Effects of Horizontal and Vertical Vector Resistance Training on Swim Start Performance: An Eight-Week Intervention in Division One Collegiate Swimmers in Taiwan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Participants
2.3. Training Intervention
2.4. Outcome Measurement
2.4.1. Anthropometrics
2.4.2. Vertical Jump Test
2.4.3. Swimming Start Performance Test
2.5. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Swimming Performance
3.3. Countermovement Jump
3.4. Squat Jump
3.5. Correlation Between Changes in Countermovement Jump Variables and Swim Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lyttle, A.; Benjamvatra, N. Start Right? A Biomechanical Review of Dive Start Performance. 2005. Available online: http://www.coachesinfo.com/category/swimming/321/ (accessed on 28 March 2025).
- Mason, B.; Cossor, J. (Eds.) What Can We Learn from Competition Analysis at the 1999 Pan Pacifics Swimming Championships? In Proceedings of the XVIII International Symposium on Biomechanics in Sports, Hong Kong, China, 25–30 June 2000; International Society of Biomechanics in Sports: Hong Kong, China, 2000. [Google Scholar]
- Thng, S.; Pearson, S.; Keogh, J.W.L. Relationships Between Dry-land Resistance Training and Swim Start Performance and Effects of Such Training on the Swim Start: A Systematic Review. Sports Med. 2019, 49, 1957–1973. [Google Scholar] [CrossRef] [PubMed]
- Thng, S.; Pearson, S.; Mitchell, L.J.; Meulenbroek, C.; Keogh, J.W. On-block mechanistic determinants of start performance in high performance swimmers. Sports Biomech. 2024, 23, 682–694. [Google Scholar] [CrossRef] [PubMed]
- West, D.J.; Owen, N.J.; Cunningham, D.J.; Cook, C.J.; Kilduff, L.P. Strength and power predictors of swimming starts in international sprint swimmers. J. Strength Cond. Res. 2011, 25, 950–955. [Google Scholar] [CrossRef] [PubMed]
- Vantorre, J.; Chollet, D.; Seifert, L. Biomechanical analysis of the swim-start: A review. J. Sports Sci. Med. 2014, 13, 223–231. [Google Scholar]
- Crespo, E.; Ruiz-Navarro, J.J.; Cuenca-Fernández, F.; Arellano, R. Post-Eccentric Flywheel Underwater Undulatory Swimming Potentiation in Competitive Swimmers. J. Hum. Kinet. 2021, 79, 145–154. [Google Scholar] [CrossRef]
- Gonjo, T.; Olstad, B.H. Race Analysis in Competitive Swimming: A Narrative Review. Int. J. Environ. Res. Public Health 2020, 18, 69. [Google Scholar] [CrossRef]
- Takeda, T.; Sakai, S.; Takagi, H.; Okuno, K.; Tsubakimoto, S. Contribution of hand and foot force to take-off velocity for the kick-start in competitive swimming. J. Sports Sci. 2017, 35, 565–571. [Google Scholar] [CrossRef]
- Santos, C.C.; Barbosa, T.M.; Marinho, D.A.; Costa, M.J. Association between the dry-land strength power and the kick start kinetics in elite male and female swimmers. Sports Biomech. 2024, 23, 3202–3212. [Google Scholar] [CrossRef]
- Fitzpatrick, D.A.; Cimadoro, G.; Cleather, D.J. The Magical Horizontal Force Muscle? A Preliminary Study Examining the “Force-Vector” Theory. Sports 2019, 7, 30. [Google Scholar] [CrossRef]
