Clinical Effects of L-Carnitine Supplementation on Physical Performance in Healthy Subjects, the Key to Success in Rehabilitation: A Systematic Review and Meta-Analysis from the Rehabilitation Point of View
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Study Selection
2.3. Data Collection Process, Data Extraction and Outcomes
2.4. Risk of Bias
2.5. Quality of Outcomes
2.6. Meta-Analysis Calculations
3. Results
3.1. Variations of Experimental Conditions across the Studies
3.2. Participants, Interventions and Comparators
3.3. Meta-Analysis Results
3.4. Heterogeneity and Publication Bias
3.5. Comparing Studies
3.6. Posology and Timeframe
4. Discussion
4.1. Implication in Sports and Rehabilitation
4.2. Ineffective Use of L-Carnitine
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chun, Y.; Lee, K.; Kang, S.; Lee, N.; Kim, J. Influence of L-Carnitine intake for maximal exercise performance and fatigue recovery exercise athletes: Based on elite soccer plaers. Phys. Act. Nutr. 2011, 6, 28–34. [Google Scholar] [CrossRef]
- Cruciani, R.A.; Zhang, J.J.; Manola, J.; Cella, D.; Ansari, B.; Fisch, M.J. L-Carnitine Supplementation for the Management of Fatigue in Patients with Cancer: An Eastern Cooperative Oncology Group Phase III, Randomized, Double-Blind, Placebo-Controlled Trial. J. Clin. Oncol. 2012, 30, 3864–3869. [Google Scholar] [CrossRef]
- De Simone, C.; Tzantzoglou, S.; Famularo, G.; Moretti, S.; Paoletti, F.; Vullo, V.; Delia, S. High dose L-carnitine improves immunologic and metabolic parameters in AIDS patients. Immunopharmacol. Immunotoxicol. 1993, 15, 1–12. [Google Scholar] [CrossRef]
- Siami, G.; Clinton, M.E.; Mrak, R.; Griffis, J.; Stone, W. Evaluation of the Effect of Intravenous L-Carnitine Therapy on Function, Structure and Fatty Acid Metabolism of Skeletal Muscle in Patients Receiving Chronic Hemodialysis. Nephron 1991, 57, 306–313. [Google Scholar] [CrossRef]
- Silvério, R.; Laviano, A.; Fanelli, F.R.; Seelaender, M. L-carnitine and cancer cachexia: Clinical and experimental aspects. J. Cachex-Sarcopenia Muscle 2011, 2, 37–44. [Google Scholar] [CrossRef]
- Vecchio, M.; Malaguarnera, G.; Giordano, M.; Malaguarnera, M.; Li Volti, G.; Galvano, F.; Drago, F.; Basile, F.; Malaguarnera, M. A Musician’s Dystonia. Lancet 2012, 379, 2116. [Google Scholar] [CrossRef]
- Malaguarnera, M.; Cammalleri, L.; Gargante, M.P.; Vacante, M.; Colonna, V.; Motta, M. L-Carnitine treatment reduces severity of physical and mental fatigue and increases cognitive functions in centenarians: A randomized and controlled clinical trial. Am. J. Clin. Nutr. 2007, 86, 1738–1744. [Google Scholar] [CrossRef]
- Kraemer, W.J.; Volek, J.S.; Spiering, B.A.; Vingren, J.L. L-Carnitine Supplementation: A New Paradigm for its Role in Exercise. Mon. Für Chem. /Chem. Mon. 2005, 136, 1383–1390. [Google Scholar] [CrossRef]
- Shamseer, L.; Moher, D.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. BMJ 2015, 350, 7647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stroup, D.F.; Berlin, J.A.; Morton, S.C.; Olkin, I.; Williamson, G.D.; Rennie, D.; Moher, D.; Becker, B.J.; Sipe, T.A.; Thacker, S.B.; et al. Meta-analysis of Observational Studies in EpidemiologyA Proposal for Reporting. JAMA 2000, 283, 2008–2012. [Google Scholar] [CrossRef] [PubMed]
- Methley, A.M.; Campbell, S.; Chew-Graham, C.; McNally, R.; Cheraghi-Sohi, S. PICO, PICOS and SPIDER: A comparison study of specificity and sensitivity in three search tools for qualitative systematic reviews. BMC Health Serv. Res. 2014, 14, 579. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.T.; Green, S. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions; Cochrane Collaboration: Oxford, UK, 2008. [Google Scholar]
- Guyatt, G.; Oxman, A.D.; Akl, E.A.; Kunz, R.; Vist, G.; Brozek, J.; Norris, S.; Falck-Ytter, Y.; Glasziou, P.; DeBeer, H.; et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J. Clin. Epidemiol. 2011, 64, 383–394. [Google Scholar] [CrossRef]
- Guyatt, G.H.; Oxman, A.D.; Kunz, R.; Brozek, J.; Alonso-Coello, P.; Rind, D.; Devereaux, P.J.; Montori, V.M.; Freyschuss, B.; Vist, G.; et al. GRADE guidelines 6. Rating the quality of evidence—Imprecision. J. Clin. Epidemiol. 2011, 64, 1283–1293. [Google Scholar] [CrossRef]
- Guyatt, G.H.; Oxman, A.D.; Vist, G.; Kunz, R.; Brozek, J.; Alonso-Coello, P.; Montori, V.; Akl, E.A.; Djulbegovic, B.; Falck-Ytter, Y. GRADE guidelines: 4. Rating the quality of evidence—Study limitations (risk of bias). J. Clin. Epidemiol. 2011, 64, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Guyatt, G.H.; Oxman, A.D.; Montori, V.; Vist, G.; Kunz, R.; Brozek, J.; Alonso-Coello, P.; Djulbegovic, B.; Atkins, D.; Falck-Ytter, Y.; et al. GRADE guidelines: 5. Rating the quality of evidence—Publication bias. J. Clin. Epidemiol. 2011, 64, 1277–1282. [Google Scholar] [CrossRef] [PubMed]
- Guyatt, G.H.; Oxman, A.D.; Kunz, R.; Woodcock, J.; Brozek, J.; Helfand, M.; Alonso-Coello, P.; Falck-Ytter, Y.; Jaeschke, R.; Vist, G.; et al. GRADE guidelines: 8. Rating the quality of evidence—indirectness. J. Clin. Epidemiol. 2011, 64, 1303–1310. [Google Scholar] [CrossRef] [PubMed]
- Huedo-Medina, T.B.; Sánchez-Meca, J.; Marín-Martínez, F.; Botella, J. Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychol. Methods 2006, 11, 193–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DerSimonian, R.; Kacker, R. Random-effects model for meta-analysis of clinical trials: An update. Contemp. Clin. Trials 2007, 28, 105–114. [Google Scholar] [CrossRef]
- Higgins, J.P.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. Br. Med. J. 2011, 343, 889–893. [Google Scholar] [CrossRef] [Green Version]
- Brass, E.P.; Hoppel, C.L.; Hiatt, W.R. Effect of intravenous L-carnitine on carnitine homeostasis and fuel metabolism during exercise in humans. Clin. Pharmacol. Ther. 1994, 55, 681–692. [Google Scholar] [CrossRef]
