Physiological, Performance, and Oxidative Stress Responses to High-Intensity Uphill and Downhill Interval Training
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
- (a)
- Pre-Training, when baseline data were collected on the variables of interest (including anthropometry), over a period of 8–10 days,
- (b)
- Training period, during which two training sessions per week (in total 16 sessions) were conducted over 8 weeks.
- (c)
- Post-Training, during which post-training data were collected, over a period of 8–10 days, in the same order as before, for all measurements collected during the Pre-training. For female participants, testing took place within their estimated follicular phase (between day 5 and day 11 of their cycle).
2.2. Aerobic Performance Measurements
2.3. Blood Metabolites and REDOX Markers
2.4. Statistical Analyses
3. Results
3.1. Adherence to Training
3.2. Anthropometric Measurements
3.3. Aerobic Performance Measurements
3.4. Metabolic Load of Training
3.5. Blood Metabolites and REDOX Markers
3.5.1. Lactate
3.5.2. TAC
3.5.3. PC
3.5.4. TBARS
4. Discussion
4.1. Aerobic Performance and Running Economy
4.2. REDOX Responses and Adaptations to Inclined HIIT
4.3. Limitations
4.4. Practical Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ANOVA | Analysis of Variance |
| La | Blood Lactate |
| DG | Downhill Group |
| HIIT | High Intensity Interval Training |
| VO2max | Maximal Oxygen Uptake |
| MAS | Maximum Aerobic Speed |
| PC | Protein Carbonyl |
| REDOX | Reduction–Oxidation |
| RER | Respiratory Exchange Ratio |
| RE | Running Economy |
| TBARS | Thiobarbituric Acid Reactive Substances |
| Tmax | Time to Exhaustion at MAS |
| TAC | Total Antioxidant Capacity |
| UG | Uphill Group |
References
- Thompson, W.R. Worldwide Survey of Fitness Trends for 2019. Acsms Health Fit. J. 2018, 22, 10–17. [Google Scholar] [CrossRef]
- Thompson, W.R. Worldwide Survey of Fitness Trends for 2020. Acsms Health Fit. J. 2019, 23, 10–18. [Google Scholar] [CrossRef]
- Joyner, M.J.; Coyle, E.F. Endurance exercise performance: The physiology of champions. J. Physiol. 2008, 586, 35–44. [Google Scholar] [CrossRef]
- Sparling, P.B. Physiological Determinants of Distance Running Performance. Physician Sportsmed. 1984, 12, 68–77. [Google Scholar] [CrossRef]
- Billat, V.; Renoux, J.C.; Pinoteau, J.; Petit, B.; Koralsztein, J.P. Reproducibility of running time to exhaustion at VO2max in subelite runners. Med. Sci. Sports Exerc. 1994, 26, 254–257. [Google Scholar] [CrossRef]
- Tanskanen, M.; Atalay, M.; Uusitalo, A. Altered oxidative stress in overtrained athletes. J. Sports Sci. 2010, 28, 309–317. [Google Scholar] [CrossRef]
- Barnes, K.R.; Kilding, A.E. Running economy: Measurement, norms, and determining factors. Sports Med.-Open 2015, 1, 8. [Google Scholar] [CrossRef]
- Beneke, R.; Leithauser, R.M.; Ochentel, O. Blood lactate diagnostics in exercise testing and training. Int. J. Sports Physiol. Perform. 2011, 6, 8–24. [Google Scholar] [CrossRef]