- Bompa, T.; Buzzichelli, C. Periodization Training for Sports, 3rd ed.; Human Kinetics: Champaign, IL, USA, 2015. [Google Scholar]
- Breed, R.V.; Young, W.B. The effect of a resistance training programme on the grab, track and swing starts in swimming. J. Sports Sci. 2003, 21, 213–220. [Google Scholar] [CrossRef]
- Kilduff, L.P.; Cunningham, D.J.; Owen, N.J.; West, D.J.; Bracken, R.M.; Cook, C.J. Effect of postactivation potentiation on swimming starts in international sprint swimmers. J. Strength Cond. Res. 2011, 25, 2418–2423. [Google Scholar] [CrossRef] [PubMed]
- Wirth, K.; Keiner, M.; Fuhrmann, S.; Nimmerichter, A.; Haff, G.G. Strength Training in Swimming. Int. J. Environ. Res. Public Health 2022, 19, 5369. [Google Scholar] [CrossRef] [PubMed]
- Abade, E.; Silva, N.; Ferreira, R.; Baptista, J.; Gonçalves, B.; Osório, S.; Viana, J. Effects of Adding Vertical or Horizontal Force-Vector Exercises to In-season General Strength Training on Jumping and Sprinting Performance of Youth Football Players. J. Strength Cond. Res. 2021, 35, 2769–2774. [Google Scholar] [CrossRef]
- Loturco, I.; Contreras, B.; Kobal, R.; Fernandes, V.; Moura, N.; Siqueira, F.; Winckler, C.; Suchomel, T.; Pereira, L.A. Vertically and horizontally directed muscle power exercises: Relationships with top-level sprint performance. PLoS ONE 2018, 13, e0201475. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Sabaté, J.; Gutiérrez, H.; Marco-Contreras, L.A.; Younes-Egana, O.; Gonzalo-Skok, O.; Piedrafita, E. Influence of Vertical-Oriented vs. Horizontal-Oriented Combined Strength Training in Young Basketball Players. J. Strength Cond. Res. 2024, 38, 1280–1287. [Google Scholar] [CrossRef]
- Thng, S.; Pearson, S.; Keogh, J.W.L. Pushing up or pushing out-an initial investigation into horizontal-versus vertical-force training on swimming start performance: A pilot study. PeerJ 2021, 9, e10937. [Google Scholar] [CrossRef]
- Oğul, B.; Uslu, S.; Hindistan, I.E.; Akdağ, E.; Cetin Özdoğan, E. The effect of the horizontal vs. vertical PAPE protocol on the swim start performance in adolescent male. Sports Biomech. 2023, 1–16. [Google Scholar] [CrossRef]
- Cabarkapa, D.; Philipp, N.M.; Cabarkapa, D.V.; Fry, A.C. Position-specific differences in countermovement vertical jump force-time metrics in professional male basketball players. Front. Sports Act. Living 2023, 5, 1218234. [Google Scholar] [CrossRef]
- Cuenca-Fernández, F.; López-Contreras, G.; Arellano, R. Effect on swimming start performance of two types of activation protocols: Lunge and YoYo squat. J. Strength Cond. Res. 2015, 29, 647–655. [Google Scholar] [CrossRef]
- Contreras, B.; Vigotsky, A.D.; Schoenfeld, B.J.; Beardsley, C.; McMaster, D.T.; Reyneke, J.H.; Cronin, J.B. Effects of a Six-Week Hip Thrust vs. Front Squat Resistance Training Program on Performance in Adolescent Males: A Randomized Controlled Trial. J. Strength Cond. Res. 2017, 31, 999–1008. [Google Scholar] [CrossRef]
