Sex Differences in Resting Metabolic Rate among Athletes and Association with Body Composition Parameters: A Follow-Up Investigation
Abstract
:1. Introduction
2. Methods
2.1. Subjects
2.2. Study Design
2.3. Data Collection Procedures
2.3.1. Body Composition
2.3.2. Resting Metabolic Rate
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cunningham, J.J. Body composition as a determinant of energy expenditure: A synthetic review and a proposed general prediction equation. Am. J. Clin. Nutr. 1991, 54, 963–969. [Google Scholar] [CrossRef]
- Reale, R.J.; Roberts, T.J.; Lee, K.A.; Bonsignore, J.L.; Anderson, M.L. Metabolic Rate in Adolescent Athletes: The Development and Validation of New Equations, and Comparison to Previous Models. Int. J. Sport Nutr. Exerc. Metab. 2020, 30, 249–257. [Google Scholar] [CrossRef]
- Watson, A.D.; Zabriskie, H.A.; Witherbee, K.E.; Sulavik, A.; Gieske, B.T.; Kerksick, C.M. Determining a Resting Metabolic Rate Prediction Equation for Collegiate Female Athletes. J. Strength Cond. Res. 2019, 33, 2426–2432. [Google Scholar] [CrossRef]
- Poehlman, E.T.; Toth, M.J.; Ades, P.A.; Calles-Escandon, J. Gender differences in resting metabolic rate and noradrenaline kinetics in older individuals. Eur. J. Clin. Investig. 1997, 27, 23–28. [Google Scholar] [CrossRef]
- Jagim, A.R.; Camic, C.L.; Askow, A.; Luedke, J.; Erickson, J.; Kerksick, C.M.; Jones, M.T.; Oliver, J.M. Sex Differences in Resting Metabolic Rate Among Athletes. J. Strength Cond. Res. 2019, 33, 3008–3014. [Google Scholar] [CrossRef]
- Redman, L.M.; Kraus, W.E.; Bhapkar, M.; Das, S.K.; Racette, S.B.; Martin, C.K.; Fontana, L.; Wong, W.W.; Roberts, S.B.; Ravussin, E.; et al. Energy requirements in nonobese men and women: Results from CALERIE. Am. J. Clin. Nutr. 2014, 99, 71–78. [Google Scholar] [CrossRef] [Green Version]
- Arciero, P.J.; Goran, M.I.; Poehlman, E.T. Resting metabolic rate is lower in women than in men. J. Appl. Physiol. 1993, 75, 2514–2520. [Google Scholar] [CrossRef] [Green Version]
- Ravussin, E.; Lillioja, S.; Anderson, T.E.; Christin, L.; Bogardus, C. Determinants of 24-hour energy expenditure in man. Methods and results using a respiratory chamber. J. Clin. Investig. 1986, 78, 1568–1578. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, S.; Hensrud, D.D.; Romanski, S.; Levine, J.A.; Burguera, B.; Jensen, M.D. Body composition and resting energy expenditure in humans: Role of fat, fat-free mass and extracellular fluid. Int. J. Obes. 2000, 24, 1153–1157. [Google Scholar] [CrossRef] [Green Version]
- Ravussin, E.; Lillioja, S.; Knowler, W.C.; Christin, L.; Freymond, D.; Abbott, W.G.; Boyce, V.; Howard, B.V.; Bogardus, C. Reduced rate of energy expenditure as a risk factor for body-weight gain. N. Engl. J. Med. 1988, 318, 467–472. [Google Scholar] [CrossRef]
- Trexler, E.T.; Smith-Ryan, A.E.; Norton, L.E. Metabolic adaptation to weight loss: Implications for the athlete. J. Int. Soc. Sports Nutr. 2014, 11, 7. [Google Scholar] [CrossRef] [Green Version]