- Colombani, P.; Wenk, C.; Kunz, I.; Krähenbühl, S.; Kuhnt, M.; Arnold, M.; Frey-Rindova, P.; Frey, W.; Langhans, W. Effects of L-carnitine supplementation on physical performance and energy metabolism of endurance-trained athletes: A double-blind crossover field study. Eur. J. Appl. Physiol. Occup. Physiol. 1996, 73, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Marconi, C.; Sassi, G.; Carpinelli, A.; Cerretelli, P. Effects of L-carnitine loading on the aerobic and anaerobic performance of endurance athletes. Eur. J. Appl. Physiol. Occup. Physiol. 1985, 54, 131–135. [Google Scholar] [CrossRef]
- Greig, C.; Finch, K.M.; Jones, D.A.; Cooper, M.; Sargeant, A.J.; Forte, C.A. The effect of oral supplementation with l-carnitine on maximum and submaximum exercise capacity. Graefe’s Arch. Clin. Exp. Ophthalmol. 1987, 56, 457–460. [Google Scholar] [CrossRef] [PubMed]
- Koozehchian, M.S.; Daneshfar, A.; Fallah, E.; Agha-Alinejad, H.; Samadi, M.; Kaviani, M.; Kaveh B, M.; Jung, Y.P.; Sablouei, M.H.; Moradi, N.; et al. Effects of nine weeks L-Carnitine supplementation on exercise performance, anaerobic power, and exercise-induced oxidative stress in resistance-trained males. J. Exerc. Nutr. Biochem. 2018, 22, 7–19. [Google Scholar] [CrossRef]
- Vecchiet, L.; Di Lisa, F.; Pieralisi, G.; Ripari, P.; Menabò, R.; Giamberardino, M.A.; Siliprandi, N. Influence of L-carnitine administration on maximal physical exercise. Eur. J. Appl. Physiol. Occup. Physiol. 1990, 61, 486–490. [Google Scholar] [CrossRef] [PubMed]
- Stuessi, C.; Hofer, P.; Meier, C.; Boutellier, U. L -Carnitine and the recovery from exhaustive endurance exercise: A randomised, double-blind, placebo-controlled trial. Eur. J. Appl. Physiol. 2005, 95, 431–435. [Google Scholar] [CrossRef] [PubMed]
- Orer, G.E.; Guzel, N.A. The Effects of Acute L-carnitine Supplementation on Endurance Performance of Athletes. J. Strength Cond. Res. 2014, 28, 514–519. [Google Scholar] [CrossRef] [Green Version]
- Siliprandi, N.; Di Lisa, F.; Pieralisi, G.; Ripari, P.; Maccari, F.; Menabo, R.; Giamberardino, M.A.; Vecchiat, L. Metabolic changes induced by maximal exercise in human subjects following L-carnitine administration. Biochim. Biophys. Acta (BBA)-Gen. Subj. 1990, 1034, 17–21. [Google Scholar] [CrossRef]
- Soop, M.; Björkman, O.; Cederblad, G.; Hagenfeldt, L.; Wahren, J. Influence of carnitine supplementation on muscle substrate and carnitine metabolism during exercise. J. Appl. Physiol. 1988, 64, 2394–2399. [Google Scholar] [CrossRef]
- Wyss, V.; Ganzit, G.P.; Rienzi, A. Effects of L-carnitine administration on VO2max and the aerobic-anaerobic threshold in normoxia and acute hypoxia. Eur. J. Appl. Physiol. Occup. Physiol. 1990, 60, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Mor, A.; Baynaz, K.; Ipekoglu, G.; Arslanoglu, C.; Acar, K.; Cakir, H.I.; Arslanoglu, E. Effect of L-Carnitine Supplementation on Weight Loss and Body Composition of Taekwondo Players. J. Sports Educ. 2018, 1, 1–8. [Google Scholar]
- Cooper, M.B.; Jones, D.A.; Edwards, R.H.T.; Corbucci, C.; Montanari, G.; Trevisani, C. The effect of marathon running on carnitine metabolism and on some aspects of muscle mitochondrial activities and antioxidant mechanisms. J. Sports Sci. 1986, 4, 79–87. [Google Scholar] [CrossRef]
- Müller, D.M.; Seim, H.; Kiess, W.; Ster, H.L.; Richter, T. Effects of oral L-carnitine supplementation on in vivo long-chain fatty acid oxidation in healthy adults. Metabolism 2002, 51, 1389–1391. [Google Scholar] [CrossRef] [Green Version]
- Parandak, K.; Arazi, H.; Khoshkhahesh, F.; Nakhostin-Roohi, B. The Effect of Two-Week L-Carnitine Supplementation on Exercise -Induced Oxidative Stress and Muscle Damage. Asian J. Sports Med. 2014, 5, 123–128. [Google Scholar] [PubMed]
- Giamberardino, M.A.; Dragani, L.; Valente, R.; Di Lisa, F.; Saggin, R.; Vecchiet, L. Effects of Prolonged L-Carnitine Administration on Delayed Muscle Pain and CK Release After Eccentric Effort. Endoscopy 1996, 17, 320–324. [Google Scholar] [CrossRef] [PubMed]
- Arenas, J.; Huertas, R.; Campos, Y.; Díaz, A.E.; Villalón, J.M.; Vilas, E. Effects of L-carnitine on the pyruvate dehydrogenase complex and carnitine palmitoyl transferase activities in muscle of endurance athletes. FEBS Lett. 1994, 341, 91–93. [Google Scholar] [CrossRef] [Green Version]
- Gorostiaga, E.; Maurer, C.; Eclache, J. Decrease in Respiratory Quotient During Exercise Following L-Carnitine Supplementation. Int. J. Sports Med. 1989, 10, 169–174. [Google Scholar] [CrossRef]
- Huertas, R.; Campos, Y.; Díaz, E.; Esteban, J.; Vechietti, L.; Montanari, G.; D’Iddio, S.; Corsi, M.; Arenas, J. Respiratory chain enzymes in muscle of endurance athletes: Effect of L-carnitine. Biochem. Biophys. Res. Commun. 1992, 188, 102–107. [Google Scholar] [CrossRef]
- Oyono-Enguelle, S.; Freund, H.; Ott, C.; Gartner, M.; Heitz, A.; Marbach, J.; Maccari, F.; Frey, A.; Bigot, H.; Bach, A.C. Prolonged submaximal exercise and L-carnitine in humans. Graefe’s Arch. Clin. Exp. Ophthalmol. 1988, 58, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Swart, I.; Rossouw, J.; Loots, J.; Kruger, M. The effect of L-carnitine supplementation on plasma carnitine levels and various performance parameters of male marathon athletes. Nutr. Res. 1997, 17, 405–414. [Google Scholar] [CrossRef]
- Badrasawi, M.; Shahar, S.; Zahara, A.M.; Nor Fadilah, R.; Singh, D.K. Efficacy of L-carnitine supplementation on frailty status and its biomarkers, nutritional status, and physical and cognitive function among prefrail older adults: A double-blind, randomized, placebo-controlled clinical trial. Clin. Interv. Aging 2016, 11, 1675–1686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wächter, S.; Vogt, M.; Kreis, R.; Boesch, C.; Bigler, P.; Hoppeler, H.; Krähenbühl, S. Long-term administration of l-carnitine to humans: Effect on skeletal muscle carnitine content and physical performance. Clin. Chim. Acta 2002, 318, 51–61. [Google Scholar] [CrossRef]
