Neuromuscular Performance of High-Level Football Goalkeepers by Age Category and Sex: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Information Sources
2.3. Search Strategy
- PsycINFO, PsycBOOKS, PsycARTICLES, Psychology and Behavioral Sciences Collection, Dialnet, SPORTDiscus, and PubMed: (Football* OR soccer*) AND goalkeeper*
- LILACS, Scopus: (Football* OR soccer*) AND goalkeeper*, with filter (title/abstract/subject)
- Web of Science: (Football* OR soccer*) (topic) AND goalkeeper* (topic)
2.4. Selection and Data Collection Process
2.5. Data Items and Outcomes
2.6. Study Risk of Bias Assessment
2.7. Synthesis Methods
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Risk of Bias Assessment
3.4. Findings
3.4.1. Results of Individual Studies
3.4.2. Results of the Syntheses
Agility
Velocity
- (a)
- Reaction and gesture speed
- (b)
- Velocity in linear movements
- (c)
- Movement Speed with Direction Changes
Anaerobic Power
Strength
Flexibility
Dynamic Balance and Coordination
3.4.3. Reporting Biases
3.4.4. Certainty of Evidence
4. Discussion
4.1. Agility
4.2. Velocity
4.2.1. Reaction and Gesture Speed
4.2.2. Velocity in Linear Movements
4.2.3. Movement Velocity with Changes in Direction
4.3. Anaerobic Power
4.4. Strength
4.5. Flexibility
4.6. Dynamic Balance and Coordination
5. Conclusions
6. Practical Applications and Recommendations
- Agility: Simple and complex Reactive Agility Tests (RAS)
- Speed with changes in direction: t-test, and for more specificity, the S-Keeper or LS-Keeper tests
- Explosive strength (lower limbs): Countermovement jump (CMJ) test, as it is related to the stretch-shortening cycle (SSC). Additionally, we recommend assessing CMJ with free hands (CMJ HF) to better understand arm involvement in jumps. And the tests of isometric trunk and hand grip to evaluate the upper body.
- Flexibility: Sit-and-Reach test.
- Dynamic stability: Y-balance test
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
U | Under |
No. GK | Number Of Goalkeepers |
1stgk | First Goalkeeper, Or The Starting Goalkeeper |
2stgk | Second Goalkeeper, Or The Substitute Goalkeeper |
SD | Standard Deviation |
NS | Not Specified |
s | Seconds |
° | Degrees |
°/s | Degrees Per Second |
cm | Centimetres |
W | Watts |
kg | Kilogram |
Dom | Dominant Leg |
NDom | Non-Dominant Leg |
AP | Average Power |
RP | Relative Power |
PP | Peak Power |
RPP | Relative Peak Power |
RAP | Relative Average Power |
IT | Isometric Trunk |
CMJ | Countermovement Jump |
SJ | Squat Jump |
CMJ HF | Countermovement Jump With Hands Free |
HJ | Horizontal Jump |
Appendix A
Name of Authors and Study Type | Objective Focus | Sample and Groups | Measurement and Test | Main Outcomes |
---|---|---|---|---|