- Brozek, J.; Grande, F.; Anderson, J.T.; Keys, A. Densitometric Analysis of Body Composition: Revision of Some Quantitative Assumptions. Ann. N. Y. Acad. Sci. 1963, 110, 113–140. [Google Scholar] [CrossRef]
- Evans, J.D. Straightforward Statistics for the Behavioral Sciences; Thomson Brooks/Cole Publishing Co.: Monterey, CA, USA, 1996. [Google Scholar]
- Thompson, J.; Manore, M.M. Predicted and measured resting metabolic rate of male and female endurance athletes. J. Am. Diet. Assoc. 1996, 96, 30–34. [Google Scholar] [CrossRef]
- Freire, R.; Pereira, G.R.; Alcantara, J.M.A.; Santos, R.; Hausen, M.; Itaborahy, A. New Predictive Resting Metabolic Rate Equations for High-Level Athletes: A Cross-Validation Study. Med. Sci. Sports Exerc. 2022, 54, 1335–1345. [Google Scholar] [CrossRef]
- Cunningham, J.J. A reanalysis of the factors influencing basal metabolic rate in normal adults. Am. J. Clin. Nutr. 1980, 33, 2372–2374. [Google Scholar] [CrossRef] [Green Version]
- Mifflin, M.D.; St Jeor, S.T.; Hill, L.A.; Scott, B.J.; Daugherty, S.A.; Koh, Y.O. A new predictive equation for resting energy expenditure in healthy individuals. Am. J. Clin. Nutr. 1990, 51, 241–247. [Google Scholar] [CrossRef] [Green Version]
- Nelson, K.M.; Weinsier, R.L.; Long, C.L.; Schutz, Y. Prediction of resting energy expenditure from fat-free mass and fat mass. Am. J. Clin. Nutr. 1992, 56, 848–856. [Google Scholar] [CrossRef]
- Hannon, M.P.; Carney, D.J.; Floyd, S.; Parker, L.J.F.; McKeown, J.; Drust, B.; Unnithan, V.B.; Close, G.L.; Morton, J.P. Cross-sectional comparison of body composition and resting metabolic rate in Premier League academy soccer players: Implications for growth and maturation. J. Sports Sci. 2020, 38, 1326–1334. [Google Scholar] [CrossRef]
- Tinsley, G.M.; Graybeal, A.J.; Moore, M.L. Resting metabolic rate in muscular physique athletes: Validity of existing methods and development of new prediction equations. Appl. Physiol. Nutr. Metab. 2019, 44, 397–406. [Google Scholar] [CrossRef] [Green Version]
- Fields, J.B.; Magee, M.K.; Jones, M.T.; Askow, A.T.; Camic, C.L.; Luedke, J.; Jagim, A.R. The accuracy of ten common resting metabolic rate prediction equations in men and women collegiate athletes. Eur. J. Sport Sci. 2022, 1–10. [Google Scholar] [CrossRef]
- MacKenzie-Shalders, K.L.; Byrne, N.M.; King, N.A.; Slater, G.J. Are increases in skeletal muscle mass accompanied by changes to resting metabolic rate in rugby athletes over a pre-season training period? Eur. J. Sport Sci. 2019, 19, 885–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poehlman, E.T.; Melby, C.L.; Badylak, S.F. Resting metabolic rate and postprandial thermogenesis in highly trained and untrained males. Am. J. Clin. Nutr. 1988, 47, 793–798. [Google Scholar] [CrossRef] [PubMed]
- Schulz, L.O.; Nyomba, B.L.; Alger, S.; Anderson, T.E.; Ravussin, E. Effect of endurance training on sedentary energy expenditure measured in a respiratory chamber. Am. J. Physiol. 1991, 260, E257–E261. [Google Scholar] [CrossRef] [PubMed]