- DrĂgan, I.G.; Vasiliu, A.; Georgescu, E.; Eremia, N. Studies concerning chronic and acute effects of L-carnitina in elite athletes. Physiologie 1989, 26, 111–129. [Google Scholar] [PubMed]
- Natali, A.; Santoro, D.; Brandi, L.S.; Faraggiana, D.; Ciociaro, D.; Pecori, N.; Buzzigoli, G.; Ferrannini, E. Effects of acute hypercarnitinemia during increased fatty substrate oxidation in man. Metabolism 1993, 42, 594–600. [Google Scholar] [CrossRef]
- Pistone, G.; Marino, A.; Leotta, C.; Dell’Arte, S.; Finocchiaro, G.; Malaguarnera, M. Levocarnitine administration in elderly subjects with rapid muscle fatigue: Effect on body composition, lipid profile and fatigue. Drugs Aging 2003, 20, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Nüesch, R.; Rossetto, M.; Martina, B. Plasma and urine carnitine concentrations in well-trained athletes at rest and after exercise. Influence of L-carnitine intake. Drugs Exp. Clin. Res. 1999, 25, 167–171. [Google Scholar]
- Hiatt, W.R.; Regensteiner, J.G.; Wolfel, E.E.; Ruff, L.; Brass, E.P. Carnitine and acylcarnitine metabolism during exercise in humans. Dependence on skeletal muscle metabolic state. J. Clin. Investig. 1989, 84, 1167–1173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, R.C.; Foster, C.V.; Hultman, E. Acetylcarnitine formation during intense muscular contraction in humans. J. Appl. Physiol. 1987, 63, 440–442. [Google Scholar] [CrossRef]
- Carlin, J.I.; Reddan, W.G.; Sanjak, M.; Hodach, R. Carnitine metabolism during prolonged exercise and recovery in humans. J. Appl. Physiol. 1986, 61, 1275–1278. [Google Scholar] [CrossRef] [PubMed]
- Janssen, G.M.E.; Scholte, H.R.; Vaandrager-Verduin, M.H.M.; Ross, J.D. Muscle Carnitine Level in Endurance Training and Running a Marathon. Int. J. Sports Med. 1989, 10, S153–S155. [Google Scholar] [CrossRef]
- Arenas, J.; Ricoy, J.R.; Encinas, A.R.; Pola, P.; D’Iddio, S. Carnitine in muscle, serum, and urine of nonprofessional athletes: Effects of physical exercise, training, and L-carnitine administration. Muscle Nerve 1991, 14, 598–604. [Google Scholar] [CrossRef] [PubMed]
- Drăgan, G.I.; Vasiliu, A.; Georgescu, E.; Dumas, I. Studies concerning chronic and acute effects of L-carnitine on some biological parameters in elite athletes. Physiologie 1987, 24, 23–28. [Google Scholar]
- Drăgan, G.I.; Wagner, W.; Ploeşteanu, E. Studies concerning the ergogenic value of protein supply and 1-carnitine in elite junior cyclists. Physiologie 1988, 25, 129–132. [Google Scholar] [PubMed]
- Geidl, W.; Wais, J.; Fangmann, C.; Demisse, E.; Pfeifer, K.; Sudeck, G. Physical activity promotion in daily exercise therapy: The perspectives of exercise therapists in German rehabilitation settings. BMC Sports Sci. Med. Rehabil. 2019, 11, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Constantin-Teodosiu, D.; Carlin, J.I.; Cederblad, G.; Harrist, R.C.; Hultman, E. Acetyl group accumulation and pyruvate dehydrogenase activity in human muscle during incremental exercise. Acta Physiol. Scand. 1991, 143, 367–372. [Google Scholar] [CrossRef]
- Lennon, D.L.; Stratman, F.W.; Shrago, E.; Nagle, F.J.; Madden, M.; Hanson, P.; Carter, A.L. Effects of acute moderate-intensity exercise on carnitine metabolism in men and women. J. Appl. Physiol. 1983, 55, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Malaguarnera, G.; Catania, V.E.; Bonfiglio, C.; Bertino, G.; Vicari, E.; Malaguarnera, M. Carnitine Serum Levels in Frail Older Subjects. Nutrients 2020, 12, 3887. [Google Scholar] [CrossRef] [PubMed]
- Roepstorff, C.; Halberg, N.; Hillig, T.; Saha, A.K.; Ruderman, N.B.; Wojtaszewski, J.F.P.; Richter, E.A.; Kiens, B. Malonyl-CoA and carnitine in regulation of fat oxidation in human skeletal muscle during exercise. Am. J. Physiol. Metab. 2005, 288, E133–E142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maughan, R.J. Nutritional ergogenic aids and exercise performance. Nutr. Res. Rev. 1999, 12, 255–280. [Google Scholar] [CrossRef] [Green Version]
Authors, yr | Study Design; Evidence Levels | Population, Y | Comparison Samples | Intervention: L-Carnitine Dosage | Outcomes |
---|---|---|---|---|---|
Marconi 1985 | RT; Level 2 | 6 competitive walkers m 25.3 y | A: Before supplementation B: After supplementation | 4 g/d, 2 w | Increased serum L-carnitine, no change in blood lactate concentrations and R at fixed workload. The 6% increase in VO2 was not significantly related to carnitine intake. |
Cooper 1986 | CT; Level 1 | 10 marathon runners m 19–25 y | A: Before supplementation B: After supplementation | 4 g/d, 10 d | L-carnitine supplementation increased the tissue content of oxidized glutathione. |
Drăgan 1987 | RT; Level 2 | 7 athletes | A: Before supplementation B: After supplementation | 1 g/d for 6 w + 2 g/d for 10 d | Carnitine group showed better obtained higher performances. |
Greig 1987 | CT; Level 1 | 19 healthy subjects, 7 m/12 f 27.1 ± 4.6 y | A: 9 s, 3 m, 6 f B: 10 s, 4 m, 6 f | A: 2 g/d, 2 w B: 2 g/d, 4 w | No change in maximum oxygen uptake (VO2, R). |
Drăgan 1988 | RT; Level 2 | 110 healthy subjects | A: Before supplementation B: After supplementation | 1 g/d for 3 w | Improved athletic performance, lower lactic acid. |
Oyono-Enguelle 1988 | RT; Level 2 | 10 exercising subjects - | A: Before supplementation B: After supplementation | 2 g/d, 4 w | After L-carnitine intake, the levels returned to their initial values 6–8 w after cessation of the supply. |