Knoop et al. [43] Analytical Cross-Sectional | Develop and evaluate a new agility test for goalkeepers between starting and substitutes GK and categories U14/U19 | GK (n = 34 Male): (n = 10) U19 Starting Gk (18.4 ± 0.8 y) (n = 11) U19 Backup GK (17.7 ± 0.7 y)/(n = 13) U14 (14.1 ± 0.3 y) | Linear Speed (Sprints (S10 m(m) in seconds (s)); Explosive Strength (CMJ (cm)); Agility (Reaction and Action Speed (RAS) Test (Single and Complex Test)) | S10: (U14: 1.98 ± 0.08 s; U19 = 1.86 ± 0.05 s); CMJ (cm) (U14: 36.0 ± 4.3 cm; U19 = 47.8 ± 5.5 cm); Reaction and Action Speed (RAS) Test—Single Test: Bottom left (s) (U14: 1.40 ± 0.10 s; U19 = 1.28 ± 0.06 s) Bottom right (s) (U14: 1.39 ± 0.12 s; U19 = 1.23 ± 0.06 s)—RAS Complex Test: Top left (s) (U14: 1.59 ± 0.13 s; U19 = 1.41 ± 0.08 s); Top right (s) (U14: 1.58 ± 0.12 s; U19 = 1.39 ± 0.06 s); Top left—bottom right (s) (U14: 5.20 ± 0.41 s; U19= 4.40 ± 0.26 s); Top right—bottom left (s) (U14: 5.09 ± 0.59 s; U19 = 4.32 ± 0.23 s). All of the values present significant different p < 0.01) |
Zahálka et al. [44] Analytical Cross-Sectional | Assessment of power strength and comparison of lower limb strength asymmetries | GK: (n = 25) O19 (26.5 ± 9.1 y)/Male | Explosive Strength (CMJ with arm, CMJ, SJ); Force asymmetry (ΔFmax) | CMJ with arm: 45.07 ± 3.22 cm; CMJ: 40.06 ± 3.48 cm; SJ: 36.09 ± 3.42 cm; ΔFmax: CMJ with arm: 8.61 ± 5.33%; CMJ: 7.06 ± 5.55%; SJ: 3.95 ± 3.48%. Fmax (N) CMJ with arm: 2210.0 ± 307.39; CMJ: 2173.48 ± 187.49 cm; SJ: 1815.24 ± 121.01; Frel (N) CMJ with arm: 2.56 ± 0.22 cm; CMJ: 2.51 ± 0.1; SJ: 2.10 ± 0.14 |
Nikolaidis et al. [45] Analytical Cross-Sectional | Assessment physical characteristics and physiological attributes and comparison between groups U16 years, U19, and over 19 | Three age GK groups—Male/U16 U19, and O19 | Strength (Wingate (WanT) (W) (Peak power (PP) and Mean power (MP)), Force–velocity test (Absolute and Relative power (AP, RP)), hand grip (kg), isometric trunk (T) and isometric trunk–legs (T/L) (kg)); Explosive Strength (Vertical jump (cm)); Flexibility (Modified sit and reach (MSR)(cm)) | WAnT: PP (W) (U16 = 629.9 ± 157.2; U19 = 847.1 ± 122.8; O19 = 904 ± 93.2) MP (W) (U16 = 470.1 ± 121.4; U19 = 612.6 ± 57.7; O19 = 659.4 ± 66.6) (p < 0.001). Force–velocity test AP(W) (U16 = 702 ± 260.8; U19 = 1190.6 ± 298.3; O19 = 1165.8 ± 235) (p < 0.001). RP (W·kg−1) (U16 = 11.4 ± 3.2; U19 = 14.9 ± 3.7; O19 = 14.2 ± 2.8). VJ (cm) (U16 = 31.3 ± 8.9; U19 = 32.8 ± 8.7; O19 = 37.7 ± 7.2). Hand grip (kg) R (U16 = 33.2 ± 11.1; U19 = 45.6 ± 9.0; O19 = 51.9 ± 6.2) (p < 0.001) L (U16 = 31.1 ± 10.3; U19 = 40.8 ± 7.2; O19 = 49.6 ± 5.5) (p < 0.001). T (kg) (U16 = 88.3 ± 22.1; U19 = 122.7 ± 25.7; O19 = 148.5 ± 19) (p < 0.001). T/L (kg) (U16 = 112.2 ± 24.9; U19 = 132.4 ± 36.7; O19 = 181.4 ± 27.2) (p < 0.001). MSR (cm) (U16 = 19.4 ± 6.5; U19 = 26.9 ± 6.8; O19 = 24.1 ± 6.8) (p = 0.003) |
Herveou et al. [46] Analytical Cross-Sectional | Evaluation of mechanical muscle capacities and strength–velocity profiles and to determine specific muscle qualities of football goalkeepers to optimise training programmes | GK: (n = 11) 24.3 ± 2.6 y/Male | Explosive Strength (SJ, CMJ (cm)); Strength (Upper and Lower limb stiffness, Upper and Lower limb force–velocity profile, Slope, Maximal theoretical force and velocity (N·m−1·kg−1)) | Squat Jump (SJ): 38.5 ± 4.5 cm countermovement jump (CMJ): 41.6 ± 5.5 cm Lower limb stiffness: 304.2 ± 55.1 N·m−1·kg−1 Lower limb force–velocity profile:—Maximal theoretical force (F0): 34.3 ± 5.9 N·kg−1—Maximal theoretical velocity (V0): 3.2 ± 0.6 m·s−1—Slope (SF-V): −11.5 ± 4.0 N·s·m−1·kg−1) Upper limb force–velocity profile: Maximal theoretical force (F0): 13.6 ± 4.3 N·kg−1—Maximal theoretical velocity (V0): 3.7 ± 0.6 m·s−1—Slope (SF-V): −3.7 ± 1.1 N·s·m−1·kg−1 |