- Ramos-Jimenez, A.; Hernandez-Torres, R.P.; Torres-Duran, P.V.; Romero-Gonzalez, J.; Mascher, D.; Posadas-Romero, C.; Juarez-Oropeza, M.A. The Respiratory Exchange Ratio is Associated with Fitness Indicators Both in Trained and Untrained Men: A Possible Application for People with Reduced Exercise Tolerance. Clin. Med. Circ. Respir. Pulm. Med. 2008, 2, 1–9. [Google Scholar] [CrossRef]
- Petrakos, G.; Morin, J.B.; Egan, B. Resisted Sled Sprint Training to Improve Sprint Performance: A Systematic Review. Sports Med. 2016, 46, 381–400. [Google Scholar] [CrossRef] [PubMed]
- Rumpf, M.C.; Lockie, R.G.; Cronin, J.B.; Jalilvand, F. Effect of Different Sprint Training Methods on Sprint Performance Over Various Distances: A Brief Review. J. Strength. Cond. Res. 2016, 30, 1767–1785. [Google Scholar] [CrossRef]
- Isner-Horobeti, M.E.; Dufour, S.P.; Vautravers, P.; Geny, B.; Coudeyre, E.; Richard, R. Eccentric exercise training: Modalities, applications and perspectives. Sports Med. 2013, 43, 483–512. [Google Scholar] [CrossRef]
- Nikolaidis, M.G.; Kyparos, A.; Dipla, K.; Zafeiridis, A.; Sambanis, M.; Grivas, G.V.; Paschalis, V.; Theodorou, A.A.; Papadopoulos, S.; Spanou, C.; et al. Exercise as a model to study redox homeostasis in blood: The effect of protocol and sampling point. Biomarkers 2012, 17, 28–35. [Google Scholar] [CrossRef]
- Camus, G.; Felekidis, A.; Pincemail, J.; Deby-Dupont, G.; Deby, C.; Juchmes-Ferir, A.; Lejeune, R.; Lamy, M. Blood levels of reduced/oxidized glutathione and plasma concentration of ascorbic acid during eccentric and concentric exercises of similar energy cost. Arch. Int. Physiol. Biochim. Biophys. 1994, 102, 67–70. [Google Scholar] [CrossRef]
- Ferley, D.D.; Osborn, R.W.; Vukovich, M.D. The effects of uphill vs. level-grade high-intensity interval training on VO2max, Vmax, V(LT), and Tmax in well-trained distance runners. J. Strength Cond. Res. 2013, 27, 1549–1559. [Google Scholar] [CrossRef]
- Ferley, D.D.; Osborn, R.W.; Vukovich, M.D. The effects of incline and level-grade high-intensity interval treadmill training on running economy and muscle power in well-trained distance runners. J. Strength Cond. Res. 2014, 28, 1298–1309. [Google Scholar] [CrossRef]
- Theofilidis, G.; Kaltsatou, A.; Stavropoulos-Kalinoglou, A.; Koutedakis, Y.; Bogdanis, G.; Karatzaferi, C. Oxidative stress following running at maximal aerobic speed: Influence of Inclination. In Proceedings of the 4th Conference of Biochemistry and Exercise Physiology, Trikala, Greece, 26–28 June 2014. [Google Scholar]
- Billat, V.; Binsse, V.; Petit, B.; Koralsztein, J.P. High level runners are able to maintain a VO2 steady-state below VO2max in an all-out run over their critical velocity. Arch. Physiol. Biochem. 1998, 106, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Billat, V.L.; Slawinski, J.; Bocquet, V.; Demarle, A.; Lafitte, L.; Chassaing, P.; Koralsztein, J.P. Intermittent runs at the velocity associated with maximal oxygen uptake enables subjects to remain at maximal oxygen uptake for a longer time than intense but submaximal runs. Eur. J. Appl. Physiol. 2000, 81, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Foster, C.; Lucia, A. Running economy: The forgotten factor in elite performance. Sports Med. 2007, 37, 316–319. [Google Scholar] [CrossRef] [PubMed]
