Enhancing Lower-Body Power in Highly Trained Female Athletes: Effects of Velocity-Based Strength Training
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Velocity-Based Training Intervention
2.3. Pre- and Posttest
2.4. Statistical Analyses
3. Results
3.1. Training Monitoring
3.2. Lower Body Peak Power
3.3. Force-Velocity Profiles
4. Discussion
4.1. Lower Body Peak Power
4.2. Force–Velocity Profiles
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
VBT | Velocity Based Training |
HT | Hip Thrust |
PBS | Parallel Back Squat |
CMJ | Countermovement Jump |
SJ | Squat Jump |
s_max | Maximum Jump Height |
Pmax_rel | Relative Peak Power |
N | Newton |
m | Meter |
s | Seconds |
FVP | Force–Velocity Profile |
References
- Morin, J.-B.; Samozino, P. Interpreting power-force-velocity profiles for individualized and specific training. Int. J. Sport Physiol. 2016, 11, 267–272. [Google Scholar] [CrossRef]
- Baena-Raya, A.; Soriano-Maldonado, A.; Rodríguez-Pérez, M.A.; García-de-Alcaraz, A.; Ortega-Becerra, M.; Jiménez-Reyes, P.; García-Ramos, A. The force-velocity profile as determinant of spike and serve ball speed in top-level male volleyball players. PLoS ONE 2021, 16, e0249612. [Google Scholar] [CrossRef]
- Milić, M.; Grgantov, Z.; Chamari, K.; Ardigò, L.; Bianco, A.; Padulo, J. Anthropometric and physical characteristics allow differentiation of young female volleyball players according to playing position and level of expertise. Biol. Sport 2017, 34, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Tsoukos, A.; Drikos, S.; Brown, L.E.; Sotiropoulos, K.; Veligekas, P.; Bogdanis, G.C. Anthropometric and motor performance variables are decisive factors for the selection of junior national female volleyball players. J. Hum. Kinet. 2019, 67, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Nassib, S.H.; Mkaouer, B.; Riahi, S.H.; Wali, S.M.; Nassib, S. Prediction of Gymnastics Physical Profile Through an International Program Evaluation in Women Artistic Gymnastics. J. Strength Cond. Res. 2020, 34, 577–586. [Google Scholar] [CrossRef] [PubMed]
- Schärer, C.; Haller, N.; Taube, W.; Hübner, K. Physical determinants of vault performance and their age-related differences across male junior and elite top-level gymnasts. PLoS ONE 2019, 14, e0225975. [Google Scholar] [CrossRef]
- French, D.N.; Gomez, A.L.; Volek, J.S.; Rubin, M.R.; Ratamess, N.A.; Sharman, M.J.; Gotshalk, L.A.; Sebastianelli, W.J.; Putukian, M.; Newton, R.U.; et al. Longitudinal Tracking of Muscular Power Changes of NCAA Division I Collegiate Women Gymnasts. J. Strength Cond. Res. 2004, 18, 101–107. [Google Scholar]
- Jiménez-Reyes, P.; Samozino, P.; Cuadrado-Peñafiel, V.; Conceição, F.; González-Badillo, J.J.; Morin, J.-B. Effect of countermovement on power-force-velocity profile. Eur. J. Appl. Physiol. 2014, 114, 2281–2288. [Google Scholar] [CrossRef]
- Balsalobre-Fernández, C.; Torres-Ronda, L. The Implementation of Velocity-Based Training Paradigm for Team Sports: Framework, Technologies, Practical Recommendations and Challenges. Sports 2021, 9, 47. [Google Scholar] [CrossRef]
- Fritschi, R.; Seiler, J.; Gross, M. Validity and Effects of Placement of Velocity-Based Training Devices. Sports 2021, 9, 123. [Google Scholar] [CrossRef]
- Rissanen, J.; Walker, S.; Pareja-Blanco, F.; Häkkinen, K. Velocity-based resistance training: Do women need greater velocity loss to maximize adaptations? Eur. J. Appl. Physiol. 2022, 122, 1269–1280. [Google Scholar] [CrossRef]
- Behm, D.G.; Konrad, A.; Nakamura, M.; Alizadeh, S.; Culleton, R.; Anvar, S.H.; Pearson, L.T.; Ramirez-Campillo, R.; Sale, D.G. A narrative review of velocity-based training best practice: The importance of contraction intent versus movement speed. Appl. Physiol. Nutr. Metab. 2025, 50, 1–9. [Google Scholar] [CrossRef]