Lockie et al. [47] Purely Cross-Sectional | Document the existence of differences in anthropometry, power, linear speed, change in direction (COD), and specific resistance depending on the different playing positions | GK: (n = 3) O19 (20.5 ± 0 y)/Female | Explosive Strength (VJ (m), SH(m)); Linear Speed (5-10-30 m (s)); Speed with change in directions (COD) (Pro-agility shuttle (s), Arrowhead left and right (s)) | Vertical jump (m) = 0.54 m; Standing Broad Jump(m) = 2.07 m; S5 (s) = 1.188 s; S10 (s) = 2.041 s; S30 (s) = 4.864 s; Pro-agility shuttle (s) = 4.935 s; Arrowhead left (s) = 9.199 right (s) = 9.201 s |
Jiménez et al. [48] Purely Cross-Sectional | Evaluate and compare jumping power between players of different playing positions | GK: (n = 2) O19 (22.5 ± 2.12 y)/Male | Explosive Strength (SJ, CMJ); Strength (Maximal Force (Fmax) (%BW), maximal velocity (Vmax), and power (P) (W/Kg)) | SJ (36.94 ± 3.14 cm) CMJ (38.76 ± 1.67 cm). Fmax (%BW): SJ (2.40 ± 0.09) CMJ (2.53 ± 0.13). Vmax (m s−1): SJ (2.79 ± 0.11) CMJ (2.91 ± 0.06). P (W/Kg): SJ (53.79 ± 3.12) CMJ (53.51 ± 4.31) |
AlTaweel et al. [1] Purely Cross-Sectional | Know the differences in muscle strength and hip flexibility depending on the playing position | GK: (n = 24) O19 (23.58 ± 3.69 y)/Male | Strength (isokinetic strength: 90° flexion and extension, 180° flexion and extension, 90° Abductor and Adductor, 180° Abductor and Adductor); Mobility (HIP range of movement (ROM)) | Isokinetic strength: 90° Flexion (100.68 ± 20.39) 90° Extension (155.13 ± 45.71): 180° Flexion (88.92 ± 20.09) 180° Extension (133.54 ± 47.13): 90° Abductor (63.73 ± 18.91) 90° Adductor (92.20 ± 46.41): 180° Abductor (41.78 ± 21.56) 180° Adductor (81.13 ± 44.85): HIP ROM (19.79 ± 1.82) |
Serrano Sanabria et al. [49] Purely Cross-Sectional | To compare the anthropometry and neuromuscular capacities of football players based on their playing positions | GK: (n = 9) U19 (17.8 ± 1.2 y)/Male | Flexibility (Sit and Reach (SR)); Explosive Strength (CMJ, SJ (cm)); anaerobic endurance (Fatigue Index (FI)); Linear Speed (Sprint 10 m and 25 m (m/s)) | SR (43.11 ± 9.63 cm); CMJ (39 ± 5.59 cm); SJ (31.44 ± 3.53 cm); FI (0.77 a ± 0.04); Vel. 10 m (m/s) (5.30 ± 0.37); Vel. 25 m (m/s) (6.47 ± 0.41) |
Rebelo et al. [50] Purely Cross-Sectional | Know the anthropometry, physical aptitude and technical performance according to your playing position | GK (n = 18 Male): U19 elite (n = 9) (18.2 ± 0.6 y) and U19 non-elite (n = 9) (17.9 ± 0.4 y) | Velocity (5 m, 30 m (s)); Explosive Strength (SJ, CMJ); Strength (Peak Torque Extension (PT ex), Peak Torque Flexion PT flex (N m)); Agility (s) | SJ (Elite 40.9 ± 5.0 cm and Non-Elite 34.2 ± 6.0 cm), CMJ (Elite 41.9 ± 6.0 cm and Non-Elite 32.8 ± 1.4 cm), PT ext (N · m) (Elite 236 ± 33 and Non-Elite 202 ± 44) PT fl ex (N · m) (Elite 117 ± 35 and Non-Elite 91 ± 28) T 5 m (s) (Elite 1.03 ± 0.06 and Non-Elite 1.15 ± 0.16) T 30 m (s) (Elite 4.31 ± 0.18 and Non-Elite 4.56 ± 0.37) agility (s) (Elite 9.02 ± 0.33 and Non-Elite 9.39 ± 0.46) Yo-Yo IE2 (m) (Elite 992 ± 214 and Non-Elite 647 ± 247) |
