Balance Performance across the Lifespan Assessed by the Leonardo Mechanograph®: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures
2.2.1. Anthropometry
2.2.2. Posturography
2.3. Design and Procedures
2.4. Statistical Analysis
2.5. Age
3. Results
3.1. Age-Related Differences
3.2. Sex-Related Differences
4. Discussion
4.1. Age-Related Differences
4.2. Sex-Related Differences
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Taani, M.H.; Kovach, C.R.; Buehring, B. Muscle Mechanography: A Novel Method to Measure Muscle Function in Older Adults. Res. Gerontol. Nurs. 2017, 10, 17–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goble, D.J.; Baweja, H.S. Postural sway normative data across the adult lifespan: Results from 6280 individuals on the Balance Tracking System balance test. Geriatr. Gerontol. Int. 2018, 18, 1225–1229. [Google Scholar] [CrossRef] [PubMed]
- Era, P.; Sainio, P.; Koskinen, S.; Haavisto, P.; Vaara, M.; Aromaa, A. Postural Balance in a Random Sample of 7,979 Subjects Aged 30 Years and Over. Gerontology 2006, 52, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Isles, R.C.; Choy, N.L.; Steer, M.; Nitz, J.C. Normal values of balance tests in women aged 20-80. J. Am. Geriatr. Soc. 2004, 52, 1367–1372. [Google Scholar] [CrossRef] [PubMed]
- McKay, M.J.; Baldwin, J.N.; Ferreira, P.; Simic, M.; Vanicek, N.; Burns, J. Reference values for developing responsive functional outcome measures across the lifespan. Neurology 2017, 88, 1512–1519. [Google Scholar] [CrossRef] [PubMed]
- Pollock, A.S.; Durward, B.R.; Rowe, P.J.; Paul, J.P. What is balance? Clin. Rehabil. 2000, 14, 402–406. [Google Scholar] [CrossRef]
- Horak, F.B.; Henry, S.M.; Shumway-Cook, A. Postural Perturbations: New Insights for Treatment of Balance Disorders. Phys. Ther. 1997, 77, 517–533. [Google Scholar] [CrossRef]
- Winter, D.A. Human balance and posture control during standing and walking. Gait Posture 1995, 3, 193–214. [Google Scholar] [CrossRef]
- Hytonen, M.; Pyykko, I.; Aalto, H.; Starck, J. Postural control and age. Acta Otolaryngol. 1993, 113, 119–122. [Google Scholar] [CrossRef]
- Sheldon, J.H. The effect of age on the control of sway. Gerontol. Clin. 1963, 5, 129–138. [Google Scholar] [CrossRef]
- Melzer, I.; Benjuya, N.; Kaplanski, J. Effect of physical training on postural control of elderly. Harefuah 2005, 144, 839–844. [Google Scholar] [PubMed]
- Liaw, M.Y.; Chen, C.L.; Pei, Y.C.; Leong, C.P.; Lau, Y.C. Comparison of the static and dynamic balance performance in young, middle-aged, and elderly healthy people. Chang. Gung. Med. J. 2009, 32, 297–304. [Google Scholar] [PubMed]
- Pajala, S.; Era, P.; Koskenvuo, M.; Kaprio, J.; Törmäkangas, T.; Rantanen, T. Force platform balance measures as predictors of indoor and outdoor falls in community-dwelling women aged 63-76 years. J. Gerontol. A Biol. Sci. Med. Sci. 2008, 63, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Pizzigalli, L.; Micheletti Cremasco, M.; Mulasso, A.; Rainoldi, A. The contribution of postural balance analysis in older adult fallers: A narrative review. J. Bodyw. Mov. Ther. 2016, 20, 409–417. [Google Scholar] [CrossRef]
- Prieto, T.E.; Myklebust, J.B.; Hoffmann, R.G.; Lovett, E.G.; Myklebust, B.M. Measures of postural steadiness: Differences between healthy young and elderly adults. IEEE Trans. Biomed. Eng. 1996, 43, 956–966. [Google Scholar] [CrossRef]