- Janaszewska, A.; Bartosz, G. Assay of total antioxidant capacity: Comparison of four methods as applied to human blood plasma. Scand. J. Clin. Lab. Investig. 2002, 62, 231–236. [Google Scholar] [CrossRef]
- Patsoukis, N.; Zervoudakis, G.; Panagopoulos, N.T.; Georgiou, C.D.; Angelatou, F.; Matsokis, N.A. Thiol redox state (TRS) and oxidative stress in the mouse hippocampus after pentylenetetrazol-induced epileptic seizure. Neurosci. Lett. 2004, 357, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Buege, J.A.; Aust, S.D. Microsomal lipid peroxidation. Methods Enzymol. 1978, 52, 302–310. [Google Scholar] [PubMed]
- Denadai, B.S.; Ortiz, M.J.; Greco, C.C.; de Mello, M.T. Interval training at 95% and 100% of the velocity at VO2 max: Effects on aerobic physiological indexes and running performance. Appl. Physiol. Nutr. Metab. 2006, 31, 737–743. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.P.; Coombes, J.S.; Geraghty, D.P. Optimising high-intensity treadmill training using the running speed at maximal O2 uptake and the time for which this can be maintained. Eur. J. Appl. Physiol. 2003, 89, 337–343. [Google Scholar] [CrossRef]
- Barnes, K.R.; Hopkins, W.G.; McGuigan, M.R.; Kilding, A.E. Effects of different uphill interval-training programs on running economy and performance. Int. J. Sports Physiol. Perform. 2013, 8, 639–647. [Google Scholar] [CrossRef]
- Houston, M.E.; Thomson, J.A. The response of endurance-adapted adults to intense anaerobic training. Eur. J. Appl. Physiol. Occup. Physiol. 1977, 36, 207–213. [Google Scholar] [CrossRef]
- Shaw, A.J.; Ingham, S.A.; Folland, J.P. The efficacy of downhill running as a method to enhance running economy in trained distance runners. Eur. J. Sport Sci. 2018, 18, 630–638. [Google Scholar] [CrossRef]
- Toyomura, J.; Mori, H.; Tayashiki, K.; Yamamoto, M.; Kanehisa, H.; Maeo, S. Efficacy of downhill running training for improving muscular and aerobic performances. Appl. Physiol. Nutr. Metab. 2018, 43, 403–410. [Google Scholar] [CrossRef]
- Bontemps, B.; Gruet, M.; Louis, J.; Owens, D.J.; Miríc, S.; Erskine, R.M.; Vercruyssen, F. The time course of different neuromuscular adaptations to short-term downhill running training and their specific relationships with strength gains. Eur. J. Appl. Physiol. 2022, 122, 1071–1084. [Google Scholar] [CrossRef]
- Gonzalez-Mohino, F.; Gonzalez-Rave, J.M.; Juarez, D.; Fernandez, F.A.; Barragan Castellanos, R.; Newton, R.U. Effects of Continuous and Interval Training on Running Economy, Maximal Aerobic Speed and Gait Kinematics in Recreational Runners. J. Strength Cond. Res. 2016, 30, 1059–1066. [Google Scholar] [CrossRef]
- Wagle, J.P.; Taber, C.B.; Cunanan, A.J.; Bingham, G.E.; Carroll, K.M.; DeWeese, B.H.; Sato, K.; Stone, M.H. Accentuated Eccentric Loading for Training and Performance: A Review. Sports Med. 2017, 47, 2473–2495. [Google Scholar] [CrossRef] [PubMed]