Soop 1988 | RT; Level 2 | 7 moderately trained subjects 19–31 y | A: Before supplementation B: After supplementation | 5 g/d, 5 d | No change in O2 uptake and arterial levels and turnover of FFA after L-carnitine supplementation. |
Gorostiaga 1989 | RT; Level 2 | 10 trained athletes, 9 m/1 f 25.8 ± 2.2 y | A: Before supplementation B: After supplementation | 2 g/d, 4 w | Reduced R during submaximal exercise after supplementation. Increased lipid use by muscles during exercise. Oxygen uptake, heart rate, blood glycerol and resting plasma free fatty acid concentrations presented a nonsignificant trend. |
Siliprandi 1990 | CT; Level 1 | 10 moderately trained subjects 23–30 y | A: Before supplementation B: After supplementation | 2 g/d, 2 d | L-carnitine supplementation decreased plasma lactate and pyruvate concentration. |
Vecchiet 1990 | CT; Level 1 | 10 moderately trained subjects 22–30 y | A: Before supplementation B: After supplementation | 2 g/d, one single dosage | Increased VO2, maximal oxygen uptake, power output and reduced pulmonary ventilation and plasma lactate after L-carnitine supplementation. |
Wyss 1990 | RT; Level 2 | 7 healthy subjects 22.2 ± 2.3 y | A: Before supplementation B: After supplementation | 3 g, 1 w | Decreased R, and rate of carbohydrate transformation during hypoxia after L-carnitine supplementation. |
Arenas 1991 | CT; Level 1 | 24 athletes 19–27 y | A: 13 and 11 s placebo B: 11 s sprinters L-carnitine C: 13 long-distance runners | 1 g/d, 24 w | The supplementation avoids the decrease of total and free muscle carnitine due to training in athletes. |
Huertas 1992 | CT; Level 1 | 14 athletes | A: Before supplementation B: After supplementation | 2 g/d, 4 w | Increase in respiratory-chain enzyme activities in the muscle. |
Natali 1993 | CT; Level 1 | 20 healthy subjects A: 29.5 ± 1.7 years B: 29 ± 2 y | A: 8 healthy m B: 12 healthy | A: 1 g + 0.5 g/h iv B: 3 g, iv. 40′ before exercise | No changes during exercise with L-carnitine intake, but increased fatty acid oxidation during recovery. |
Arenas 1994 | CT; Level 1 | 16 long-distance runners 28.3 ± 7.1 | A: 8 s placebo B: 8 s L-carnitine | 2 g/d, 4 w | The supplementation increased pyruvate dehydrogenase complex activities. |
Brass 1994 | CT; Level 1 | 14 athletes 23–40 y | A: Before supplementation B: After supplementation | 185 μmol/kg/1 d iv | No effect on skeletal muscle carnitine homeostasis during exercise: on R, muscle lactate accumulation, plasma lactate concentration, muscle glycogen utilization, plasma p-hydroxybutyrate concentration after L-supplementation. |
Colombani 1996 | CT; Level 1 | 7 m runners 36 ± 3 y | A: Before supplementation B: After supplementation | 4 g/d, 1 d | No effect on performance, and no changes in running time and in R after L-carnitine supplementation. |
Giamberardino 1996 | RT; Level 2 | 6 healthy untrained subjects, 26 ± 3.8 y | A: Before supplementation B: After supplementation | A: 3 g/d, 3 w | Protective effect against pain and damage. |
Swart 1997 | RT; Level 2 | 7 marathon runners - | A: Before supplementation B: After supplementation | 2 g/d, 6 w | After L-carnitine supplementation: increase of peak treadmill running speed of 5.68%, average VO2, free carnitine levels, decreased heart rate and respiratory exchange ratio values. |
Nuesch 1999 | RT; Level 2 | 9 athletes | A: Before supplementation B: After supplementation | 1 g/d after treadmill | In athletes without L-carnitine intake, plasma free carnitine concentration decreased significantly 10 min after exercise compared with baseline. In athletes with oral L-carnitine supplementation, the elevated plasma concentration of free carnitine at baseline did not decrease after maximal exercise. |
Muller 2002 | RT; Level 2 | 10 healthy untrained subjects 5 m/5 f 36.4 ± 12.8 y | A: Before supplementation B: After supplementation | 3 g/d, 10 d | Significant increase in fatty acid oxidation, muscle weight, total body water and metabolic rate. |
Wachter 2002 | RT; Level 2 | 8 healthy subjects 23–25 y | A: Before supplementation B: After supplementation | 4 g/d, 12 w | Significant increase in physical performance after L-carnitine supplementation. |
Stuessi 2005 | CT; Level 1 | 12 m athletes, 25 ± 3 y | A: Before supplementation B: After supplementation | 2 g/d, lump sum | No enhanced performance in endurance after L-carnitine supplementation. |
Malaguarnera 2007 | CT; Level 1 | 64 healthy elderly subjects A: 101 ± 1.3 y B: 101 ± 1.4 y | A: 32 s L-carnitine B: 34 s placebo | 2 g/d, 24 w | Improvements in fat mass, muscle mass, blood carnitine, acylcarnitine, physical and mental fatigue. |
Chun 2011 | RT; Level 2 | 36 m soccer players 20.67± 1.21 y | A: 6 s, 2g L-carnitine B: 6 s, 3g L-carnitine, C: 6 s, 4g L-carnitine, D: 6 s,5g L-carnitine E: 6 s, 6g L-carnitine F: 6 s, no intake | 2–6 g/d, 4 w | L-carnitine can enhance endurance and recovery from fatigue in athletes, increase VO2 and decrease lactate concentration |
Orer 2014 | CT; Level 1 | 26 footballers 18.4 ±0.5 y | A: 12 athletes placebo B: 14 athletes L-carnitine | A; 3 g/d, 1 d B: 4 g/d, 1 d | Supplementation affected performance positively in terms of running speed corresponding to specific lactate concentrations, lactic acid and Borg scale responses corresponding to running speeds. |
Parandak 2014 | CT; Level 1 | 21 healthy subjects A: 22.2 ± 1.1 y B: 22.0 ± 1.0 y | A: 10 L-carnitine B: 11 placebo | 2 g/d, 2 w | TAC increased significantly 14 days after supplementation. Serum MDA-TBARS, CK, TAC, LDH were significantly lower 24 h after exercise. The supplementation alleviated the effects on lipid peroxidation and muscle damage markers. |