Deprez et al. [51] Purely Cross-Sectional | To know the differences in anthropometric and functional characteristics depending on their category and playing position | GK: (n = 82; Male) U15 (n = 37) (13.7± 0.6 y), U17 (n = 25) (15.8 ± 0.7 y), U19 (n= 20) (17.7± 0.6 y) | Flexibility (Sit-and-Reach (SR) (cm)); Linear Speed (Sprint S5 m, S30 m); Agility (T-Test (s)) | SR (U15 (29.2 ± 5.7 cm) U17 (30.4 ± 6.0 cm) U19 (31.1 ± 6.2 cm)). S5 m: (U15 (1.10 ± 0.04 s) U17 (1.07 ± 0.03 s) U19 (1.05 ± 0.03 s)). S30 m: (U15 (4.51 ± 0.16 s) U17 (4.38 ± 0.14 s) U19 (4.29 ± 0.12 s)). T-Test: (U15 (9.87 ± 0.39 s) U17 (9.65 ± 0.35 s) U19 (9.48 ± 0.32 s)) |
Lopez-Valenciano et al. [52] Purely Cross-Sectional | To understand the range of motion (ROM) of the lower limbs in professional football players and to analyse the differences in ROM between goalkeepers and field players | GK: (n = 14) O19 (25.5 ± 5.0 y)/Male | Flexibility (Hip flexion with knee flexed (PHF KF); Hip flexion with knee extended (PHF KE); Hip extension (PHE); Hip abduction (PHA); Hip internal rotation (PHIR); Hip external rotation (PHER); Knee flexion (PKF); Ankle dorsiflexion with knee flexed (ADF KF); Ankle dorsiflexion with knee extended (ADF KE)) | PHF KF: (Dom = 150.9 ± 9.4 y NDom = 151.8 ± 7.2); PHF KE: (Dom = 80.3 ± 10.1 y NDom = 79.5 ± 10.7); PHE: (Dom = 12.2 ± 7.4 y NDom = 12.7 ± 7.8); PHA: (Dom = 67.9 ± 7.6 y NDom = 66.6 ± 9.8); PHIR:(Dom = 49.4 ± 10.5 y NDom = 47.9 ± 6.3); PHER: (Dom = 50.8 ± 7.6 y NDom = 48.5 ± 8.3); PKF: (Dom = 131.7 ± 10.9 y NDom = 131.4 ± 13.2); AADF KF: (Dom = 37.5 ± 7.1 y NDom = 40.6 ± 4.7); ADF KE: (Dom = 36.6 ± 5.1 y NDom = 37.0 ± 5.1) |
AlTaweel et al. [53] Purely Cross-Sectional | Know the differences in anaerobic power, dynamic stability, lower extremity strength and power depending on your playing position | GK: (n = 24) O19 (23.58 ± 3.69 y)/Male | Explosive Strength (Single Leg Vertical Jump (SLVJ)); Dynamic Stability (Star excursion balance test (SEBT)) | SLVJ (16.32 ± 2.29); SEBT (Stability)—Anterior (48.23 ± 5.42); Anteromedial (50.95 ± 5.31); Medial (51.44 ± 5.66); Posteromedial (51.18 ± 5.89); Posterior (49.88 ± 6.79); Posterolateral (47.76 ± 5.92) |
Kovačević et al. [56] Purely Cross-Sectional | Determine the differences in physical and physiological characteristics depending on their playing position | GK: (n = 7) U19 (17.06 ± 0.74 y)/Male | Explosive Strength (Standing Long Jump (SLJ); Vertical jump (VJ)); Linear Speed (Sprint 30 m (S30), in 60 m (S60), 5 × 10 m sprint (S5 × 10 m)) | SLJ (2.72 ± 0.11); VJ (0.6 ± 0.07 m); S30 (4.24 ± 0.11 s); S60 (7.65 ± 0.19 s); S5 × 10 m: 11.04 ± 0.70 s. Significant differences in Standing Long Jump (SLJ) test between playing positions (p = 0.00). Post hoc tests showed differences between goalkeepers and other positions (p = 0.01) |
Soyler and Kayantas [54] Purely Cross-Sectional | Evaluate the physical and physiological profiles, depending on their playing position | GK: (n = 3) O19 (26.51 ± 2.50 y)/Male | Flexibility (Sit–reach (SR) (cm)); Vertical jump (41.83 ± 2.72); Linear Speed (Sprint 10 m) | SR (22.26 ± 4.14 cm); VJ (41.83 ± 2.72); S10 (1.48 ± 0.29) |