- Di Fabio, R.P. Sensitivity and specificity of platform posturography for identifying patients with vestibular dysfunction. Phys. Ther. 1995, 75, 290–305. [Google Scholar] [CrossRef]
- Piirtola, M.; Era, P. Force platform measurements as predictors of falls among older people—A review. Gerontology 2006, 52, 1–16. [Google Scholar] [CrossRef]
- Kapteyn, T.S.; Bles, W.; Njiokiktjien, Ç.J.; Kodde, L.; Massen, C.H.; Mol, J.M.F. Standardization in platform stabilometry being a part of posturography. Agressologie 1983, 24, 321–326. [Google Scholar]
- Hartmann, C.; Winter, R. Die motorische Entwicklung (Ontogenese) des Menschen von der Geburt bis ins Hohe Alter (Überblick). In Bewegungslehre–Sportmotorik. Abriss Einer Theorie der Sportlichen Motorik unter Pädagogischem Aspekt; Meinel, K.S., Ed.; Meyer & Meyer: Aachen, Germany, 2015; pp. 243–373. [Google Scholar]
- Teipel, D. Diagnostik koordinativer Fähigkeiten: Eine Studie zur Struktur und Querschnittlich Betrachteten Entwicklung Fein- und Grobmotorischer Leistungen; Profil: München, Germany, 1988. [Google Scholar]
- Duarte, M.; Freitas, S.M. Revision of posturography based on force plate for balance evaluation. Rev. Bras. Fisioter 2010, 14, 183–192. [Google Scholar] [CrossRef] [Green Version]
- Morrison, S.; Rynders, C.A.; Sosnoff, J.J. Deficits in medio-lateral balance control and the implications for falls in individuals with multiple sclerosis. Gait Posture 2016, 49, 148–154. [Google Scholar] [CrossRef]
- Pasma, J.H.; Bijlsma, A.Y.; Van Der Bij, M.D.; Arendzen, J.H.; Meskers, C.G.; Maier, A.B. Age-related differences in quality of standing balance using a composite score. Gerontology 2014, 60, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Melzer, I.; Benjuya, N.; Kaplanski, J. Postural stability in the elderly: A comparison between fallers and non-fallers. Age Ageing 2004, 33, 602–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bryant, E.C.; Trew, M.E.; Bruce, A.M.; Kuisma, R.M.; Smith, A.W. Gender differences in balance performance at the time of retirement. Clin. Biomech. 2005, 20, 330–335. [Google Scholar] [CrossRef] [PubMed]
- Henry, S.M.; Fung, J.; Horak, F.B. Effect of stance width on multidirectional postural responses. J. Neurophysiol. 2001, 85, 559–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blaszczyk, J.W.; Prince, F.; Raiche, M.; Hebert, R. Effect of ageing and vision on limb load asymmetry during quiet stance. J. Biomech. 2000, 33, 1243–1248. [Google Scholar] [CrossRef]
- Era, P.; Schroll, M.; Ytting, H.; Gause-Nilsson, I.; Heikkinen, E.; Steen, B. Postural balance and its sensory-motor correlates in 75-year-old men and women: A cross-national comparative study. J. Gerontol. A Biol. Sci. Med. Sci. 1996, 51, M53–M63. [Google Scholar] [CrossRef]
- Ekdahl, C.; Jarnlo, G.B.; Andersson, S.I. Standing balance in healthy subjects. Evaluation of a quantitative test battery on a force platform. Scand. J. Rehabil. Med. 1989, 21, 187–195. [Google Scholar]
- Maki, B.E.; Holliday, P.J.; Fernie, G.R. Aging and postural control. A comparison of spontaneous- and induced-sway balance tests. J. Am. Geriatr. Soc. 1990, 38, 1–9. [Google Scholar] [CrossRef]
- Overstall, P.W.; Exton-Smith, A.N.; Imms, F.J.; Johnson, A.L. Falls in the elderly related to postural imbalance. Br. Med. J. 1977, 1, 261–264. [Google Scholar] [CrossRef] [Green Version]
