Delayed Effect of Dry-Land Strength Training Sessions on Swimming Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Approach to the Problem
2.2. Participants
2.3. Testing Procedures
2.3.1. Preliminary Testing and Familiarization Session
2.3.2. Experimental Conditions
2.3.3. Dry Land Strength Training
2.3.4. Low Intensity Swimming Interval Training
2.4. Dry-Land Performance Evaluations
2.4.1. Upper Limb Evaluation
2.4.2. Lower Limb Evaluation
2.4.3. Swimming 100-m Sprint on the following Day
2.5. Statistical Analyses
3. Results
3.1. Dry-Land Performance Evaluations
3.2. Swimming Performance and Kinematics in 100-m Sprint Test
3.3. Physiological Variables and Rate of Perceived Exertion
4. Discussion
4.1. Dry-Land Performance Evaluations
4.2. Swimming Performance on the following Day
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arsoniadis, G.; Botonis, P.; Bogdanis, G.C.; Terzis, G.; Toubekis, A. Acute and Long-Term Effects of Concurrent Resistance and Swimming Training on Swimming Performance. Sports 2022, 10, 29. [Google Scholar] [CrossRef] [PubMed]
- Arsoniadis, G.G.; Bogdanis, G.C.; Terzis, G.; Toubekis, A. Acute Resistance Exercise: Physiological and Biomechanical Alterations during a Subsequent Swim-Training Session. Int. J. Sports Physiol. Perf. 2019, 15, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Dalamitros, A.A.; Orologas, P.; Nousiou, S.; Semaltianou, E.; Zourladani, A.; Manou, V. The acute effects of different resistance training loads on repeated sprint ability in water polo players. Hum. Mov. 2021, 22, 78–82. [Google Scholar] [CrossRef]
- McGowan, C.J.; Pyne, D.B.; Thompson, K.G.; Raglin, J.S.; Rattray, B. Morning exercise enhancement of afternoon sprint-swimming performance. Int. J. Sports Physiol. Perf. 2017, 12, 605–611. [Google Scholar] [CrossRef]
- Zaras, N.; Apostolidis, A.; Kavvoura, A.; Hadjicharalambous, M. Comparison between dry-land and swimming priming on 50-m crawl performance in well-trained adolescent swimmers. Sports 2022, 10, 52. [Google Scholar] [CrossRef] [PubMed]
- Harrison, P.W.; James, L.P.; McGuigan, M.R.; Jenkins, D.G.; Kelly, V.G. Resistance priming to enhance neuromuscular performance in sport: Evidence, potential mechanisms and directions for future research. Sports Med. 2019, 49, 1499–1514. [Google Scholar] [CrossRef] [PubMed]
- Tsoukos, A.; Veligekas, P.; Brown, L.E.; Terzis, G.; Bogdanis, G.C. Delayed effects of a low-volume, power-type resistance exercise on explosive performance. J. Strength Cond. Res. 2018, 32, 643–650. [Google Scholar] [CrossRef]
- Raastad, T.; Hallen, J. Recovery of skeletal muscle contractility after high—And moderate—Intensity strength exercise. Eur. J. Appl. Physiol. 2000, 82, 206–214. [Google Scholar] [CrossRef]
- Doma, K.; Deakin, G.B. The effects of combined strength and endurance training on running performance the following day. J. Sport Health Sci. 2013, 11, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Jackson, A.S.; Pollock, M.L. Generalized equations for predicting body density of men. Br. J. Nutr. 1978, 40, 497–504. [Google Scholar] [CrossRef] [Green Version]
- Levinger, I.; Goodman, C.; Hare, L.D.; Jerums, G.; Toia, D.; Selig, S. The reliability of the 1RM strength test for untrained middle-aged individuals. J. Sci. Med. Sport 2009, 12, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Girold, S.; Jalab, C.; Bernard, O.; Carette, P.; Kemoun, G.; Dugie, B. Dry-land strength training vs. electrical stimulation in sprint swimming performance. J. Strength Cond. Res. 2012, 26, 497–505. [Google Scholar] [CrossRef] [PubMed]
- Dorie, B.; Maenhout, A.; Cools, A.M. Upper Quadrant field tests and isokinetic upper limb strength in overhead athletes. J. Athl. Train. 2016, 51, 1–9. [Google Scholar] [CrossRef] [Green Version]