Sporis et al. [55] Purely Cross-Sectional | Determine the conditioning profile of youth players who play in different playing positions | GK: (n = 30) O19 (31.5 ± 2.3)/Male | Linear Speed (Sprint 5, 10 m, 20 m); Explosive Strength (SJ, CMJ) | S5 m: (1.45 ± 0.7); S10 m: (2.35 ± 0.8); S20 m: (3.51 ± 0.9); SJ: (46.8 ± 1.4); CMJ: (48.5 ± 1.5) |
Carpes et al. [57] Purely Cross-Sectional | To assess and compare the fitness levels of football players who play different positions in the game | GK: (n = 9) O19 (27.1 ± 4.5 y)/Male | Anaerobic Power (RAST test (Pmáx (w/kg); Índice de Fatiga(w/seg)); Explosive Strength (SJ, CMJ (cm)) | Pmáx (10.6 ± 0.6 w/kg); Índice de Fadiga (10.5 ± 2.2 w/seg); SJ (47.6 ± 4.5 cm); CMJ (50 ± 3 cm) |
Loureiro and Ferrari [58] Purely Cross-Sectional | Analyse anthropometry and physical fitness based on your playing position | GK: (n = 3) O19 (25 ± 5.50 y)/Male | Linear Speed (Sprint 20 m (S20) (s)); Explosive Strength (CMJ (cm)) | S20 (3.01 ± 0.03 s); CMJ (37 ± 1.50 cm) |
Ravagnani et al. [59] Purely Cross-Sectional | Compare anthropometrics and physical performance based on your playing position | GK: (n = 2) O19 (24.0 ± 1.0 y)/Male | Linear Speed: (Sprint 30 m); Anaerobic Power (Rast test PTM (w/kg)) | S30: (4.3 ± 0.2 s) (Excelente); Rast test PTM (w/kg) (7.4 ± 0.3)) |
Bizati [60] Purely Cross-Sectional | Evaluate and compare the physical and physiological characteristics of football players based on their playing positions | GK: (n = 3) O19 (22.67 ± 2.52 y)/Male | Linear Speed (Sprint 5 m, 10 m, 20 m); Explosive Strength (SJ, CMJ) | S5: (0.94 ± 0.01); S10: (1.74 ± 0.05); S20: (2.94 ± 0.08); SJ: (41.23 ± 6.64); CMJ: (44.00 ± 5.07) |
Bujnovky et al. [61] Purely Cross-Sectional | Evaluate differences in speed, agility, aerobic, and anaerobic capacities depending on their playing position | GK: (n = 9) U16 (15.7 ± 0.5 y)/Male | Linear Speed (Sprint 5 m, 10 m, 20 m (s); Agility (agility 505 dominant (A505Dom) and non-dominant (A505ND), K-test (s)) | S5 m (S5) (1.13 ± 0.07 s); S10 m (S10) (1.90 ± 0.10 s); S20 m (2.55 ± 0.11 s); A505Dom (2.59 ± 0.11 s); A505ND (2.61 ± 0.23 s); K-test (10.85 ± 0.40 s) |
Boone et al. [17] Purely Cross-Sectional | Knowing the physical and physiological profile according to your playing position | GK: (n = 17) O19 y/Male | Linear Speed (S5 m); Agility (10–5 m; shuttle run (SR)); Explosive Strength (SJ, CMJ (cm)) | 5 m (1.46 ± 0.07 †,‡ s); 10–5 m (0.76 ± 0.06 †,‡ s); SR (12.32 ± 0.44 †,‡ s); SJ (42.2 ± 2.9 *,†,§ cm); CMJ (45.6 ± 2.6 † cm) |
Sousa and Rodrigues [62] Purely Cross-Sectional | Analyse the differences in vertical jump based on your playing position | GK: (n = 4) O19 (19.2 ± 2 y)/Male | Explosive Strength (SJ, CMJ (cm)) | SJ (34.4 ± 5.0 cm); CMJ (37.2 ± 2.9 cm) |