- Honda, K.; Sinclair, P.; Mason, B.; Pease, D. The effect of starting position on elite swim start performance using an angled kick plate. In Proceedings of the 30th International Conference on Biomechanics in Sports, Melbourne, Australia, 2–6 July 2012. [Google Scholar]
- Welcher, R.L.; Hinrichs, R.N.; George, T.R. Front- or rear-weighted track start or grab start: Which is the best for female swimmers? Sports Biomech. 2008, 7, 100–113. [Google Scholar] [CrossRef] [PubMed]
- Tor, E.; Pease, D.L.; Ball, K.A. Key parameters of the swimming start and their relationship to start performance. J. Sports Sci. 2015, 33, 1313–1321. [Google Scholar] [CrossRef] [PubMed]
- Markström, J.L.; Olsson, C.J. Countermovement jump peak force relative to body weight and jump height as predictors for sprint running performances: (in)homogeneity of track and field athletes? J. Strength Cond. Res. 2013, 27, 944–953. [Google Scholar] [CrossRef] [PubMed]
- Schumann, M.; Rønnestad, B.R. Concurrent Aerobic and Strength Training; Springer Nature: Cham, Switzerland, 2019. [Google Scholar]
- Papadimitriou, K.; Kabasakalis, A.; Papadopoulos, A.; Mavridis, G.; Tsalis, G. Comparison of Ultra-Short Race Pace and High-Intensity Interval Training in Age Group Competitive Swimmers. Sports 2023, 11, 186. [Google Scholar] [CrossRef]
- Williamson, D.; McCarthy, E.; Ditroilo, M. Acute Physiological Responses to Ultra Short Race-Pace Training in Competitive Swimmers. J. Hum. Kinet. 2020, 75, 95–102. [Google Scholar] [CrossRef]
- Haycraft, J.; Robertson, S.J. The effects of concurrent aerobic training and maximal strength, power and swim-specific dry-land training methods on swim performance: A review. J. Aust. Strength Cond. 2015, 23, 91–99. [Google Scholar]
Participant | HOR (n = 8) | VER (n = 8) | Pooled (n = 16) | p-Value |
---|---|---|---|---|
Male participants | 7 | 7 | 14 | - |
Female participants | 1 | 1 | 2 | - |
Age (years) | 20.3 ± 2.5 | 20.7 ± 2.2 | 20.5 ± 2.3 | 0.595 |
Height (cm) | 174.1 ± 8.6 | 178.6 ± 11.4 | 176.3 ± 10 | 0.388 |
Body mass (kg) | 65.8 ± 7.8 | 71.9 ± 12 | 68.8 ± 10.3 | 0.247 |
Body fat percentage (%) | 12.9 ± 2.3 | 11.2 ± 3.8 | 12 ± 3.1 | 0.315 |
Lean body mass percentage (%) | 49.5 ± 2.1 | 50.6 ± 3 | 50 ± 2.6 | 0.422 |
Training experience (years) | 12 ± 4.1 | 8.4 ± 3.8 | 10.2 ± 4.3 | 0.089 |
15 m swim speed (m/s) | 2.5 ± 0.2 | 2.5 ± 0.2 | 2.5 ± 0.2 | 0.622 |
25 m swim speed (m/s) | 2.2 ± 0.1 | 2.2 ± 0.1 | 2.2 ± 0.1 | 0.981 |
World Aquatics points | 726 ± 17 | 676 ± 79 | 699 ± 62 | 0.149 |
Variable | HOR | VER | Effect Size | ANOVA | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Pre | Post | Δ | Pre | Post | Δ | Group Effects | Time Effects | Interaction Effects | ||
Flight distance (m) | 3.16 ± 0.28 | 3.29 ± 0.31 | 6.0% | 3.23 ± 0.28 | 3.41 ± 0.29 | 6.2% | 2.007 | 0.422 | 0.001 | 0.422 |
Flight time (s) | 0.26 ± 0.04 | 0.29 ± 0.03 | 5.0% | 0.27 ± 0.06 | 0.29 ± 0.05 | 5.5% | 0.883 | 0.443 | 0.027 | 0.443 |