- West, D.J.; Owen, N.J.; Jones, M.R.; Bracken, R.M.; Cook, C.J.; Cunningham, D.J.; Shearer, D.A.; Finn, C.V.; Newton, R.U.; Crewther, B.T.; et al. Relationships between the force-time characteristics of the isometric midthigh pull and dynamic performance in professional rugby players. J. Strength Cond. Res. 2011, 25, 3070–3075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glatthom, F.J.; Gouge, S.; Nussbaumer, S.; Stauffacher, S.; Impellizzeri, M.F.; Maffiuletti, A.N. Validity and reliability of Optojump photoelectric cells for estimating vertical jump height. J. Strength Cond. Res. 2011, 25, 556–560. [Google Scholar] [CrossRef]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Stanula, A.; Goswami, A. Peak blood lactate concentration and its arrival time following different track running events in under-20 male track athletes. Int. J. Sport Physiol. Perf. 2021, 16, 1625–1633. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Bucher, A.; Lang, A.G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [Green Version]
- Walker, S.; Davis, L.; Avela, J.; Häkkinen, K. Neuromuscular fatigue during dynamic maximal strength and hypertrophic resistance loadings. J. Electromyogr. Kinesiol. 2012, 22, 356–362. [Google Scholar] [CrossRef]
- McCaulley, G.O.; McBride, J.M.; Cormie, P.; Hudson, M.B.; Nuzzo, J.L.; Quindry, J.C.; Triplett, T.N. Acute hormonal and neuromuscular responses to hypertrophy strength and power type resistance exercise. Eur. J. Appl. Physiol. 2009, 105, 695–704. [Google Scholar] [CrossRef]
- Søgaard, k.; Gandevia, S.C.; Todd, G.; Petersen, N.T.; Taylor, J.L. The effect of sustained low-intensity contractions on supraspinal fatigue in human elbow flexor muscles. J. Physiol. 2006, 573, 511–523. [Google Scholar] [CrossRef] [PubMed]
- Howatson, G.; Brandon, R.; Huneter, A.M. The response to and recovery from maximum-strength and-power training in elite track and field athletes. Int. J. Sports Physiol. Perf. 2016, 11, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Crowley, E.; Harrison, A.J.; Lyons, M. The impact of resistance training on swimming performance: A systematic review. Sports Med. 2017, 47, 2285–2307. [Google Scholar] [CrossRef] [PubMed]
- Ekstrand, L.G.; Battaglini, C.L.; McMurray, R.G.; Shields, E.W. Assessing explosive powder production using the backward overhead shot throw and the effects of morning resistance exercise on afternoon performance. J. Strength Cond. Res. 2013, 27, 101–106. [Google Scholar] [CrossRef]
- Mason, R.J.B.; Argus, K.C.; Norgott, B.; Ball, B.K. Resistance training priming activity improves upper-body power output in rugby players: Implications for game day performance. J. Strength Cond. Res. 2017, 31, 913–920. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho e Silva, G.I.; Brandão, L.H.A.; dos Santos Silva, D.; de Jesus Alves, M.D.; Aidar, F.J.; de Sousa Fernandes, M.S.; Sampaio, R.A.C.; Knechtle, B.; de Souza, R.F. Acute neuromuscular, physiological and performance responses after strength training in runners: A systematic review and meta-analysis. Sports Med. Open 2022, 8, 1–105. [Google Scholar] [CrossRef]
- Tsami, A.; Toubekis, A.; Douda, H.; Tahtalis, T.; Gourgoulis, V.; Tokmakidis, S. Effects of active recovery on swimming performance observed 24 hours after a high intensity training session. Exerc. Soc. J. Sport. Sci. 2006, 42, 27–34. (In Greek) [Google Scholar]
- Doma, K.; Deakin, G.B. The acute effects intensity and volume of strength training on running performance. Eur. J. Sport. Sci. 2014, 14, 107–115. [Google Scholar] [CrossRef]
Variables | Overall swimmers (n = 8) | Male Swimmers (n = 5) | Female Swimmers (n = 3) |
---|---|---|---|
Age (years) | 18.6 ± 2.9 | 19.6 ± 3.1 | 17.7 ± 2.2 |
Body mass (kg) | 65.6 ± 10.2 | 67.9 ± 5.6 | 64.6 ± 3.4 |
Body height (cm) | 172.4 ± 6.4 | 174.6 ± 3.3 | 168.6 ± 2.8 |