Nikolaidis et al. [63] Purely Cross-Sectional | Know the physical and physiological characteristics based on your playing position | GK: (n = 26 Male); (n = 3) U14 (13.23 ± 0.52 y); (n = 8) U17 (15.47 ± 0.83 y); (n = 15) O19 (20.45 ± 3.48 y) | Strength (Wingate Anaerobic Test (WanT) (Peak power (PP)(W), Relative peak power (RPP)(W·kg−1), Mean power (MP)(W), Relative mean power (RMP)(W·kg1)), Force–velocity test (AP (W), RP (W·kg−1)), Isometric strength ((RHG) Right-hand grip and Left (RLG) (kg), (T) Trunk (74.67 ± 9.25 kg) (T/L) Trunk/Legs (102.67 ± 17.11 kg)); Explosive Strength (Vertical jump (VJ) (cm); Flexibility (Sit and reach (SR) (cm)) | U14: WanT (PP (576.13 ± 89.19 W), RPP (9.95 ± 0.88 W·kg−1) (MP) MP (444.77 ± 75.10 W); RMP (7.68 ± 0.91 W·kg−1)) Force–velocity test (AP (645.89 ± 112.41 W), RP (11.30 ± 2.48 W·kg−1)) VJ (26.71 ± 7.84 cm). Isometric strength (RHG (33.73 ± 6.34 kg), RLG (33.73 ± 6.34 kg), T (74.67 ± 9.25 kg), T/L (102.67 ± 17.11 kg)); Flexibility: SR (19.75 ± 6.63 cm). U17: WanT (PP (772.55 ± 140.38 W) RPP (10.47 ± 1.78 W·kg−1) MP (569.04 ± 104.16 W) RMP (7.72 ± 1.40 W·kg−1)) Force–velocity test (AP (952.26 ± 133.84 W), RP (13.12 ± 3.12 W·kg−1)) VJ (35.81 ± 7.52 cm). Isometric strength (RHG (41.35 ± 9.004 kg) LHG (38.06 ± 9.20 kg) T (98.63 ± 17.38 kg) T/L (120.38 ± 23.21 kg)) Flexibility: SR (23.81 ± 5.90 cm). Over19: WanT (PP (888.53 ± 108.09 W) RPP (11.00 ± 0.62 W·kg−1) MP (656.68 ± 71.95 W) RMP (8.16 ± 0.71 ** W·kg−1)) Force–velocity test (AP (1135.71 ± 209.24 W), RP (14.09 ± 2.30 W·kg−1)) VJ (37.40 ± 6.87 cm). Isometric strength (RHG (50.75 ± 5.28 kg) LHG (48.31 ± 6.47 kg) T (146.09 ± 16.39 kg) T/L (174.00 ± 26.56 kg)) Flexibility: SR (25.65 ± 7.61 cm) |
Ates [64] Purely Cross-Sectional | Compare dynamic stability performance based on their playing positions | GK: (n = 3) O19 (23.3 Y)/Male | Dynamic Stability (Y-balance dominant and not dominant ((%, Reach Asymmetry (RA), and Composite (%)) (Anterior, Posteromedial, and Posterolateral)) | Anterior (%) (Dom (69.6 ± 0); Ndom (69.7 ± 0); RA (0.11 ± 0)); Posteromedial (%) (Dom (118.2 ± 0); Ndom (118.2 ± 0); RA (0.001 ± 0)); Posterolateral (%) (Dom (117.7 ± 0); Ndom (113.6 ± 0); RA (4.09 ± 0)); Composite (%) (Dom (101.8 ± 0); Ndom (100.5 ± 0); RA (1.32 ± 0)) |
Perez-Contreras et al. [65] Purely Cross-Sectional | Understand the relationships between body composition and physical performance, depending on playing positions | GK: (n = Not defined, Male) U15 (15.2 ± 0.5 y) U17 (17.0 ± 0.5 y) | Linear Speed (Sprint 10, and 30 m) (s)); Explosive Strength (SJ, CMJ (cm)) | U15: (S10 (1.9 ± 0.1 s); S30 (4.4 ± 0.1 s); SJ (35.4 ± 4.8 cm); CMJ (39.3 ± 4.8 cm)) U17: (S10 (1.9 ± 0 s); S30 (4.4 ± 0.1 s); SJ (35.9 ± 2.9 cm); CMJ (37.8 ± 5.7 cm)) |
González Vargas and Gallardo Pérez [66] Purely Cross-Sectional | Evaluate speed, strength, endurance, and flexibility based on their playing position | GK: (n = 3) O19 (25.3 ± 5.5 y)/Female | Linear Speed (Sprint 30 metros (S30) (s)); Agility (Arrowhead Agility Test (AAT)); Explosive Strength (CMJ (cm)); Flexibility (Deficit Balance (DB) (°), Dominant straight leg raise (DSR-R), and non-dominant (NDSR-R) (°)) | S30(4.94 ± 0.3 s); AAT (9.18 ± 0.9 s); CMJ (28.0 ± 3.0 cm); DSR-R (107 ± 15.0°); NDSR-R (106 ± 7.6°) DB ≥ 8° (2/3) |
