M.J.; Ryan, E.D. Neural and muscular contributions to the age-related reductions in rapid strength. Med. Sci. Sport. Exerc. 2017, 49, 1331–1339. [Google Scholar] [CrossRef]
- Thompson, B.; Ryan, E.; Herda, T.; Costa, P.; Herda, A.; Cramer, J. Age-related changes in the rate of muscle activation and rapid force characteristics. Age 2014, 36, 839–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, B.J.; Ryan, E.D.; Herda, T.J.; Costa, P.B.; Walter, A.A.; Sobolewski, E.J.; Cramer, J.T. Consistency of rapid muscle force characteristics: Influence of muscle contraction onset detection methodology. J. Electromyogr. Kinesiol. 2012, 22, 893–900. [Google Scholar] [CrossRef]
- Suetta, C.; Aagaard, P.; Rosted, A.; Jakobsen, A.K.; Duus, B.; Kjaer, M.; Magnusson, S.P. Training-induced changes in muscle CSA, muscle strength, EMG, and rate of force development in elderly subjects after long-term unilateral disuse. J. Appl. Physiol. 2004, 97, 1954–1961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155. [Google Scholar] [CrossRef]
- de Oliveira, F.B.; Rizatto, G.F.; Denadai, B.S. Are early and late rate of force development differently influenced by fast-velocity resistance training? Clin. Physiol. Funct. Imaging 2013, 33, 282–287. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.S.; Corvino, R.B.; Caputo, F.; Aagaard, P.; Denadai, B.S. Effects of fast-velocity eccentric resistance training on early and late rate of force development. Eur. J. Sport Sci. 2016, 16, 199–205. [Google Scholar] [CrossRef] [Green Version]
- Mangine, G.T.; Hoffman, J.R.; Wang, R.; Gonzalez, A.M.; Townsend, J.R.; Wells, A.J.; Jajtner, A.R.; Beyer, K.S.; Boone, C.H.; Miramonti, A.A. Resistance training intensity and volume affect changes in rate of force development in resistance-trained men. Eur. J. Appl. Physiol. 2016, 116, 2367–2374. [Google Scholar] [CrossRef]
- Kinnunen, J.-V.; Piitulainen, H.; Piirainen, J.M. Neuromuscular adaptations to short-term high-intensity interval training in female ice-hockey players. J. Strength Cond. Res. 2019, 33, 479–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamont, H.S.; Cramer, J.T.; Bemben, D.A.; Shehab, R.L.; Anderson, M.A.; Bemben, M.G. Effects of adding whole body vibration to squat training on isometric force/time characteristics. J. Strength Cond. Res. 2010, 24, 171–183. [Google Scholar] [CrossRef] [Green Version]
- Gibala, M.J.; Jones, A.M. Physiological and performance adaptations to high-intensity interval training. Limits Hum. Endur. 2013, 76, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Esbjörnsson Liljedahl, M.; Holm, I.; Sylvén, C.; Jansson, E. Different responses of skeletal muscle following sprint training in men and women. Eur. J. Appl. Physiol. Occup. Physiol. 1996, 74, 375–383. [Google Scholar] [CrossRef]
- Methenitis, S.; Spengos, K.; Zaras, N.; Stasinaki, A.-N.; Papadimas, G.; Karampatsos, G.; Arnaoutis, G.; Terzis, G. Fiber type composition and rate of force development in endurance-and resistance-trained individuals. J. Strength Cond. Res. 2019, 33, 2388–2397. [Google Scholar] [CrossRef] [PubMed]
- Winter, E.M.; Abt, G.; Brookes, F.C.; Challis, J.H.; Fowler, N.E.; Knudson, D.V.; Knuttgen, H.G.; Kraemer, W.J.; Lane, A.M.; Van Mechelen, W. Misuse of “power” and other mechanical terms in sport and exercise science research. J. Strength Cond. Res. 2016, 30, 292–300. [Google Scholar] [CrossRef] [Green Version]
- Sökmen, B.; Witchey, R.L.; Adams, G.M.; Beam, W.C. Effects of sprint interval training with active recovery vs. endurance training on aerobic and anaerobic power, muscular strength, and sprint ability. J. Strength Cond. Res. 2018, 32, 624–631. [Google Scholar] [CrossRef]
- Ferley, D.D.; Osborn, R.W.; Vukovich, M.D. The effects of incline and level-grade high-intensity interval treadmill training on running economy and muscle power in well-trained distance runners. J. Strength Cond. Res. 2014, 28, 1298–1309. [Google Scholar] [CrossRef] [Green Version]
- Özgünen, K.; Özdemir, Ç.; Adaş, Ü.; Kilci, A.; Boyraz, C.; Eryilmaz, S.K.; Günaşti, Ö.; Askeri, N.; Kurdak, S. Effect of repeated sprint training on isokinetic strength parameters in youth soccer players. Isokinet. Exerc. Sci. 2021, 29, 343–351. [Google Scholar] [CrossRef]
- Stevens, W.C.; Chester, W. Does a Season of Lacrosse Practice and Competition Change the Fitness Levels of Middle School Girls? Available online: https://aahperd.confex.com/aahperd/2007/finalprogram/paper_10014.htm (accessed on 1 January 2023).