Bradasawi 2016 | CT; Level 1 | 50 healthy subjects A: 68.2 ± 6.3 y B: 68.2 ± 6.5 y | A: 26 s L-carnitine B: 24 s placebo | 1.5 g/d, 10 w | No significant changes in free L-carnitine, total L-carnitine, acyl L-carnitine blood level and frailty biomarkers (IL-6, TNF-α, and IGF-1) between the placebo group and carnitine group. |
Koozehchian 2018 | CT; Level 1 | 23 trained subjects A: 24.5 ± 1.5 y B: 25.5 ±1.5 y | A: 11 s placebo B: l2 s L-carnitine | 2 g/d, 9 w | No significant influence on muscle mass though upper/lower body strength improved. |
Mor 2018 | CT; Level 1 | 16 taekwondo players 18–28 y | A: 8 s L-carnitine B: 8 s placebo | 1 g/d, 1 w | Low body fat mass. |
Study, Year | Random Sequence Generation | Allocation Concealment | Blinding Participants | Blinding of Outcome Assessment | Incomplete Data | Selective Reporting | Other Bias | Risk of Bias |
---|---|---|---|---|---|---|---|---|
Arenas 1991 | + | + | + | + | + | + | + | Low risk |
Arenas 1994 | + | + | + | + | + | + | + | Low risk |
Bradasawi 2016 | + | + | + | + | + | + | + | Low risk |
Brass 1994 | + | + | + | + | + | + | + | Low risk |
Colombani 1996 | + | + | + | + | + | + | + | Low risk |
Chun 2011 | + | + | - | - | + | + | + | Low risk |
Cooper 1986 | - | - | - | - | + | + | - | High risk |
Dragan 1987 | + | + | + | + | + | + | + | Low risk |
Dragan 1988 | + | + | + | + | + | + | + | Low risk |
Giamberardino 1996 | + | + | + | + | + | + | + | Low risk |
Gorostiaga 1989 | - | - | + | + | + | + | + | Low risk |
Greig 1987 | + | + | + | + | + | + | + | Low risk |
Huertas 1992 | + | + | + | + | + | + | + | Low risk |
Koozehchian 2018 | + | + | + | + | + | + | + | Low risk |
Malaguarnera 2007 | + | + | + | + | + | + | + | Low risk |
Marconi 1985 | + | + | - | - | + | + | + | Low risk |
Mor 2018 | + | + | + | + | + | + | + | Low risk |
Muller 2002 | - | - | - | - | + | + | + | High risk |
Natali 1993 | + | + | - | - | + | + | + | Low risk |
Nuesch et al.1999 | - | - | - | - | + | + | + | High risk |
Orer 2014 | + | + | + | + | + | + | + | Low risk |
Oyono-Enguelle 1988 | - | - | - | - | + | + | + | High risk |
Parandak 2014 | + | + | + | + | + | + | + | Low risk |
Siliprandi 1990 | + | + | + | + | + | + | + | Low risk |
Soop 1988 | - | - | + | + | + | + | + | Low risk |
Stuessi 2005 | + | + | + | + | + | + | + | Low risk |
Swart 1997 | - | - | - | - | + | + | + | High risk |
Vecchiet 1990 | + | + | + | + | + | + | + | Low risk |
Wachter 2002 | - | - | - | - | + | + | + | High risk |
Wyss 1990 | - | - | + | + | + | + | + | High risk |
Quality Assessment | Summary of Findings | Quality of Evidence GRADE | |||||
---|---|---|---|---|---|---|---|
N° of studies | Limitations | Inconsistency | Indirectness | Publication bias | Characteristics of | IRR (95% CI) | |
30 studies | No significant limitations | No serious inconsistency | No serious indirectness | Unlikely | Population: Adults Intervention: L-carnitine intake Comparison:
| Fixed and Random effects model:Table 4, Table 5, Table 6 and Table 7 | Moderate-High |
Authors | N 1 | N 2 | Carnitine Dosage | Mean 1 | SD 1 | Mean 2 | SD 2 | SMD | SE | 95% CI | t | p | Weight (%) | Test for Heterogeneity | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fixed | Random | |||||||||||||||
Colombani 1996 | 7 | 7 | 4 g/d. 1 d | 1.3 | 0.1 | 1.4 | 0.1 | −0.936 | 0.531 | −2.092 to 0.220 | 7.93 | 7.93 | Q | 8.0319 | ||
Chun 2011 | 6 | 6 | 2 g/d. 4 w | 1.88 | 0.46 | 1.78 | 0.28 | 0.242 | 0.535 | −0.950 to 1.434 | 7.80 | 7.80 | DF | 10 | ||
Chun 2011 | 6 | 6 | 3 g/d. 4 w | 1.41 | 0.80 | 1.04 | 0.49 | 0.515 | 0.543 | −0.695 to 1.725 | 7.57 | 7.57 | Significance level | p = 0.6257 | ||
Chun 2011 | 6 | 6 | 4 g/d. 4 w | 1.10 | 0.23 | 1.29 | 0.36 | −0.580 | 0.546 | −1.796 to 0.636 | 7.49 | 7.49 | I2 (inconsistency) | 0.00% | ||
Chun 2011 | 6 | 6 | 5 g/d. 4 w | 1.38 | 0.57 | 1.50 | 0.79 | −0.161 | 0.534 | −1.350 to 1.029 | 7.83 | 7.83 | 95% CI for I2 | 0.00 to 50.67 | ||
Chun 2011 | 6 | 6 | 6 g/d. 4 w | 1.38 | 0.47 | 1.31 | 0.25 | 0.172 | 0.534 | −1.018 to 1.361 | 7.83 | 7.83 | ||||
Greig 1987 | 9 | 9 | 2 g/d. 2 w | 1.04 | 0.66 | 1.14 | 0.28 | −0.188 | 0.450 | −1.142 to 0.766 | 11.02 | 11.02 | ||||
Greig 1987 | 10 | 10 | 2 g/d. 4 w | 0.8 | 0.3 | 0.9 | 0.3 | −0.319 | 0.431 | −1.225 to 0.587 | 12.00 | 12.00 | ||||
Oyono-Enguelle 1988 | 10 | 10 | 2 g/d. 4 w | 0.93 | 0.35 | 0.86 | 0.34 | 0.194 | 0.429 | −0.708 to 1.096 | 12.11 | 12.11 | ||||
Watcher 2002 | 8 | 8 | 4 g/d. 12 w | 0.9 | 0.1 | 0.8 | 0.2 | 0.598 | 0.484 | −0.441 to 1.637 | 9.52 | 9.52 | ||||
Wyss 1990 | 7 | 7 | 3 g/d. 1 w | 1.5 | 0.7 | 1.4 | 0.7 | 0.134 | 0.501 | −0.958 to 1.225 | 8.90 | 8.90 | ||||
Total (fixed effects) | 81 | 81 | −0.0257 | 0.149 | −0.321 to 0.269 | −0.172 | 0.864 | 100.00 | 100.00 | |||||||
Total (random effects) | 81 | 81 | −0.0257 | 0.149 | −0.321 to 0.269 | −0.172 | 0.864 | 100.00 | 100.00 | |||||||
Chun 2011 | 6 | 6 | 2 g/d. 4 w | 1.88 | 0.46 | 1.78 | 0.28 | 0.242 | 0.535 | −0.950 to 1.434 | 24.44 | 24.44 | Q | 0.9555 | ||
Greig 1987 | 10 | 10 | 2 g/d. 4 w | 0.8 | 0.3 | 0.9 | 0.3 | −0.319 | 0.431 | −1.225 to 0.587 | 37.62 | 37.62 | DF | 2 | ||
Oyono-Enguelle 1988 | 10 | 10 | 2 g/d. 4 w | 0.93 | 0.35 | 0.86 | 0.34 | 0.194 | 0.429 | −0.708 to 1.096 | 37.94 | 37.94 | Significance level | p = 0.6202 | ||
Total (fixed effects) | 26 | 26 | 0.0129 | 0.264 | −0.518 to 0.544 | 0.0486 | 0.961 | 100.00 | 100.00 | I2 | 0.00% | |||||
Total (random effects) | 26 | 26 | 0.0129 | 0.264 | −0.518 to 0.544 | 0.0486 | 0.961 | 100.00 | 100.00 | 95% CI for I2 | 0.00 to 92.98 |
Authors | N 1 | N 2 | Carn Dosage | Training | Mean 1 | SD 1 | Mean 2 | SD 2 | SMD | SE | 95% CI | t | p | Weight (%) | Test for Heterogeneity | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fixed | Random | ||||||||||||||||
Colombani 1996 | 7 | 7 | 4 g/d. 1 d | 20 km of running | 1.3 | 0.1 | 1.40 | 0.10 | −0.936 | 0.531 | −2.092 to 0.220 | 7.11 | 7.11 | Q | 10.937 | ||