MHHV (m/s) | 12.4 ± 1.4 | 11.6 ± 1.1 | 2.3% | 12.1 ± 1.9 | 12.1 ± 1.6 | 0.7% | 0.249 | 0.377 | 0.495 | 0.377 |
UWS (m/s) | 1.71 ± 0.13 | 1.72 ± 0.11 | 1.1% | 1.84 ± 0.21 | 1.77 ± 0.24 | −3.7% | 0.321 | 0.107 | 0.351 | 0.107 |
S15 (m/s) | 2.46 ± 0.17 | 2.55 ± 0.19 | 1.5% | 2.51 ± 0.21 | 2.55 ± 0.24 | 1.4% | 0.942 | 0.295 | 0.018 | 0.295 |
S25 (m/s) | 2.15 ± 0.13 | 2.16 ± 0.11 | 1.1% | 2.16 ± 0.14 | 2.17 ± 0.17 | 0.7% | 0.321 | 0.749 | 0.394 | 0.749 |
Variable | HOR | VER | Effect Size | ANOVA | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Pre | Post | Δ | Pre | Post | Δ | Group Effects | Time Effects | Interaction Effects | ||
Eccentric phase | ||||||||||
ECC-T (s) | 0.598 ± 0.09 | 0.67 ± 0.21 | 10.7% | 0.68 ± 0.12 | 0.703 ± 0.17 | 2.8% | 0.388 | 0.487 | 0.299 | 0.487 |
ECC-PF (N) | 240.5 ± 104.3 | 221.7 ± 110.9 | −11.4% | 287.9 ± 165.4 | 326.5 ± 217.6 | 8.9% | 0.025 | 0.177 | 0.944 | 0.177 |
ECC-ACC duration (s) | 0.39 ± 0.08 | 0.45 ± 0.203 | 17.1% | 0.44 ± 0.08 | 0.47 ± 0.14 | 6.9% | 0.419 | 0.544 | 0.265 | 0.544 |
ECC-ACC impulse (N·s) | −80.8 ± 17.9 | −79.9 ± 17.4 | 1.2% | −87.2 ± 27 | −81.5 ± 28.5 | −6.6% | 0.379 | 0.329 | 0.301 | 0.329 |
ECC-DEC duration (s) | 0.21 ± 0.03 | 0.21 ± 0.04 | 2.3% | 0.25 ± 0.07 | 0.23 ± 0.07 | −4.5% | 0.149 | 0.310 | 0.679 | 0.310 |
ECC-DEC impulse (N·s) | 80.9 ± 17.8 | 79.8 ± 17.5 | 1.1% | 87.3 ± 27 | 81 ± 27.3 | −7.0% | 0.417 | 0.305 | 0.256 | 0.305 |
Concentric phase | ||||||||||
Propulsion duration (s) | 0.31 ± 0.03 | 0.31 ± 0.03 | 0.1% | 0.33 ± 0.04 | 0.32 ± 0.04 | −2.9% | 0.367 | 0.677 | 0.331 | 0.677 |
CON-MF(N) | 1205 ± 201 | 1235 ± 176 | 2.0% | 1297 ± 202 | 1332 ± 210 | 2.8% | 0.823 | 0.971 | 0.041 | 0.971 |
CON-MP (W) | 1677 ± 396 | 1751 ± 310 | 4.9% | 1854 ± 354 | 1876 ± 357 | 1.5% | 0.600 | 0.334 | 0.112 | 0.334 |
CON impulse (N·s) | 169.2 ± 29.5 | 177.2 ± 28.2 | 4.4% | 197.3 ± 41.5 | 197.6 ± 37.4 | 0.6% | 0.720 | 0.110 | 0.049 | 0.110 |
Overall Performance | ||||||||||
Jump height (cm) | 33.9 ± 5.9 | 37.3 ± 4.6 | 11.4% | 37.3 ± 5.8 | 36.6 ± 5.4 | −1.4% | 0.614 | 0.019 | 0.059 | 0.019 |
Peak force (N) | 1425 ± 207 | 1455 ± 204 | 1.7% | 1570 ± 267 | 1609 ± 277 | 2.5% | 0.831 | 0.910 | 0.039 | 0.910 |
Peak power (W) | 3046 ± 586 | 3261 ± 529 | 6.6% | 3529 ± 844 | 3545 ± 743 | 1.4% | 0.934 | 0.063 | 0.012 | 0.063 |
RSI mod (%) | 0.59 ± 0.105 | 0.59 ± 0.101 | 1.1% | 0.55 ± 0.06 | 0.55 ± 0.097 | −0.4% | 0.012 | 0.889 | 0.975 | 0.889 |
CON-Imp/ECC-Imp (%) | 2.12 ± 0.27 | 2.26 ± 0.33 | 5.5% | 2.37 ± 0.595 | 2.61 ± 0.76 | 9.1% | 0.909 | 0.788 | 0.026 | 0.788 |
Variable | HOR | VER | Effect Size | ANOVA | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Pre | Post | Δ | Pre | Post | Δ | Group Effects | Time Effects | Interaction Effects | ||
CON-MF(N) | 1072 ± 238 | 1103 ± 313 | 2.2% | 1083 ± 291 | 953 ± 221 | −8.9% | 0.645 | 0.865 | 0.099 | 0.865 |
CON-MP (W) | 1214 ± 688 | 943 ± 747 | −19.7% | 1069 ± 868 | 630 ± 803 | −24.5% | 0.709 | 0.834 | 0.073 | 0.834 |
CON Impulse (N·s) | 164 ± 30 | 168 ± 25 | 3.1% | 181 ± 39 | 194 ± 38 | 7.8% | 0.877 | 0.300 | 0.026 | 0.300 |