- McIlroy, W.E.; Maki, B.E. Preferred placement of the feet during quiet stance: Development of a standardized foot placement for balance testing. Clin. Biomech. 1997, 12, 66–70. [Google Scholar] [CrossRef]
- Guralnik, J.M.; Winograd, C.H. Physical performance measures in the assessment of older persons. Aging 1994, 6, 303–305. [Google Scholar] [CrossRef] [PubMed]
- Medell, J.L.; Alexander, N.B. A Clinical Measure of Maximal and Rapid Stepping in Older Women. J. Gerontol. Ser. A 2000, 55, M429–M433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Speers, R.A.; Ashton-Miller, J.A.; Schultz, A.B.; Alexander, N.B. Age differences in abilities to perform tandem stand and walk tasks of graded difficulty. Gait Posture 1998, 7, 207–213. [Google Scholar] [CrossRef]
- Ponce-Gonzalez, J.G.; Sanchis-Moysi, J.; Gonzalez-Henriquez, J.J.; Arteaga-Ortiz, R.; Calbet, J.A.; Dorado, C. A reliable unipedal stance test for the assessment of balance using a force platform. J. Sports Med. Phys. Fitness 2014, 54, 108–117. [Google Scholar] [PubMed]
- Mosler, K.C. Beschreibende Statistik und Wirtschaftsstatistik, 2nd ed.; Schmid, F., Ed.; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
Variable | Abbreviation | Description |
---|---|---|
Path-Related COP Parameters | ||
Path length of COP | PLen | Total path length of the COP during the measurement, in mm |
Medio-lateral component of the path length of COP | PLenX | Total path length of the COP in the medio-lateral direction, in mm |
Anterior-posterior component of the path length of COP | PLenY | Total path length of the COP in the anterior-posterior direction, in mm |
Area-Related COP Parameters | ||
Area of sway | StdElA | Standard ellipse area including 90% of all COP points during the measurement, in cm2 |
Speed-Related COP Parameters | ||
Mean velocity of COP | BtMeanvCoF | Mean speed of the movement of the COP over the time of the test path length/duration, in cm/s |
Mean velocity of ML | BtVmeanX | Average speed of COP movement in the medio-lateral direction, in mm/s |
Mean velocity of AP | BtVmeanY | Average speed of COP movement in the anterior-posterior direction, in mm/s |
Age Group | ||||
---|---|---|---|---|
Variable | 20–40 yrs. | 41–60 yrs. | 61–86 yrs. | Total |
Females (n) | 99 | 110 | 80 | 289 |
Age (y) | 30.45 ± 5.38 | 50.33 ± 5.76 | 68.5 ± 5.82 | 48.55 ± 16 |
Body height (cm) | 168.11 ± 6.95 | 164.91 ± 6.0 | 160.98 ± 5.98 | 164.92 ± 6.9 |
Body weight (kg) | 67.46 ± 10.97 | 70.26 ± 11.59 | 67.8 ± 9.17 | 68.62 ± 10.79 |
Males (n) | 108 | 91 | 82 | 281 |
Age (y) | 30.31 ± 5.07 | 50.03 ± 5.69 | 70.3 ± 6.82 | 48.37 ± 17.35 |
Body height (cm) | 179.4 ± 6.66 | 178.9 ± 7.2 | 172.59 ± 6.59 | 177.25 ± 7.43 |
Body weight (kg) | 82.56 ± 12.34 | 87.37 ± 11.74 | 83.77 ± 12.95 | 84.47 ± 12.46 |
Total (n) | 207 | 201 | 162 | 570 |
Age (y) | 30.38 ± 5.21 | 50.19 ± 5.72 | 69.41 ± 6.34 | 48.46 ± 16.67 |
Body height (cm) | 174 ± 8.83 | 171.24 ± 9.58 | 166.85 ± 8.56 | 171 ± 9.45 |
Body weight (kg) | 75.34 ± 13.91 | 78 ± 14.42 | 75.89 ± 13.78 | 76.44 ± 14.08 |
Test Position | Variables | p-Value | R2 | −95 % to | 95 % CI | adj. R2 | −95 % to | 95 % CI |
---|---|---|---|---|---|---|---|---|
Romberg EO | PLen | <0.001 | 0.39 | 0.33 | 0.46 | 0.38 | 0.32 | 0.46 |
PLenX | <0.001 | 0.31 | 0.25 | 0.39 | 0.30 | 0.24 | 0.38 | |