Chun 2011 | 6 | 6 | 2 g/d. 4 w | After exercise | 7.02 | 0.52 | 6.88 | 0.68 | 0.213 | 0.535 | −0.978 to 1.404 | 7.01 | 7.01 | DF | 11 | ||
Chun 2011 | 6 | 6 | 3 g/d. 4 w | After exercise | 6.39 | 1.64 | 6.25 | 1.05 | 0.0938 | 0.533 | −1.094 to 1.282 | 7.05 | 7.05 | Significance level | p = 0.448 | ||
Chun 2011 | 6 | 6 | 4 g/d. 4 w | After exercise | 6.80 | 2.09 | 5.87 | 1.08 | 0.516 | 0.543 | −0.694 to 1.726 | 6.79 | 6.79 | I2 (inconsistency) | 0.00% | ||
Chun 2011 | 6 | 6 | 5 g/d. 4 w | After exercise | 6.96 | 1.87 | 6.31 | 1.56 | 0.348 | 0.537 | −0.849 to 1.546 | 6.93 | 6.93 | 95% CI for I2 | 0.00 to 58.20 | ||
Chun 2011 | 6 | 6 | 6 g/d. 4 w | After exercise | 6.80 | 0.98 | 6.09 | 1.16 | 0.610 | 0.547 | −0.609 to 1.829 | 6.69 | 6.69 | ||||
Greig 1987 | 9 | 9 | 2 g/d. 2 w | After 30′ of cycling | 11.7 | 2.1 | 10.10 | 2.60 | 0.645 | 0.462 | −0.334 to 1.623 | 9.40 | 9.40 | ||||
Greig 1987 | 10 | 10 | 2 g/d. 4 w | After 30′ of cycling | 11.8 | 4.4 | 10.70 | 3.00 | 0.280 | 0.431 | −0.625 to 1.184 | 10.80 | 10.80 | ||||
Koozehchian2018 | 11 | 11 | 2 g/d. 9 w | Maximum exercise | 5.73 | 1.14 | 4.60 | 0.97 | 1.027 | 0.438 | 0.112 to 1.942 | 10.42 | 10.42 | ||||
Oyono-Enguelle 1988 | 10 | 10 | 2 g/d. 4 w | After 60′ cycling | 1.72 | 0.62 | 1.68 | 0.56 | 0.0648 | 0.428 | −0.835 to 0.965 | 10.91 | 10.91 | ||||
Watcher 2002 | 8 | 8 | 4 g/d. 12 w | Power exercise | 9.3 | 0.4 | 9.20 | 1.20 | 0.106 | 0.473 | −0.909 to 1.120 | 8.95 | 8.95 | ||||
Wyss 1990 | 7 | 7 | 3 g/d. 1 w | Maximum exercise | 8.1 | 1.7 | 8.80 | 3.30 | −0.250 | 0.503 | −1.344 to 0.845 | 7.93 | 7.93 | ||||
Total (fixed effects) | 92 | 92 | 0.250 | 0.142 | −0.0297 to 0.529 | 1.764 | 0.079 | 100.00 | 100.00 | ||||||||
Total (random effects) | 92 | 92 | 0.250 | 0.142 | −0.0297 to 0.529 | 1.764 | 0.079 | 100.00 | 100.00 | ||||||||
Authors | N 1 | N 2 | Carn. Dosage | Training | Mean 1 | SD 1 | Mean 2 | SD 2 | SMD | SE | 95% CI | t | p | Weight (%) | Test of heterogeneity | ||
Fixed | Random | Q | 0.1252 | ||||||||||||||
Greig 1987 | 10 | 10 | 2 g/d. 4 w | After 30′ of cycling | 11.8 | 4.4 | 10.70 | 3.00 | 0.280 | 0.431 | −0.625 to 1.184 | 49.75 | 49.75 | DF | 1 | ||
Oyono-Enguelle 1988 | 10 | 10 | 2 g/d. 4 w | After 60′ cycling | 1.72 | 0.62 | 1.68 | 0.56 | 0.0648 | 0.428 | −0.835 to 0.965 | 50.25 | 50.25 | Significance level | p = 0.7235 | ||
Total (fixed effects) | 20 | 20 | 0.172 | 0.304 | −0.443 to 0.787 | 0.566 | 0.575 | 100.00 | 100.00 | I2 | 0.00% | ||||||
Total (random effects) | 20 | 20 | 0.172 | 0.304 | −0.443 to 0.787 | 0.566 | 0.575 | 100.00 | 100.00 | 95% CI for I2 | 0.00 to 0.00 |
Authors | Carnitine Dosage | N1 | N2 | Mean 1 | SD 1 | Mean 2 | SD 2 | SMD | SE | 95% CI | t | p | Weight (%) | Test for Heterogeneity | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fixed | Random | |||||||||||||||
Chun 2011 | 2 g/d, 4 w | 6 | 6 | 57.07 | 3.07 | 57.52 | 3.42 | −0.128 | 0.533 | −1.316 to 1.061 | 7.72 | 7.72 | Q | 6.3892 | ||
Chun 2011 | 3 g/d, 4 w | 6 | 6 | 62.06 | 7.29 | 60.00 | 6.16 | 0.282 | 0.536 | −0.912 to 1.476 | 7.65 | 7.65 | DF | 10 | ||
Chun 2011 | 4 g/d, 4 w | 6 | 6 | 59.33 | 7.57 | 67.26 | 7.66 | −0.961 | 0.568 | −2.226 to 0.304 | 6.82 | 6.82 | Significance level | p = 0.7816 | ||
Chun 2011 | 5 g/d, 4 w | 6 | 6 | 59.78 | 6.47 | 63.64 | 4.86 | −0.622 | 0.548 | −1.843 to 0.598 | 7.32 | 7.32 | I2 (inconsistency) | 0.00% | ||
Chun 2011 | 6 g/d, 4 w | 6 | 6 | 59.90 | 4.88 | 61.20 | 4.44 | −0.257 | 0.535 | −1.450 to 0.936 | 7.67 | 7.67 | 95% CI for I2 | 0.00 to 37.99 | ||
Greig 1987 | 2 g/d, 2 w | 9 | 9 | 41.4 | 7.5 | 41.6 | 8.8 | −0.0233 | 0.449 | −0.975 to 0.928 | 10.90 | 10.90 | ||||
Greig 1987 | 2 g/d, 4 w | 10 | 10 | 45.2 | 12.0 | 43.6 | 12.0 | 0.128 | 0.429 | −0.773 to 1.028 | 11.95 | 11.95 | ||||
Marconi 1985 | 4 g/d, 2 w | 6 | 6 | 54.5 | 3.7 | 57.8 | 4.7 | −0.720 | 0.553 | −1.951 to 0.511 | 7.19 | 7.19 | ||||
Parandak 2014 | 2 g/d, 2 w | 11 | 10 | 22.4 | 0.8 | 23.0 | 0.6 | −0.809 | 0.438 | −1.724 to 0.107 | 11.47 | 11.47 | ||||
Vecchiet 1990 | 2 g/d, one time | 10 | 10 | 43.91 | 7.87 | 47.18 | 9.59 | −0.357 | 0.432 | −1.265 to 0.551 | 11.77 | 11.77 | ||||
Wachter 2002 | 4 g/d, 12 w | 8 | 8 | 17.1 | 1.6 | 18.0 | 1.9 | −0.484 | 0.480 | −1.515 to 0.546 | 9.52 | 9.52 | ||||
Total (fixed effects) | 83 | 83 | −0.339 | 0.148 | −0.632 to −0.0465 | −2.288 | 0.023 | 100.00 | 100.00 | |||||||
Total (random effects) | 83 | 83 | −0.339 | 0.148 | −0.632 to −0.0465 | −2.288 | 0.023 | 100.00 | 100.00 | |||||||
Authors | Carnitine Dosage | N1 | N2 | Mean 1 | SD 1 | Mean 2 | SD 2 | SMD | SE | 95% CI | t | p | Weight (%) | Test for Heterogeneity | ||
Fixed | Random | |||||||||||||||
Greig 1987 | 2 g/d, 2 w | 9 | 9 | 41.4 | 7.5 | 41.6 | 8.8 | −0.0233 | 0.449 | −0.975 to 0.928 | 48.72 | 49.19 | Q | 1.5691 | ||
Parandak 2014 | 2 g/d, 2 w | 11 | 10 | 22.4 | 0.8 | 23.0 | 0.6 | −0.809 | 0.438 | −1.724 to 0.107 | 51.28 | 50.81 | DF | 1 | ||
Total (fixed effects) | 20 | 20 | −0.426 | 0.313 | −1.061 to 0.209 | −1.359 | 0.182 | 100.0 | 100.00 | Significance level | p = 0.2103 | |||||
Total (random effects) | 20 | 20 | −0.422 | 0.393 | −1.218 to 0.373 | −1.076 | 0.289 | 100.0 | 100.00 | I2 | 36.27% | |||||
95% CI for I2 | 0.00 to 0.00 | |||||||||||||||
Chun 2011 | 2 g/d, 4 w | 6 | 6 | 57.07 | 3.07 | 57.52 | 3.42 | −0.128 | 0.533 | −1.316 to 1.061 | 39.25 | 39.25 | Q | 0.1393 | ||
Greig 1987 | 2 g/d, 4 w | 10 | 10 | 45.2 | 12.0 | 43.6 | 12.0 | 0.128 | 0.429 | −0.773 to 1.028 | 60.75 | 60.75 | DF | 1 | ||
Total (fixed effects) | 16 | 16 | 0.0274 | 0.334 | −0.655 to 0.710 | 0.0820 | 0.935 | 100.0 | 100.00 | Significance level | p = 0.7089 | |||||
Total (random effects) | 16 | 16 | 0.0274 | 0.334 | −0.655 to 0.710 | 0.0820 | 0.935 | 100.0 | 100.00 | I2 | 0.00% | |||||
95% CI for I2 | 0.00 to 0.00 |