Jump Height (cm) | 31.5 ± 5.5 | 33 ± 4.1 | 6.2% | 33.1 ± 3.7 | 34.7 ± 4.3 | 4.8% | 0.885 | 0.778 | 0.029 | 0.778 |
Peak Force (N) | 1418 ± 201 | 1404 ± 177 | −0.5% | 1613 ± 293 | 1576 ± 296 | −2.3% | 0.281 | 0.617 | 0.451 | 0.617 |
Peak Power (W) | 2904 ± 582 | 2996 ± 487 | 4.1% | 3298 ± 720 | 3407 ± 699 | 3.6% | 0.976 | 0.860 | 0.018 | 0.860 |
Variable | FD | FT | MHHV | UWS | S15 | S25 |
---|---|---|---|---|---|---|
Eccentric duration | 0.288 | −0.031 | 0.008 | −0.391 | 0.003 | −0.103 |
Eccentric peak force | 0.285 | 0.043 | −0.009 | −0.385 | −0.103 | 0.147 |
Eccentric acceleration duration | 0.271 | −0.022 | 0.026 | 0.335 | −0.056 | −0.097 |
Eccentric acceleration impulse | 0.015 | 0.109 | −0.047 | 0.244 | 0.429 | −0.065 |
Eccentric deceleration duration | 0.106 | 0.257 | −0.225 | −0.306 | −0.062 | −0.188 |
Eccentric deceleration impulse | 0.197 | 0.096 | −0.026 | 0.068 | 0.450 * | −0.009 |
Propulsion duration | −0.109 | 0.155 | −0.197 | −0.429 | −0.194 | 0.141 |
Concentric mean force | −0.142 | 0.150 | 0.209 | 0.300 | 0.450 * | −0.013 |
Concentric mean power | 0.218 | −0.009 | 0.082 | 0.253 | 0.476 * | −0.029 |
Concentric impulse | 0.114 | 0.108 | −0.050 | 0.324 | 0.456 * | −0.015 |
Jump height | 0.019 | −0.135 | −0.021 | 0.335 | 0.265 | −0.256 |
Peak force | −0.009 | −0.125 | 0.188 | 0.274 | 0.200 | −0.397 |
Peak power | −0.115 | 0.117 | −0.097 | 0.371 | 0.318 | −0.256 |
RSI mod | −0.397 | −0.009 | −0.056 | 0.391 | 0.115 | −0.097 |
Concentric impulse/eccentric impulse | 0.050 | −0.131 | 0.106 | −0.100 | −0.265 | −0.018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.-R.; Ning, Y.-L.; An, T.-Y.; Tsai, Y.-L.; Tseng, K.-W.; Hsu, C.-C. Effects of Horizontal and Vertical Vector Resistance Training on Swim Start Performance: An Eight-Week Intervention in Division One Collegiate Swimmers in Taiwan. J. Funct. Morphol. Kinesiol. 2025, 10, 236. https://doi.org/10.3390/jfmk10030236
Chen J-R, Ning Y-L, An T-Y, Tsai Y-L, Tseng K-W, Hsu C-C. Effects of Horizontal and Vertical Vector Resistance Training on Swim Start Performance: An Eight-Week Intervention in Division One Collegiate Swimmers in Taiwan. Journal of Functional Morphology and Kinesiology. 2025; 10(3):236. https://doi.org/10.3390/jfmk10030236
Chicago/Turabian StyleChen, Jyun-Ru, Yu-Lin Ning, Ting-Yao An, Yi-Lin Tsai, Kuo-Wei Tseng, and Chi-Chieh Hsu. 2025. "Effects of Horizontal and Vertical Vector Resistance Training on Swim Start Performance: An Eight-Week Intervention in Division One Collegiate Swimmers in Taiwan" Journal of Functional Morphology and Kinesiology 10, no. 3: 236. https://doi.org/10.3390/jfmk10030236
APA StyleChen, J.-R., Ning, Y.-L., An, T.-Y., Tsai, Y.-L., Tseng, K.-W., & Hsu, C.-C. (2025). Effects of Horizontal and Vertical Vector Resistance Training on Swim Start Performance: An Eight-Week Intervention in Division One Collegiate Swimmers in Taiwan. Journal of Functional Morphology and Kinesiology, 10(3), 236. https://doi.org/10.3390/jfmk10030236