PLenY | <0.001 | 0.40 | 0.35 | 0.47 | 0.39 | 0.34 | 0.47 | |
StdElA | <0.001 | 0.10 | 0.07 | 0.16 | 0.09 | 0.06 | 0.15 | |
BtMeanvCoF | <0.001 | 0.25 | 0.19 | 0.32 | 0.24 | 0.18 | 0.31 | |
BtVmeanX | <0.001 | 0.23 | 0.17 | 0.30 | 0.22 | 0.16 | 0.29 | |
BtVmeanY | <0.001 | 0.22 | 0.17 | 0.28 | 0.21 | 0.16 | 0.28 | |
Semi-tandem EO | PLen | <0.001 | 0.43 | 0.36 | 0.52 | 0.43 | 0.36 | 0.51 |
PLenX | <0.001 | 0.41 | 0.34 | 0.49 | 0.40 | 0.33 | 0.48 | |
PLenY | <0.001 | 0.40 | 0.34 | 0.48 | 0.40 | 0.33 | 0.48 | |
StdElA | <0.001 | 0.16 | 0.12 | 0.24 | 0.15 | 0.11 | 0.23 | |
BtMeanvCoF | <0.001 | 0.26 | 0.19 | 0.34 | 0.25 | 0.18 | 0.33 | |
BtVmeanX | <0.001 | 0.25 | 0.19 | 0.33 | 0.24 | 0.18 | 0.32 | |
BtVmeanY | <0.001 | 0.21 | 0.15 | 0.29 | 0.20 | 0.14 | 0.29 | |
Tandem EO | PLen | <0.001 | 0.37 | 0.31 | 0.44 | 0.36 | 0.30 | 0.43 |
PLenX | <0.001 | 0.40 | 0.34 | 0.47 | 0.39 | 0.33 | 0.46 | |
PLenY | <0.001 | 0.31 | 0.27 | 0.39 | 0.32 | 0.26 | 0.38 | |
StdElA | <0.001 | 0.14 | 0.10 | 0.22 | 0.13 | 0.09 | 0.21 | |
BtMeanvCoF | <0.001 | 0.33 | 0.28 | 0.40 | 0.32 | 0.27 | 0.39 | |
BtVmeanX | <0.001 | 0.39 | 0.34 | 0.46 | 0.38 | 0.33 | 0.45 | |
BtVmeanY | <0.001 | 0.24 | 0.19 | 0.31 | 0.23 | 0.18 | 0.30 | |
One leg right EO | PLen | <0.001 | 0.46 | 0.38 | 0.58 | 0.45 | 0.37 | 0.57 |
PLenX | <0.001 | 0.46 | 0.39 | 0.56 | 0.46 | 0.39 | 0.55 | |
PLenY | <0.001 | 0.43 | 0.34 | 0.55 | 0.42 | 0.33 | 0.54 | |
StdElA | <0.001 | 0.49 | 0.44 | 0.56 | 0.49 | 0.43 | 0.56 | |
BtMeanvCoF | <0.001 | 0.28 | 0.22 | 0.41 | 0.27 | 0.21 | 0.40 | |
BtVmeanX | <0.001 | 0.28 | 0.23 | 0.39 | 0.27 | 0.22 | 0.38 | |
BtVmeanY | <0.001 | 0.25 | 0.19 | 0.38 | 0.24 | 0.18 | 0.37 | |
One leg left EO | PLen | <0.001 | 0.43 | 0.36 | 0.54 | 0.42 | 0.35 | 0.54 |
PLenX | <0.001 | 0.42 | 0.35 | 0.51 | 0.41 | 0.34 | 0.50 | |
PLenY | <0.001 | 0.42 | 0.34 | 0.54 | 0.41 | 0.33 | 0.53 | |
StdElA | <0.001 | 0.45 | 0.40 | 0.53 | 0.45 | 0.39 | 0.52 | |
BtMeanvCoF | <0.001 | 0.25 | 0.20 | 0.36 | 0.24 | 0.19 | 0.36 | |
BtVmeanX | <0.001 | 0.23 | 0.19 | 0.32 | 0.22 | 0.18 | 0.32 | |
BtVmeanY | <0.001 | 0.26 | 0.21 | 0.38 | 0.25 | 0.20 | 0.37 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiegmann, S.; Felsenberg, D.; Gast, U.; Börst, H.; Armbrecht, G.; Dietzel, R. Balance Performance across the Lifespan Assessed by the Leonardo Mechanograph®: A Cross-Sectional Study. J. Funct. Morphol. Kinesiol. 2020, 5, 1. https://doi.org/10.3390/jfmk5010001
Wiegmann S, Felsenberg D, Gast U, Börst H, Armbrecht G, Dietzel R. Balance Performance across the Lifespan Assessed by the Leonardo Mechanograph®: A Cross-Sectional Study. Journal of Functional Morphology and Kinesiology. 2020; 5(1):1. https://doi.org/10.3390/jfmk5010001
Chicago/Turabian StyleWiegmann, Sabine, Dieter Felsenberg, Ulf Gast, Hendrikje Börst, Gabriele Armbrecht, and Roswitha Dietzel. 2020. "Balance Performance across the Lifespan Assessed by the Leonardo Mechanograph®: A Cross-Sectional Study" Journal of Functional Morphology and Kinesiology 5, no. 1: 1. https://doi.org/10.3390/jfmk5010001
APA StyleWiegmann, S., Felsenberg, D., Gast, U., Börst, H., Armbrecht, G., & Dietzel, R. (2020). Balance Performance across the Lifespan Assessed by the Leonardo Mechanograph®: A Cross-Sectional Study. Journal of Functional Morphology and Kinesiology, 5(1), 1. https://doi.org/10.3390/jfmk5010001