- Weakley, J.; Mann, B.; Banyard, H.; McLaren, S.; Scott, T.; Garcia-Ramos, A. Velocity-based training: From theory to application. Strength Cond. J. 2021, 43, 31–49. [Google Scholar] [CrossRef]
- Conceição, F.; Fernandes, J.; Lewis, M.; Gonzaléz-Badillo, J.J.; Jimenéz-Reyes, P. Movement velocity as a measure of exercise intensity in three lower limb exercises. J. Sports Sci. 2016, 34, 1099–1106. [Google Scholar] [CrossRef]
- Guerriero, A.; Varalda, C.; Piacentini, M.F. The Role of Velocity Based Training in the Strength Periodization for Modern Athletes. J. Funct. Morphol. Kinesiol. 2018, 3, E55. [Google Scholar] [CrossRef] [PubMed]
- Włodarczyk, M.; Adamus, P.; Zieliński, J.; Kantanista, A. Effects of Velocity-Based Training on Strength and Power in Elite Athletes—A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 5257. [Google Scholar] [CrossRef] [PubMed]
- Pareja-Blanco, F.; Rodríguez-Rosell, D.; Sánchez-Medina, L.; Sanchis-Moysi, J.; Dorado, C.; Mora-Custodio, R.; Yáñez-García, J.M.; Morales-Alamo, D.; Pérez-Suárez, I.; Calbet, J.a.L.; et al. Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scand. J. Med. Sci. Sports 2017, 27, 724–735. [Google Scholar] [CrossRef]
- Dorrell, H.F.; Smith, M.F.; Gee, T.I. Comparison of Velocity-Based and Traditional Percentage-Based Loading Methods on Maximal Strength and Power Adaptations. J. Strength Cond. Res. 2020, 34, 46–53. [Google Scholar] [CrossRef]
- Zubčić, D.; Vučetić, V. Influence of individualized training based on mechanical force-velocity profile on the bilateral vertical jump performance. Kinesiology 2022, 54, 133–139. [Google Scholar] [CrossRef]
- Samozino, P. Optimal Force-Velocity Profile in Ballistic Push-off: Measurement and Relationship with Performance. In Biomechanics of Training and Testing: Innovative Concepts and Simple Field Methods; Morin, J.-B., Samozino, P., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 97–119. [Google Scholar]
- Jiménez-Reyes, P.; Samozino, P.; Morin, J.-B. Optimized training for jumping performance using the force-velocity imbalance: Individual adaptation kinetics. PLoS ONE 2019, 14, e0216681. [Google Scholar] [CrossRef]
- Haugen, T.A.; Breitschädel, F.; Seiler, S. Sprint mechanical variables in elite athletes: Are force-velocity profiles sport specific or individual? PLoS ONE 2019, 14, e0215551. [Google Scholar] [CrossRef]
- Lindberg, K.; Solberg, P.; Rønnestad, B.R.; Frank, M.T.; Larsen, T.; Abusdal, G.; Berntsen, S.; Paulsen, G.; Sveen, O.; Seynnes, O.; et al. Should we individualize training based on force-velocity profiling to improve physical performance in athletes? Scand. J. Med. Sci. Sports 2021, 31, 2198–2210. [Google Scholar] [CrossRef]
- Lidor, R.; Ziv, G. Physical and physiological attributes of female volleyball players--a review. J. Strength Cond. Res. 2010, 24, 1963–1973. [Google Scholar] [CrossRef]
- Samozino, P.; Morin, J.B.; Hintzy, F.; Belli, A. A simple method for measuring force, velocity and power output during squat jump. J. Biomech. 2008, 41, 2940–2945. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Nimphius, S.; Stone, M.H. The importance of muscular strength in athletic performance. Sports Med. 2016, 46, 1419–1449. [Google Scholar] [CrossRef]
- Loturco, I. One-repetition-maximum measures or maximum bar-pow. IJSPP 2019, 2018, 0255. [Google Scholar]
- Behm, D.; Sale, D. Velocity specificity of resistance training. Sports Med. 1993, 15, 374–388. [Google Scholar] [CrossRef] [PubMed]
- Nuzzo, J.L.; McBride, J.M.; Cormie, P.; McCaulley, G.O. Relationship between countermovement jump performance and multijoint isometric and dynamic tests of strength. J. Strength Cond. Res. 2008, 22, 699–707. [Google Scholar] [CrossRef] [PubMed]
- Lamas, L.; Ugrinowitsch, C.; Rodacki, A.; Pereira, G.; Mattos, E.C.; Kohn, A.F.; Tricoli, V. Effects of strength and power training on neuromuscular adaptations and jumping movement pattern and performance. J. Strength Cond. Res. 2012, 26, 3335–3344. [Google Scholar] [CrossRef]