- Staal, S.; Sjodin, A.; Fahrenholtz, I.; Bonnesen, K.; Melin, A.K. Low RMR(ratio) as a Surrogate Marker for Energy Deficiency, the Choice of Predictive Equation Vital for Correctly Identifying Male and Female Ballet Dancers at Risk. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Koshimizu, T.; Matsushima, Y.; Yokota, Y.; Yanagisawa, K.; Nagai, S.; Okamura, K.; Komatsu, Y.; Kawahara, T. Basal metabolic rate and body composition of elite Japanese male athletes. J. Med. Investig. 2012, 59, 253–260. [Google Scholar] [CrossRef] [Green Version]
Variable | Men | Women | p Value |
---|---|---|---|
Age (y.) | 20.1 ± 1.6 | 19.5 ± 1.1 | <0.001 |
Height (cm) | 181.6 ± 6.2 | 168.0 ± 6.6 | <0.001 |
Body mass (kg) | 92.7 ± 17.5 | 65.2 ± 11.0 | <0.001 |
Body mass index (kg/m2) | 28.0 ± 4.7 | 23.0 ± 3.6 | <0.001 |
Body fat (%) | 15.6 ± 8.8 | 22.7 ± 6.0 | <0.001 |
Fat-free mass (kg) | 77.1 ± 9.4 | 49.6 ± 6.4 | <0.001 |
Fat mass (kg) | 15.3 ± 11.3 | 15.1 ± 9.2 | 0.884 |
Variable | R2 | β | Slope | SEE | p Value |
---|---|---|---|---|---|
Height | 0.163 | 0.404 | 27.34 | 6.53 | <0.001 |
Body mass | 0.615 | 0.784 | 19.20 | 1.60 | <0.001 |
Body mass index | 0.521 | 0.722 | 66.36 | 6.71 | <0.001 |
Body Fat % | 0.279 | 0.529 | 25.33 | 4.29 | <0.001 |
Fat-free mass | 0.455 | 0.674 | 31.11 | 3.59 | <0.001 |
Fat mass | 0.404 | 0.636 | 23.83 | 3.05 | <0.001 |
Variable | R2 | β | Slope | SEE | p Value |
---|---|---|---|---|---|
Height | 0.244 | 0.494 | 21.02 | 4.66 | <0.001 |
Body mass | 0.692 | 0.832 | 20.96 | 1.76 | <0.001 |
Body mass index | 0.478 | 0.692 | 55.40 | 7.29 | <0.001 |
Body fat % | 0.229 | 0.479 | 24.95 | 5.76 | <0.001 |
Fat-free mass | 0.593 | 0.770 | 33.50 | 3.50 | <0.001 |
Fat mass | 0.489 | 0.699 | 31.54 | 4.06 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jagim, A.R.; Jones, M.T.; Askow, A.T.; Luedke, J.; Erickson, J.L.; Fields, J.B.; Kerksick, C.M. Sex Differences in Resting Metabolic Rate among Athletes and Association with Body Composition Parameters: A Follow-Up Investigation. J. Funct. Morphol. Kinesiol. 2023, 8, 109. https://doi.org/10.3390/jfmk8030109
Jagim AR, Jones MT, Askow AT, Luedke J, Erickson JL, Fields JB, Kerksick CM. Sex Differences in Resting Metabolic Rate among Athletes and Association with Body Composition Parameters: A Follow-Up Investigation. Journal of Functional Morphology and Kinesiology. 2023; 8(3):109. https://doi.org/10.3390/jfmk8030109
Chicago/Turabian StyleJagim, Andrew R., Margaret T. Jones, Andrew T. Askow, Joel Luedke, Jacob L. Erickson, Jennifer B. Fields, and Chad M. Kerksick. 2023. "Sex Differences in Resting Metabolic Rate among Athletes and Association with Body Composition Parameters: A Follow-Up Investigation" Journal of Functional Morphology and Kinesiology 8, no. 3: 109. https://doi.org/10.3390/jfmk8030109
APA StyleJagim, A. R., Jones, M. T., Askow, A. T., Luedke, J., Erickson, J. L., Fields, J. B., & Kerksick, C. M. (2023). Sex Differences in Resting Metabolic Rate among Athletes and Association with Body Composition Parameters: A Follow-Up Investigation. Journal of Functional Morphology and Kinesiology, 8(3), 109. https://doi.org/10.3390/jfmk8030109