- Theofilidis, G.; Bogdanis, G.C.; Stavropoulos-Kalinoglou, A.; Krase, A.A.; Tsatalas, T.; Shum, G.; Sakkas, G.K.; Koutedakis, Y.; Karatzaferi, C. The effects of training with high-speed interval running on muscle performance are modulated by slope. Physiol. Rep. 2021, 9, e14656. [Google Scholar] [CrossRef] [PubMed]
- Abe, D.; Muraki, S.; Yanagawa, K.; Fukuoka, Y.; Niihata, S. Changes in EMG characteristics and metabolic energy cost during 90-min prolonged running. Gait Posture 2007, 26, 607–610. [Google Scholar] [CrossRef]
- Barnes, K.R.; Kilding, A.E. Strategies to improve running economy. Sports Med. 2015, 45, 37–56. [Google Scholar] [CrossRef] [PubMed]
- Bogdanis, G.C. Effects of physical activity and inactivity on muscle fatigue. Front. Physiol. 2012, 3, 142. [Google Scholar] [CrossRef]
- Bogdanis, G.C.; Stavrinou, P.; Fatouros, I.G.; Philippou, A.; Chatzinikolaou, A.; Draganidis, D.; Ermidis, G.; Maridaki, M. Short-term high-intensity interval exercise training attenuates oxidative stress responses and improves antioxidant status in healthy humans. Food Chem. Toxicol. 2013, 61, 171–177. [Google Scholar] [CrossRef]
- Vezzoli, A.; Pugliese, L.; Marzorati, M.; Serpiello, F.R.; La Torre, A.; Porcelli, S. Time-course changes of oxidative stress response to high-intensity discontinuous training versus moderate-intensity continuous training in masters runners. PLoS ONE 2014, 9, e87506. [Google Scholar] [CrossRef]
- Wadley, A.J.; Chen, Y.W.; Lip, G.Y.; Fisher, J.P.; Aldred, S. Low volume-high intensity interval exercise elicits antioxidant and anti-inflammatory effects in humans. J. Sports Sci. 2016, 34, 1–9. [Google Scholar] [CrossRef]
- Zalavras, A.; Fatouros, I.G.; Deli, C.K.; Draganidis, D.; Theodorou, A.A.; Soulas, D.; Koutsioras, Y.; Koutedakis, Y.; Jamurtas, A.Z. Age-related responses in circulating markers of redox status in healthy adolescents and adults during the course of a training macrocycle. Oxidative Med. Cell. Longev. 2015, 2015, 283921. [Google Scholar] [CrossRef]
- Thirupathi, A.; Pinho, R.A.; Ugbolue, U.C.; He, Y.; Meng, Y.; Gu, Y. Effect of Running Exercise on Oxidative Stress Biomarkers: A Systematic Review. Front. Physiol. 2020, 11, 610112. [Google Scholar] [CrossRef]
- Varamenti, E.; Tod, D.; Pullinger, S.A. Redox Homeostasis and Inflammation Responses to Training in Adolescent Athletes: A Systematic Review and Meta-analysis. Sports Med.-Open 2020, 6, 34. [Google Scholar] [CrossRef] [PubMed]
- Braakhuis, A.J.; Hopkins, W.G.; Lowe, T.E. Effect of dietary antioxidants, training, and performance correlates on antioxidant status in competitive rowers. Int. J. Sports Physiol. Perform. 2013, 8, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Margonis, K.; Fatouros, I.G.; Jamurtas, A.Z.; Nikolaidis, M.G.; Douroudos, I.; Chatzinikolaou, A.; Mitrakou, A.; Mastorakos, G.; Papassotiriou, I.; Taxildaris, K.; et al. Oxidative stress biomarkers responses to physical overtraining: Implications for diagnosis. Free Radic. Biol. Med. 2007, 43, 901–910, Erratum in Free Radic Biol Med. 2008, 44, 2058. [Google Scholar] [CrossRef] [PubMed]