- Pereira, A.; Costa, A.M.; Santos, P.; Figueiredo, T.; Vicente João, P. Training strategy of explosive strength in young female volleyball players. Medicina 2015, 51, 126–131. [Google Scholar] [CrossRef]
- Siegler, J.; Gaskill, S.; Ruby, B. Changes evaluated in soccer-specific power endurance either with or without a 10-week, in-season, intermittent, high-intensity training protocol. J. Strength Cond. Res. 2003, 17, 379–387. [Google Scholar] [PubMed]
- Meszler, B.; Váczi, M. Effects of short-term in-season plyometric training in adolescent female basketball players. Physiol. Int. 2019, 106, 168–179. [Google Scholar] [CrossRef] [PubMed]
- Rosene, J.M. The Effects of a 10-Week In-Season Strength Training Program for Male High School Lacrosse Players; Southern Connecticut State University: New Haven, CT, USA, 1993. [Google Scholar]
- Talpey, S.W.; Axtell, R.; Gardner, E.; James, L. Changes in lower body muscular performance following a season of NCAA division I men’s lacrosse. Sports 2019, 7, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, T.; Murara, P.; Vancini, R.L.; de Lira, C.A.B.; Andrade, M.S. Influence of biological maturity on the muscular strength of young male and female swimmers. J. Hum. Kinet. 2021, 78, 67–77. [Google Scholar] [CrossRef]
Preseason | Midseason | Postseason | p-Value | ES; 95% CI | ||
---|---|---|---|---|---|---|
Peak Torque (Nm) | ||||||
Isometric | 0 rad·s−1 | 157.9 ± 26.2 | 174.1 ± 36.0 (+10%) | 189.6 ± 21.1 † (+20%) | 0.002 * | 1.1; −60.8 to −20.6 |
ISOM50 | 31.6 ± 22.5 | 43.1 ± 14.6 (+36%) | 41.7 ± 12.1 (+32%) | 0.060 | ||
ISOM100 | 53.4 ± 23.7 | 71.2 ± 14.6 † (+33%) | 64.9 ± 14.3 (+22%) | 0.012 * | 0.9; −34.5 to −1.1 | |
ISOM200 | 95.0 ± 26.3 | 116.1 ± 18.9 † (+22%) | 105.9 ± 14.9 (+11%) | 0.044 * | 0.9; −40.5 to −1.7 | |
Concentric | 1.57 rad·s−1 | 120.2 ± 13.5 | 124.4 ± 13.7 (+4%) | 122.5 ± 14.1 (+2%) | 0.669 | |
3.14 rad·s−1 | 92.7 ± 11.5 | 97.5 ± 9.6 (+5%) | 101.1 ± 10.2 † (+9%) | 0.038 * | 0.8; −18.2 to 0.0 | |
Rate of Torque Development (Nm·s−1) | ||||||
Isometric | RTD0–50 | 607.3 ± 451.1 | 862.7 ± 292.7 ‡ (+42%) | 864.7 ± 255.4 † (+42%) | 0.004 * | 0.7; −577.3 to 66.5 |
RTD0–100 | 545.2 ± 257.2 | 700.5 ± 144.9 (+28%) | 659.4 ± 171.2 (+21%) | 0.051 | ||
RTD0–200 | 482.6 ± 144.5 | 573.5 ± 100.2 (+19%) | 535.3 ± 82.4 (+11%) | 0.076 | ||
Contractile Impulse (Nm·s) | ||||||
Isometric | IMP0–50 | 1.3 ± 1.1 | 1.5 ± 0.6 (+15%) | 1.8 ± 1.0 † (+38%) | 0.025 * | 0.5; −1.4 to 0.4 |
IMP0–100 | 3.7 ± 2.6 | 4.8 ± 1.4 (+30%) | 4.9 ± 2.1 † (+32%) | 0.018 * | 0.5; 3.1 to 0.9 | |
IMP0–200 | 14.5 ± 6.6 | 18.1 ± 3.6 (+25%) | 17.6 ± 4.4 † (+21%) | 0.031 * | 0.6; −7.8 to 1.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Symons, T.B.; Roberts, A.H.; Carter, K.A.; Caruso, J.F. The Addition of Sprint Interval Training to Field Lacrosse Training Increases Rate of Torque Development and Contractile Impulse in Female High School Field Lacrosse Players. J. Funct. Morphol. Kinesiol. 2023, 8, 89. https://doi.org/10.3390/jfmk8030089
Symons TB, Roberts AH, Carter KA, Caruso JF. The Addition of Sprint Interval Training to Field Lacrosse Training Increases Rate of Torque Development and Contractile Impulse in Female High School Field Lacrosse Players. Journal of Functional Morphology and Kinesiology. 2023; 8(3):89. https://doi.org/10.3390/jfmk8030089
Chicago/Turabian StyleSymons, T. Brock, Alexandra H. Roberts, Kathleen A. Carter, and John F. Caruso. 2023. "The Addition of Sprint Interval Training to Field Lacrosse Training Increases Rate of Torque Development and Contractile Impulse in Female High School Field Lacrosse Players" Journal of Functional Morphology and Kinesiology 8, no. 3: 89. https://doi.org/10.3390/jfmk8030089
APA StyleSymons, T. B., Roberts, A. H., Carter, K. A., & Caruso, J. F. (2023). The Addition of Sprint Interval Training to Field Lacrosse Training Increases Rate of Torque Development and Contractile Impulse in Female High School Field Lacrosse Players. Journal of Functional Morphology and Kinesiology, 8(3), 89. https://doi.org/10.3390/jfmk8030089