- Markovic, G.; Mikulic, P. Neuro-musculoskeletal and performance adaptations to lower-extremity plyometric training. Sports Med. 2010, 40, 859–895. [Google Scholar] [CrossRef]
- Achermann, B.B.; Regazzi, N.; Heynen, R.; Lüdin, D.; Suter, J.; Drewek, A.; Lorenzetti, S.R. From Monitoring to Prediction: Velocity-Based Strength Training in Female Floorball Athletes. Sports 2025, 13, 175. [Google Scholar] [CrossRef]
- Rodríguez-Rosell, D.; Yáñez-García, J.M.; Mora-Custodio, R.; Sánchez-Medina, L.; Ribas-Serna, J.; González-Badillo, J.J. Effect of velocity loss during squat training on neuromuscular performance. Scand. J. Med. Sci. Sports 2021, 31, 1621–1635. [Google Scholar] [CrossRef]
- Held, S.; Speer, K.; Rappelt, L.; Wicker, P.; Donath, L. The effectiveness of traditional vs. velocity-based strength training on explosive and maximal strength performance: A network meta-analysis. Front. Physiol. 2022, 13, 926972. [Google Scholar] [CrossRef] [PubMed]
- Rial-Vázquez, J.; Mayo, X.; Tufano, J.J.; Fariñas, J.; Rúa-Alonso, M.; Iglesias-Soler, E. Cluster vs. traditional training programmes: Changes in the force–velocity relationship. Sports Biomech. 2022, 21, 85–103. [Google Scholar] [CrossRef] [PubMed]
- McMaster, D.T.; Gill, N.; Cronin, J.; McGuigan, M. The development, retention and decay rates of strength and power in elite rugby union, rugby league and American football: A systematic review. Sports Med. 2013, 43, 367–384. [Google Scholar] [CrossRef] [PubMed]
Volleyball | Artistic Gymnastics | |||||
---|---|---|---|---|---|---|
(Pmax_rel: W/kg) | Pre | Post | g | Pre | Post | g |
CMJ 0% | 46.04 ± 6.63 | 46.30 ± 5.35 | 0.10 | 52.23 ± 3.38 | 52.65 ± 7.00 | 0.08 |
CMJ 60% | 40.80 ± 6.25 | 43.14 ± 5.75 | 0.67 | 44.05 ± 5.58 | 47.46 ± 5.15 ** | 1.41 |
SJ 0% | 44.64 ± 4.39 | 43.99 ± 5.68 | −0.24 | 48.65 ± 4.50 | 49.35 ± 3.75 | 0.22 |
SJ 15% | 42.46 ± 5.49 | 43.07 ± 5.64 | 0.29 | 45.64 ± 3.30 | 47.04 ± 3.07 | 0.63 |
SJ 30% | 42.06 ± 5.13 | 43.09 ± 5.71 | 0.41 | 45.70 ± 3.92 | 46.17 ± 3.34 | 0.21 |
SJ 45% | 40.59 ± 4.89 | 42.81 ± 5.50 ** | 1.37 | 43.93 ± 3.75 | 45.25 ± 3.74 | 0.45 |
SJ 60% | 39.11 ± 5.10 | 41.40 ± 4.84 * | 1.06 | 42.99 ± 4.09 | 44.37 ± 5.30 | 0.48 |
Volleyball | Artistic Gymnastics | |||||
---|---|---|---|---|---|---|
(s_max: cm) | Pre | Post | g | Pre | Post | g |
SJ 0% | 30.34 ± 4.21 | 30.76 ± 3.87 | 0.19 | 32.24 ± 4.11 | 32.33 ± 4.91 | 0.04 |
SJ 15% | 24.29 ± 4.08 | 26.20 ± 5.91 | 0.72 | 26.93 ± 2.75 | 28.48 ± 3.38 | 0.81 |
SJ 30% | 21.69 ± 3.33 | 22.51 ± 3.86 | 0.45 | 23.40 ± 2.66 | 24.58 ± 2.95 * | 1.09 |
SJ 45% | 17.90 ± 2.90 | 19.54 ± 3.18 * | 1.21 | 19.57 ± 2.40 | 21.20 ± 2.95 | 0.86 |
SJ 60% | 15.23 ± 2.68 | 16.76 ± 2.58 * | 1.14 | 17.00 ± 2.66 | 18.68 ± 2.70 * | 0.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schärer, C.; Barloggio, C.; Seiler, J. Enhancing Lower-Body Power in Highly Trained Female Athletes: Effects of Velocity-Based Strength Training. J. Funct. Morphol. Kinesiol. 2025, 10, 411. https://doi.org/10.3390/jfmk10040411
Schärer C, Barloggio C, Seiler J. Enhancing Lower-Body Power in Highly Trained Female Athletes: Effects of Velocity-Based Strength Training. Journal of Functional Morphology and Kinesiology. 2025; 10(4):411. https://doi.org/10.3390/jfmk10040411
Chicago/Turabian StyleSchärer, Christoph, Caterina Barloggio, and Jan Seiler. 2025. "Enhancing Lower-Body Power in Highly Trained Female Athletes: Effects of Velocity-Based Strength Training" Journal of Functional Morphology and Kinesiology 10, no. 4: 411. https://doi.org/10.3390/jfmk10040411
APA StyleSchärer, C., Barloggio, C., & Seiler, J. (2025). Enhancing Lower-Body Power in Highly Trained Female Athletes: Effects of Velocity-Based Strength Training. Journal of Functional Morphology and Kinesiology, 10(4), 411. https://doi.org/10.3390/jfmk10040411