Arm-span (cm) | 176.2 ± 8.2 | 177.4 ± 4.5 | 171.6 ± 3.2 |
Seated height (cm) | 90.4 ± 4.3 | 91.8 ± 3.6 | 90.5 ± 4.5 |
Body fat (%) | 16.9 ± 4.0 | 15.5 ± 2.2 | 19.4 ± 2.1 |
Body mass index (kg/m2) | 21.4 ± 2.3 | 22.0 ± 2.1 | 21.7 ± 1.9 |
100-m sprint time (s) | 60.5 ± 7.7 | 56.3 ± 2.4 | 65.3 ± 3.2 |
FINA points (100-m front crawl) | 555.6 ± 12.1 | 590.4 ± 14.5 | 497.6 ± 12.3 |
Competitive experience (years) | 9.8 ± 1.6 | 10.2 ± 2.3 | 9.3 ± 1.5 |
Dry-land training experience (years) | 2.0 ± 2.2 | 2.3 ± 1.6 | 2.0 ± 1.0 |
Dry-Land Strength Endurance Training Session (SE) | |||||
Exercises | Number of Sets | Number of Repetitions | Intensity (%1-RM) | Rest | Movement Tempo/Repetition |
Bench press | 2 | 20 | 55 | 20 s | 2 s/repetition |
Seated pulley rowing | 2 | 20 | 55 | 20 s | 2 s/repetition |
Sit-ups | 3 | 15 | Body weight | 30 s | Preferred |
Back extension | 3 | 15 | Body weight | 30 s | Preferred |
Half squat (knee angle 90°) | 2 | 20 | 55 | 20 s | 2 s/repetition |
Overall duration | 20 min | ||||
Dry-Land Maximum Strength Training Session (MS) | |||||
Exercises | Number of Sets | Number of Repetitions | Intensity (%1-RM) | Rest | Movement Tempo/Repetition |
Bench press | 3 | 4 | 90 | 3 min | 4 s/repetition |
Seated pulley rowing | 3 | 4 | 90 | 3 min | 4 s/repetition |
Sit-ups | 3 | 15 | Body weight | 30 s | Preferred |
Back extension | 3 | 15 | Body weight | 30 s | Preferred |
Half squat (knee angle 90°) | 3 | 4 | 90 | 3 min | 4 s/repetition |
Overall duration | 26 min |
Variables | SE | MS | CON |
---|---|---|---|
Swimming Performance (s) | |||
Overall, 100-m | 63.81 ± 7.29 | 64.70 ± 7.35 | 64.52 ± 7.71 |
1st 50-m split | 30.48 ± 3.96 | 30.86 ± 3.84 | 30.97 ± 3.63 |
2nd 50-m split | 33.33 ±3.40 * | 33.84 ± 3.65 * | 33.56 ± 4.13 * |
Arm-stroke rate (cycles·min−1) | |||
Overall, 100-m | 42.60 ± 5.68 | 42.84 ± 5.59 | 43.33 ± 5.54 |
1st 50-m split | 43.61 ± 6.51 | 43.89 ± 5.60 | 44.42 ± 6.11 |
2nd 50-m split | 41.60 ± 5.02 * | 41.79 ± 5.80 * | 42.24 ± 5.27 * |
Arm-stroke length (m·cycle−1) | |||
Overall, 100-m | 2.24 ± 0.13 | 2.20 ± 0.09 | 2.18 ± 0.13 |
1st 50-m split | 2.30 ± 0.17 | 2.15 ± 0.09 | 2.22 ± 0.17 |
2nd 50-m split | 2.19 ± 0.10 * | 2.25 ± 0.11 * | 2.15 ± 0.10 * |
Conditions | Blood Lactate (mmol·L−1) | Heart Rate (b·min−1) | RPE (a.u) |
---|---|---|---|
SE | Before 100-m: 1.6 ± 0.9 After 100-m: 10.8 ± 4.3 † | 178 ± 9 | 8.6 ± 1.5 |
MS | Before 100-m: 1.5 ± 0.2 After 100-m: 10.2±2.7 † | 179 ± 10 | 9.0 ± 1.1 |
CON | Before 100-m: 1.3 ± 0.2 After 100-m: 9.7±3.9 † | 175 ± 13 | 8.9 ± 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsoltos, A.; Arsoniadis, G.; Tsolakis, C.; Koulouvaris, P.; Simeonidis, T.; Chatzigiannakis, A.; Toubekis, A. Delayed Effect of Dry-Land Strength Training Sessions on Swimming Performance. J. Funct. Morphol. Kinesiol. 2023, 8, 87. https://doi.org/10.3390/jfmk8030087
Tsoltos A, Arsoniadis G, Tsolakis C, Koulouvaris P, Simeonidis T, Chatzigiannakis A, Toubekis A. Delayed Effect of Dry-Land Strength Training Sessions on Swimming Performance. Journal of Functional Morphology and Kinesiology. 2023; 8(3):87. https://doi.org/10.3390/jfmk8030087
Chicago/Turabian StyleTsoltos, Alexandros, Gavriil Arsoniadis, Charilaos Tsolakis, Panagiotis Koulouvaris, Theocharis Simeonidis, Alexandros Chatzigiannakis, and Argyris Toubekis. 2023. "Delayed Effect of Dry-Land Strength Training Sessions on Swimming Performance" Journal of Functional Morphology and Kinesiology 8, no. 3: 87. https://doi.org/10.3390/jfmk8030087
APA StyleTsoltos, A., Arsoniadis, G., Tsolakis, C., Koulouvaris, P., Simeonidis, T., Chatzigiannakis, A., & Toubekis, A. (2023). Delayed Effect of Dry-Land Strength Training Sessions on Swimming Performance. Journal of Functional Morphology and Kinesiology, 8(3), 87. https://doi.org/10.3390/jfmk8030087