Authors | Carnitine Dosage | N1 | N2 | Mean 1 | SD 1 | Mean 2 | SD 2 | SMD | SE | 95% CI | t | p | Weight (%) | Test for Heterogeneity | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fixed | Random | ||||||||||||||||
Arenas 1991 Runner | 1 g/d, 3 w | 13 | 13 | 28 | 2 | 26.3 | 4.134 | 0.510 | 0.386 | −0.287 to 1.308 | 13.57 | 8.60 | Q | 62.7138 | |||
Arenas 1991 Sprinters | 1 g/d, 3 w | 11 | 11 | 22.8 | 1.8 | 22.5 | 1.4 | 0.179 | 0.411 | −0.678 to 1.036 | 11.99 | 8.47 | DF | 12 | |||
Arenas 1994 | 2 g/d, 4 w | 7 | 7 | 30.9 | 3.8 | 34.8 | 3.4 | −1.012 | 0.536 | −2.179 to 0.155 | 7.06 | 7.76 | Significance level | p < 0.0001 | |||
Colombani 1996 | 4 g/d, 1 d | 7 | 7 | 51.4 | 2.8 | 57.9 | 1.6 | −2.668 | 0.710 | −4.215 to −1.120 | 4.02 | 6.73 | I2 (inconsistency) | 80.87% | |||
Gorostiaga 1989 | 2 g/d, 4 w | 10 | 10 | 44.5 | 4.5 | 46.1 | 4.0 | −0.360 | 0.432 | −1.268 to 0.548 | 10.86 | 8.35 | 95% CI for I2 | 68.26 to 88.47 | |||
Greig 1987 | 2 g/d, 2 w | 9 | 9 | 55.3 | 7.6 | 78.9 | 16.3 | −1.767 | 0.537 | −2.905 to −0.629 | 7.03 | 7.75 | |||||
Greig 1987 | 2 g/d, 4 w | 10 | 10 | 41.3 | 8.4 | 56.0 | 8.2 | −1.696 | 0.505 | −2.758 to −0.634 | 7.94 | 7.94 | |||||
Marconi 1985 | 4 g/d, 2 w | 6 | 6 | 64.3 | 2.1 | 86.8 | 17.1 | −1.704 | 0.636 | −3.122 to −0.287 | 5.00 | 7.16 | |||||
Muller 2002 | 3 g/d, 10 d | 10 | 10 | 47.07 | 6.82 | 59.86 | 9.52 | −1.479 | 0.488 | −2.504 to −0.454 | 8.51 | 8.04 | |||||
Oyono-Eguelle 1988 | 2 g/d, 3 w | 10 | 10 | 62.0 | 3.8 | 72.9 | 4.3 | −2.572 | 0.591 | −3.813 to −1.332 | 5.81 | 7.44 | |||||
Oyono-Enguelle 1988 | 2 g/d, 4 w | 10 | 10 | 62.0 | 3.8 | 79.8 | 3.8 | −4.486 | 0.829 | −6.227 to −2.745 | 2.95 | 6.05 | |||||
Oyono-Enguelle 1988 | 2 g/d, 12 w | 10 | 10 | 62.0 | 3.8 | 67.4 | 3.8 | −1.361 | 0.479 | −2.368 to −0.354 | 8.82 | 8.09 | |||||
Swart 1997 | 2 g/d, 6 w | 7 | 7 | 52.9 | 5.1 | 61.93 | 7.3 | −1.342 | 0.561 | −2.564 to −0.120 | 6.44 | 7.61 | |||||
Total (fixed effects) | 120 | 120 | −1.085 | 0.142 | −1.366 to −0.805 | −7.624 | <0.001 | 100.00 | 100.00 | ||||||||
Total (random effects) | 120 | 120 | −1.417 | 0.331 | −2.069 to −0.764 | −4.277 | <0.001 | 100.00 | 100.00 | ||||||||
Authors | Carn. Dosage | Training | N1 | N2 | Mean 1 | SD 1 | Mean 2 | SD 2 | SMD | SE | 95% CI | t | p | Weight (%) | Test for Heterogeneity | ||
Arenas 1991 Runner | 1 g/d, 3 w | After exercise | 13 | 13 | 26.3 | 1.9 | 29.0 | 2.7 | −1.120 | 0.410 | −1.967 to −0.273 | 32.13 | 23.93 | Q | 26.2778 | ||
Arenas 1991 Sprinters | 1 g/d, 3 w | After exercise | 11 | 11 | 21.6 | 1.5 | 24.3 | 1.4 | −1.790 | 0.491 | −2.814 to −0.766 | 22.44 | 23.00 | DF | 4 | ||
Colombani 1996 | 4 g/d, 1 d | After running | 7 | 7 | 57.9 | 1.6 | 122.4 | 8.3 | −10.100 | 1.973 | −14.399 to −5.801 | 1.39 | 7.79 | Significance level | 84.78 | ||
Gorostiaga 1989 | 2 g/d, 4 w | After 40′ of exercise | 10 | 10 | 47.4 | 5.9 | 49.1 | 4.9 | −0.300 | 0.431 | −1.205 to 0.605 | 29.14 | 23.70 | I2 (inconsistency) | 84.78% | ||
Marconi 1985 | 4 g/d, 2 w | After 120′ of treadmill | 6 | 6 | 86.8 | 17.1 | 109.8 | 13.4 | −1.382 | 0.603 | −2.725 to −0.0385 | 14.89 | 21.59 | 95% CI for I2 | 66.07 to 93.17 | ||
Total (fixed effects) | 47 | 47 | −1.195 | 0.233 | −1.657 to −0.733 | −5.138 | <0.001 | 100.00 | 100.00 | ||||||||
Total (random effects) | 47 | 47 | −1.918 | −1.836 | −3.139 to −0.533 | −2.798 | 0.006 | 100.00 | 100.00 | ||||||||
Authors | Carnitine Dosage | N1 | N2 | Mean 1 | SD 1 | Mean 2 | SD 2 | SMD | SE | 95% CI | t | p | Weight (%) | Test for Heterogeneity | |||
Fixed | Random | ||||||||||||||||
Arenas 1994 | 2 g/d, 4 w | 7 | 7 | 30.9 | 3.8 | 34.8 | 3.4 | −1.012 | 0.536 | −2.179 to 0.155 | 24.52 | 25.62 | Q | 20.4203 | |||
Greig 1987 | 2 g/d, 4 w | 10 | 10 | 41.3 | 8.4 | 56.0 | 8.2 | −1.696 | 0.505 | −2.758 to −0.634 | 27.55 | 26.03 | DF | 3 | |||
Gorostiaga 1989 | 2 g/d, 4 w | 10 | 10 | 44.5 | 4.5 | 46.1 | 4.0 | −0.360 | 0.432 | −1.268 to 0.548 | 37.68 | 26.97 | Significance level | p = 0.0001 | |||
Oyono-Enguelle 1988 | 2 g/d, 4 w | 10 | 10 | 62.0 | 3.8 | 79.8 | 3.8 | −4.486 | 0.829 | −6.227 to −2.745 | 10.25 | 21.37 | I2 | 85.31% | |||
Total (fixed effects) | 37 | 37 | −1.311 | 0.265 | −1.839 to −0.782 | −4.942 | <0.001 | 100.00 | 100.00 | 95% CI for I2 | 63.69 to 94.06 | ||||||
Total (random effects) | 37 | 37 | −1.757 | 0.718 | −3.187 to −0.326 | −2.448 | 0.017 | 100.00 | 100.00 | ||||||||
Authors | Carn. Dosage | Training | N1 | N2 | Mean 1 | SD 1 | Mean 2 | SD 2 | SMD | SE | 95% CI | t | p | Weight (%) | Test for Heterogeneity | ||
Fixed | Random | ||||||||||||||||
Arenas 1991 Runners | 1 g/d, 3 w | After exercise | 13 | 13 | 26.3 | 1.9 | 29.0 | 2.7 | −1.120 | 0.410 | −1.967 to −0.273 | 58.88 | 58.09 | Q | 1.0969 | ||
Arenas 1991 Sprinters | 1 g/d, 3 w | After exercise | 11 | 11 | 21.6 | 1.5 | 24.3 | 1.4 | −1.790 | 0.491 | −2.814 to −0.766 | 41.12 | 41.91 | DF | 1 | ||
Total (fixed effects) | 24 | 24 | −1.396 | 0.315 | −2.029 to −0.762 | −4.432 | <0.001 | 100.00 | 100.00 | Significance level | p = 0.2949 | ||||||
Total (random effects) | 24 | 24 | −1.401 | 0.331 | −2.066 to −0.735 | −4.236 | <0.001 | 100.00 | 100.00 | I2 | 8.83% | ||||||
95% CI for I2 | 0.00 to 0.00 |
Authors | Carnitine Dosage | N1 | N2 | Mean 1 | SD 1 | Mean 2 | SD 2 | SMD | SE | 95% CI | t | p | Weight (%) | Test for Heterogeneity | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fixed | Random | Q | 72.6140 | ||||||||||||||
Arenas 1991 runner | 1 g/d, 3 w | 13 | 13 | 40.0 | 3 | 38.0 | 5 | 0.470 | 0.385 | −0.326 to 1.265 | 15.50 | 9.84 | DF | 10 | |||
Arenas 1991 sprinter | 2 g/d, 3 w | 11 | 11 | 34.0 | 4 | 36.0 | 3 | −0.544 | 0.418 | −1.417 to 0.328 | 13.16 | 9.70 | I2 (inconsistency) | 86.23% | |||
Arenas 1994 | 2 g/d, 4 w | 7 | 7 | 27.8 | 3.5 | 31.7 | 2.9 | −1.136 | 0.544 | −2.322 to 0.0504 | 7.77 | 9.08 | 95% CI for I2 | 77.18 to 91.69 | |||