Mahmoudi et al. [67] Purely Cross-Sectional | To assess the differences in static and dynamic stability between different positions of football players | GK: (n = 10) U19 (18.6 ± 1.1 s)/Male | Dynamic Stability (Y-Balance Test (YBT); Static Stability; Path length (PL (mm) (dominant leg, Eyes Open (DL EO), and non-dominant leg (NDL.EO); dominant leg, Eyes Closed (DL. EC) and non-dominant (NDL.EC); Double Leg Foam Surface Eyes Open (Dul. FS. EO), Double Leg Foam Surface Eyes Close (Dul. FS.EC)) | Path length (PL (mm) (DL EO (1046.4 ± 152.1); (NDL.EO (1121.7 ± 171.7); DL. EC (2148 ± 507.1); Dul. FS. EO (1231.4 ± 192.8); Dul. FS.EC (2427.2 ± 503.1)). MV (mm/s) (DL EO (41.8 ± 6.1); NDL.EO (44.9 ± 6.8); DL. EC (73.7 ± 13.7); NDL. EC (85.94 ± 20.3); Dul. FS. EO (22.4 ± 3.5); ul. FS.EC (44.1 ± 9.1). AP (mm) (DL EO (8.0 ± 1.8); NDL.EO (8.9 ± 2.1); DL. EC (12.0 ± 1.7); NDL. EC (13.5 ± 3.4); Dul. FS. EO (9.4 ± 2.3); ul. FS.EC (11.8 ± 2.3). ML (mm) (DL EO (5.5 ± 0.9); NDL.EO (5.7 ± 0.5); DL. EC (11.9 ± 5.2; NDL. EC (11.3 ± 1.9); Dul. FS. EO (6.6 ± 0.7); ul. FS.EC (11.9 ± 2.8). Area(mm2) ML (mm) (DL EO (891.4 ± 262.7); NDL.EO (1021.4 ± 255.4); DL. EC (2982.3 ± 206.7); NDL. EC (2758.7 ± 568.9); Dul. FS. EO (1269.6 ± 490.2); ul. FS.EC (2696.9 ± 1098.3) |
Ben Hassen et al. [68] Purely Cross-Sectional | Evaluate and compare jumps and accelerations based on playing position | GK: (n = 12) (17.3 ± 0.5 y)/Male | Explosive Strength (SJ (cm)); Linear Speed (Sprint 10 m, 20 m, 30 m) | SJ (29.2 ± 5.0; p < 0.05); S10(2.14 ± 0.08 s; p < 0.001); S20 (3.55 ± 0.12 s; p < 0.001); S30 (4.86 ± 0.18 s; p < 0.001) |
Vagle et al. [69] Purely Cross-Sectional | Map anthropometric and physical performance profiles | GK: (n = 14) O19 (22 ± 4 y)/Male | Explosive Strength (CMJ (cm)); Linear Speed (Sprint 20, 30, 40 m); Speed with change in directions (COD) (shuttle run lineal with dominant and non-dominant legs (s)) | Sprint 20 m (s) (3.21 ± 0.14); Sprint 30 m (s) (4.57 ± 0.20); Sprint 40 m (s) (5.92 ± 0.28); shuttle run dominant leg (s) (10.50 ± 0.39); CMJ (cm) (32.6 ± 4.5). Significant difference in Sprint 20, 30, 40 m and shuttle run performance between dominant and non-dominant legs (p < 0.01). Goalkeepers showed significantly worse shuttle run performance compared to field players (p < 0.01 for comparisons with midfielders, defenders, and attackers) |
Baroni and Leal Junior [70] Purely Cross-Sectional | Assessing the anaerobic capacity of young football players | GK: (n = 3)/U16 (15.33 ± 0.58 y)/Male | Strength (Wingate (WanT) (W) (Peak power (PP), Average power (AP)) (W/kg) (Relative peak power (RPP), Relative average power (RAP)) and Fatigue Index (FI)(%)) | PP = 737.57 ± 59.77 (W): RPP = 10.43 ± 0.47 W/kg; AP = 580.17 ± 52.61 W; RAP = 8.21 ± 0.49; FI = 41.32 ± 5.88% |
Jadczak et al. [71] Purely Cross-Sectional | Compare balance profiles based on different field positions | GK: (n = 10) O19 (24.37 ± 4.53 y)/Male | Dynamic Stability ((Dom and Ndom); DPPT (Dynamic postural priority test (%)); ST (static balance; OE (eyes opened); CE (Eyes Closed (°)) | DPPT (Dom = 48.79 ± 7.51%; Ndom = 5.58 ± 7.95%); ST OE = (Dom = 1.14 ± 0.62°; Ndom = 1.65 ± 1.35°); ST CE = (Dom = 4.04 ± 2.18°; Ndom = 3.02 ± 1.76°) |