- Palazzetti, S.; Richard, M.J.; Favier, A.; Margaritis, I. Overloaded training increases exercise-induced oxidative stress and damage. Can. J. Appl. Physiol. 2003, 28, 588–604. [Google Scholar] [CrossRef]
- Wadley, A.J.; Killer, S.C.; Svendsen, I.S.; Gleeson, M. The impact of intensified training with a high or moderate carbohydrate feeding strategy on resting and exercise-induced oxidative stress. Eur. J. Appl. Physiol. 2015, 115, 1757–1767. [Google Scholar] [CrossRef]
- Qaisar, R.; Bhaskaran, S.; Van Remmen, H. Muscle fiber type diversification during exercise and regeneration. Free Radic. Biol. Med. 2016, 98, 56–67. [Google Scholar] [CrossRef]
- Lamprecht, M.; Greilberger, J.F.; Schwaberger, G.; Hofmann, P.; Oettl, K. Single bouts of exercise affect albumin redox state and carbonyl groups on plasma protein of trained men in a workload-dependent manner. J. Appl. Physiol. 2008, 104, 1611–1617. [Google Scholar] [CrossRef]
- Wadley, A.J.; Turner, J.E.; Aldred, S. Factors influencing post-exercise plasma protein carbonyl concentration. Free Radic. Res. 2016, 50, 375–384. [Google Scholar] [CrossRef]
- Perez, A.C.; Cabral de Oliveira, A.C.; Estevez, E.; Molina, A.J.; Prieto, J.G.; Alvarez, A.I. Mitochondrial, sarcoplasmic membrane integrity and protein degradation in heart and skeletal muscle in exercised rats. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2003, 134, 199–206. [Google Scholar] [CrossRef]
- de Souza, D.C.; Matos, V.A.F.; Dos Santos, V.O.A.; Medeiros, I.F.; Marinho, C.S.R.; Nascimento, P.R.P.; Dorneles, G.P.; Peres, A.; Muller, C.H.; Krause, M.; et al. Effects of High-Intensity Interval and Moderate-Intensity Continuous Exercise on Inflammatory, Leptin, IgA, and Lipid Peroxidation Responses in Obese Males. Front. Physiol. 2018, 9, 567. [Google Scholar] [CrossRef]
- Maughan, R.J.; Donnelly, A.E.; Gleeson, M.; Whiting, P.H.; Walker, K.A.; Clough, P.J. Delayed-onset muscle damage and lipid peroxidation in man after a downhill run. Muscle Nerve 1989, 12, 332–336. [Google Scholar] [CrossRef]
- Reichel, T.; Boßlau, T.K.; Palmowski, J.; Eder, K.; Ringseis, R.; Mooren, F.C.; Walscheid, R.; Bothur, E.; Samel, S.; Frech, T.; et al. Reliability and suitability of physiological exercise response and recovery markers. Sci. Rep. 2020, 10, 11924. [Google Scholar] [CrossRef]



| Variable | Uphill | Downhill | ||||||
|---|---|---|---|---|---|---|---|---|
| Pre-Training | Mid-Training | Post-Training | d (Pre–Post) | Pre-Training | Mid-Training | Post-Training | d (Pre–Post) | |
| Weight (kg) | 81.3 ± 12.7 | 80.5 ± 10.2 | 0.07 | 82.9 ± 23.8 | 80.9 ± 20.8 | 0.08 | ||
| BMI (kg/m2) | 26.6 ± 3.3 | 26.2 ± 2.4 | 0.12 | 25.1 ± 3.6 | 24.5 ± 2.9 | 0.17 | ||
| VO2max (L/min) | 3.62 ± 0.41 | 3.55 ± 0.65 | 3.53 ± 0.66 | 0.16 | 3.55 ± 0.72 | 3.47 ± 0.77 | 3.60 ± 0.83 b | 0.06 |
| VO2max (mL/kg/min) | 45.3 ± 5.3 | 43.9 ± 5.5 | 44.3 ± 6.5 | 0.16 | 43.6 ± 6.4 | 42.5 ± 5.0 | 44.9 ± 5.4 b | 0.20 |