Colombani 1996 | 4 g/d, 1 d | 7 | 7 | 41.5 | 2.9 | 45.8 | 2.0 | −1.616 | 0.586 | −2.893 to −0.339 | 6.70 | 8.86 | |||||
Cooper 1986 | 4 g/d, 10 d | 10 | 10 | 35.4 | 8.9 | 33.1 | 7.9 | 0.262 | 0.430 | −0.642 to 1.166 | 12.44 | 9.64 | |||||
Gorostiag 1989 | 2 g/d, 4 w | 10 | 10 | 31.4 | 1.7 | 39.2 | 3.3 | −2.846 | 0.621 | −4.151 to −1.541 | 5.97 | 8.67 | |||||
Marconi 1985 | 4 g/d, 2 w | 6 | 6 | 48.0 | 8.3 | 56.8 | 9.6 | −0.905 | 0.564 | −2.161 to 0.351 | 7.24 | 8.98 | |||||
Muller 2002 | 3 g/d, 10 d | 10 | 10 | 41.10 | 6.54 | 52.74 | 9.23 | −1.394 | 0.482 | −2.405 to −0.382 | 9.92 | 9.40 | |||||
Oyono-Enguelle 1989 | 2 g/d, 3 w | 10 | 10 | 49.8 | 2.3 | 59.4 | 3.9 | −2.872 | 0.624 | −4.183 to −1.560 | 5.91 | 8.66 | |||||
Oyono-Enguelle 1989 | 2 g/d, 4 w | 10 | 10 | 49.8 | 2.3 | 64.1 | 3.7 | −4.445 | 0.823 | −6.175 to −2.716 | 3.40 | 7.57 | |||||
Oyono-Enguelle 1989 | 2 g/d, 12 w | 10 | 10 | 49.8 | 2.3 | 48.0 | 3.5 | 0.582 | 0.438 | −0.338 to 1.502 | 12.00 | 9.61 | |||||
Total fixed effects | 104 | 104 | −0.787 | 0.152 | −1.086 to −0.488 | −5.189 | <0.001 | 100.00 | 100.00 | ||||||||
Total random effects | 104 | 104 | −1.216 | 0.416 | −2.036 to −0.395 | −2.921 | 0.004 | 100.00 | 100.00 | ||||||||
Authors | Carn. Dosage | Training | N1 | N2 | Mean 1 | SD 1 | Mean 2 | SD 2 | SMD | SE | 95% CI | t | p | Weight (%) | Test for Heterogeneity | ||
Fixed | Random | Q | 24.4106 | ||||||||||||||
DF | 6 | ||||||||||||||||
Arenas 1991 runner | 1 g/d, 3 w | After running | 13 | 13 | 22.9 | 1.8 | 25.7 | 2.6 | SMD | SE | 95% CI | Weight (%) | SMD | Significance level | p = 0.0004 | ||
Arenas 1991 sprinter | 2 g/d, 3 w | After running | 11 | 11 | 18.2 | 1.5 | 21.0 | 1.7 | −1.680 | 0.482 | −2.686 to −0.675 | Fixed | 10.38 | I2 (inconsistency) | 75.42% | ||
Colombani1996 | 4 g/d, 1 d | After running | 7 | 7 | 45.8 | 2.0 | 70.0 | 4.9 | −1.213 | 0.415 | −2.070 to −0.355 | 20.37 | −1.213 | 95% CI for I2 | 48.00 to 88.38 | ||
Cooper 1986 | 4 g/d, 10 d | After 158′ of Marathon | 10 | 10 | 22.5 | 2.8 | 35.0 | 12.6 | −1.680 | 0.482 | −2.686 to −0.675 | 15.13 | −1.680 | ||||
Gorostiaga1989 | 2 g/d, 4 w | After 40′ of exercise | 10 | 10 | 35.5 | 4.4 | 38.9 | 2.8 | −6.052 | 1.248 | −8.772 to −3.332 | 2.26 | −6.052 | ||||
Marconi 1985 | 4 g/d, 2 w | After 120′ of treadmill | 6 | 6 | 56.8 | 9.6 | 62.5 | 11.6 | −1.312 | 0.476 | −2.311 to −0.312 | 15.52 | −1.312 | ||||
Nuesch 1999 | 1 g/d | 10′ after maximal treadmill | 9 | 9 | 71.3 | 10.2 | 71.8 | 10.7 | −0.883 | 0.450 | −1.829 to 0.0635 | 17.32 | −0.883 | ||||
Total (fixed effects) | 66 | 66 | −0.494 | 0.542 | −1.702 to 0.714 | −5.660 | <0.001 | 11.96 | −0.494 | ||||||||
Total (random effects) | 66 | 66 | −0.0455 | 0.449 | −0.997 to 0.906 | −3.253 | 0.001 | 17.44 | −0.0455 | ||||||||
Authors | Carnitine Dosage | N1 | N2 | Mean 1 | SD 1 | Mean 2 | SD 2 | SMD | SE | 95% CI | t | p | Weight (%) | Test for Heterogeneity | |||
Fixed | Random | ||||||||||||||||
Arenas 1991 sprinter | 2 g/d, 3 w | 11 | 11 | 34.0 | 4 | 36.0 | 3 | −0.544 | 0.418 | −1.417 to 0.328 | 69.01 | 51.98 | Q | 9.5950 | |||
Oyono-Enguelle 1989 | 2 g/d, 3 w | 10 | 10 | 49.8 | 2.3 | 59.4 | 3.9 | −2.872 | 0.624 | −4.183 to −1.560 | 30.99 | 48.02 | DF | 1 | |||
Total fixed effects | 21 | 21 | −1.266 | 0.347 | −1.968 to −0.563 | −3.642 | 0.001 | 100.00 | 100.00 | Significance level | p = 0.0020 | ||||||
Total random effects | 21 | 21 | −1.662 | 1.163 | −4.012 to 0.688 | −1.429 | 0.161 | 100.00 | 100.00 | I2 | 89.58% | ||||||
95% CI for I2 | 61.34 to 97.19 | ||||||||||||||||
Arenas 1994 | 2 g/d, 4 w | 7 | 7 | 27.8 | 3.5 | 31.7 | 2.9 | −0.959 | 0.631 | −2.413 to 0.495 | 41.10 | 41.10 | Q | 0.03256 | |||
Gorostiaga 1989 | 2 g/d, 4 w | 10 | 10 | 31.4 | 1.7 | 39.2 | 3.3 | −0.888 | 0.785 | −2.664 to 0.888 | 26.51 | 26.51 | DF | 2 | |||
Oyono-Enguelle 1989 | 2 g/d, 4 w | 10 | 10 | 49.8 | 2.3 | 64.1 | 3.7 | −1.075 | 0.710 | −2.657 to 0.508 | 32.39 | 32.39 | Significance level | p = 0.9839 | |||
Total fixed effects | 27 | 27 | −0.978 | 0.404 | −1.801 to −0.154 | −2.418 | 0.021 | 100.00 | 100.00 | I2 | 0.00% | ||||||
Total random effects | 27 | 27 | −0.978 | 0.404 | −1.801 to −0.154 | −2.418 | 0.021 | 100.00 | 100.00 | 95% CI for I2 | 0.00 to 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vecchio, M.; Chiaramonte, R.; Testa, G.; Pavone, V. Clinical Effects of L-Carnitine Supplementation on Physical Performance in Healthy Subjects, the Key to Success in Rehabilitation: A Systematic Review and Meta-Analysis from the Rehabilitation Point of View. J. Funct. Morphol. Kinesiol. 2021, 6, 93. https://doi.org/10.3390/jfmk6040093
Vecchio M, Chiaramonte R, Testa G, Pavone V. Clinical Effects of L-Carnitine Supplementation on Physical Performance in Healthy Subjects, the Key to Success in Rehabilitation: A Systematic Review and Meta-Analysis from the Rehabilitation Point of View. Journal of Functional Morphology and Kinesiology. 2021; 6(4):93. https://doi.org/10.3390/jfmk6040093
Chicago/Turabian StyleVecchio, Michele, Rita Chiaramonte, Gianluca Testa, and Vito Pavone. 2021. "Clinical Effects of L-Carnitine Supplementation on Physical Performance in Healthy Subjects, the Key to Success in Rehabilitation: A Systematic Review and Meta-Analysis from the Rehabilitation Point of View" Journal of Functional Morphology and Kinesiology 6, no. 4: 93. https://doi.org/10.3390/jfmk6040093
APA StyleVecchio, M., Chiaramonte, R., Testa, G., & Pavone, V. (2021). Clinical Effects of L-Carnitine Supplementation on Physical Performance in Healthy Subjects, the Key to Success in Rehabilitation: A Systematic Review and Meta-Analysis from the Rehabilitation Point of View. Journal of Functional Morphology and Kinesiology, 6(4), 93. https://doi.org/10.3390/jfmk6040093