| RER | 1.07 ± 0.06 | 1.11 ± 0.05 | 1.08 ± 0.06 | 0.14 | 1.06 ± 0.07 | 1.07 ± 0.05 | 1.12 ± 0.03 a | 0.91 |
| MAS (km/h) | 15.5 ± 2.3 | 15.8 ± 2.0 | 15.4 ± 2.1 | 0.03 | 13.8 ± 1.9 | 14.4 ± 2.3 | 14.5 ± 1.9 | 0.43 |
| Tmax (s) | 289.6 ± 89.5 | 354.0 ± 83.9 | 0.67 | 360.2 ± 65.7 | 311.0 ± 27.4 | 0.90 | ||
| VO2 during training (mL/kg/min) | 28.4 ± 5.4 | 27.9 ± 4.2 | 0.08 | 14.8 ± 1.5 c | 13.9 ± 1.9 c | 0.51 | ||
| Index | Uphill (n = 7) | Downhill (n = 7) | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Pre-Training | Post-Training | Pre-Training | Post-Training | |||||||||
| Rest | Post Exercise | % Change | Rest | Post Exercise | % Change | Rest | Post Exercise | % Change | Rest | Post Exercise | % Change | |
| TAC * (mmol DPPH·L−1) | 0.92 ± 0.06 | 0.98 ± 0.08 | 6.10 ± 0.07 | 0.88 ± 0.10 | 0.87 ± 0.08 | −1.50 ± 0.09 | 0.96 ± 0.10 | 0.92 ± 0.89 | −3.83 ± 0.09 | 0.86 ± 0.08 | 0.89 ± 0.11 | 3.05 ± 0.09 |
| PC (nMol·mg−1 protein) | 0.57 ± 0.25 | 1.03 ± 0.17 b | 79.55 ± 33.06 | 0.68 ± 0.11 | 0.86 ± 0.19 b | 25.20 ± 75.03 | 0.47 ± 0.25 | 0.79 ± 0.72 ab | 69.31 ± 0.18 | 0.72 ± 0.18 c | 0.72 ± 0.19 | −0.64 ± 0.18 ac |
| TBARS * (μMol·L−1) | 5.83 ± 1.49 | 5.56 ± 1.04 | −4.62 ± 1.26 | 6.52 ± 1.16 | 6.23 ± 1.14 c | −4.36 ± 1.15 | 4.97 ± 1.04 | 5.14 ± 1.24 | 3.43 ± 1.14 | 4.92 ± 0.84 a | 6.02 ± 1.26 b | 22.14 ± 1.05 ac |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Theofilidis, G.; Bogdanis, G.C.; Kaltsatou, A.; Poulianiti, K.P.; Mitrou, G.I.; Rosa, C.S.d.C.; Georgakouli, K.; Stavropoulos-Kalinoglou, A.; Krase, A.A.; Chasioti-Fourli, F.; et al. Physiological, Performance, and Oxidative Stress Responses to High-Intensity Uphill and Downhill Interval Training. J. Funct. Morphol. Kinesiol. 2025, 10, 460. https://doi.org/10.3390/jfmk10040460
Theofilidis G, Bogdanis GC, Kaltsatou A, Poulianiti KP, Mitrou GI, Rosa CSdC, Georgakouli K, Stavropoulos-Kalinoglou A, Krase AA, Chasioti-Fourli F, et al. Physiological, Performance, and Oxidative Stress Responses to High-Intensity Uphill and Downhill Interval Training. Journal of Functional Morphology and Kinesiology. 2025; 10(4):460. https://doi.org/10.3390/jfmk10040460
Chicago/Turabian StyleTheofilidis, George, Gregory C. Bogdanis, Antonia Kaltsatou, Konstantina P. Poulianiti, Georgia I. Mitrou, Clara Suemi da Costa Rosa, Kalliopi Georgakouli, Antonios Stavropoulos-Kalinoglou, Argyro A. Krase, Fani Chasioti-Fourli, and et al. 2025. "Physiological, Performance, and Oxidative Stress Responses to High-Intensity Uphill and Downhill Interval Training" Journal of Functional Morphology and Kinesiology 10, no. 4: 460. https://doi.org/10.3390/jfmk10040460
APA StyleTheofilidis, G., Bogdanis, G. C., Kaltsatou, A., Poulianiti, K. P., Mitrou, G. I., Rosa, C. S. d. C., Georgakouli, K., Stavropoulos-Kalinoglou, A., Krase, A. A., Chasioti-Fourli, F., Syrmos, N., Sakkas, G. K., Koutedakis, Y., & Karatzaferi, C. (2025). Physiological, Performance, and Oxidative Stress Responses to High-Intensity Uphill and Downhill Interval Training. Journal of Functional Morphology and Kinesiology, 10(4), 460. https://doi.org/10.3390/jfmk10040460