Ruas et al. [72] Purely Cross-Sectional | To compare isokinetic strength profiles in football players in different field positions | GK: (n = 12) O19 (26 ± 6 y)/Male | Strength (Isokinetic Dynamometer Test (N.M) (Quadriceps and Hamstrings peak torque test (QPT y HPT); Eccentric peak torque (EPT) (Dom, NDom, Asymmetry (%), Conventional and Functional ratio | QPT (Dom: 302 ± 34 y NDom: 294 ± 37); Asymmetry (%): +9 ± 4; HPT (Dom: 182 ± 35 y NDom: 162 ± 31); Asymmetry (%): +15 ± 13. EPT (Dom: 247 ± 54 y NDom: 211 ± 36); Asymmetry (%): +18 ± 12. Conventional ratio (Dom: 0.60 ± 0.07 y Ndom: 0.55 ± 0.08) Functional ratio (Dom: 0.81 ± 0.09 y Ndom: 0.72 ± 0.10) |
Tsiokanos et al. [73] Purely Cross-Sectional | To compare the isokinetic peak torque of the knee extensors in relation to their playing position on the field | GK: (n = 24) O19 (28.3 ± 2.9 y)/Male | Strength (Isokinetic Dynamometer (Peak torque (PT) (Nm) (30–60–180°/s). F/S ratio 180/30 (0.56 ± 0.04): Peak torque/body weight (Nm/kgf) (30–60–180°/s))) | PT (Nm) (30°/s) = 355 ± 45; (60°/s) = 312 ± 44; (180°/s) = 198 ± 30. F/S ratio 180/30 (0.56 ± 0.04): Peak torque/body weight (Nm/kgf) (30°/s) = 4.3 ± 0.4; (60°/s) = 3.7 ± 0.4; (180°/s) = 2.4 ± 0.3 |
Charneco Salguero et al. [74] Purely Cross-Sectional | Evaluation of the isokinetic muscle profile of the knee extensors and flexors and comparison of asymmetries and between positions on the field | GK: (n = 32)/O19 (21.7 ± 4.6 y)/Male | Strength (Isokinetic Dynamometer (Peak torque (PT) (extension and flexion of (right (R) and left leg (L)) at (60°, 180°, and 240° (Nm)) and its average (Av) work on each leg at 60°, 180°, and 240° (J))) | Extension PT 60 (Nm) (R (245.47 ± 46.15); L (246.25 ± 38.32 a)): 180 (Nm) (R (195.07 ± 23.56 b); L (192.73 ± 27.88 d)): 240 (Nm) (R (162.47 ± 20.32); L (160.60 ± 23.25 e)). Flexion PT 60 (Nm) (R (143.66 ± 20.30); L (129.13 ± 27.71)): 180 (Nm) (R (119.33 ± 19.04); L (106.23 ± 22.7)): 240 (Nm) (R (107.13 ± 19.93), L (95.37 ± 20.02)). Av Extension = (60 (J) (R (242.20 ± 41.64); L (224.01 ± 63.91)): 180 (J) (R (188.25 ± 28.90 a); L (187.31 ± 30.95)): 240 (J) (R (119.72 ± 17.01); L (119.08 ± 17.37)). Av Flexion work 60 (J) (R (156.39 ± 29.71); L (144.17 ± 30.86)): 180 (J) (R (119.80 ± 19.83); L (106.79 ± 24.96)): 240 (J) (R (76.93 ± 17.09); L (66.34 ± 17.62)) |
Germano et al. [75] Purely Cross-Sectional | Evaluation of the isokinetic muscle profile of the knee extensors and flexors and comparison of asymmetries between field positions | GK: (n = 16) O19 (26.21 ± 7.07 y)/Male | Strength (Isokinetic Dynamometer (knee extensors (Kex) and flexors (Kfl) at 60° and 240° in dominant (Dom) and non-dominant (NDom) (AngPT: Peak torque angle (°); TPT: Peak torque time (in milliseconds (ms)) AcT: Acceleration time (in milliseconds); and PT (Peak torque)) | 240° DOMINANT LIMB: AngPT (Kex (64 ± 13.75°), Kfl (77 ± 27°)); TPT (Kex (120 ± 70 ms), Kfl (330 ± 117.5 ms)). AcT; Kex (40 ± 10 ms), Kfl (77.5 ± 43.25 ms). 240° NON-DOMINANT LIMB: AngPT: Kex (155 ± 65°), Kfl (340 ± 192.5°). TPT: Kex (120 ± 70), Kfl (330 ± 117.5). AcT: Kex (40 ± 17.5), Kfl (70± 27.5). 60° DOMINANT LIMB: AngPT: Kex (Dom: 64.21 ± 9.64°; NDom:60.14 ± 8.57°) Kfl (Dom: 417.85 ± 168.94°; NDom: 470 ± 136.21°). TPT: Kex (Dom: 417.85 ± 168.94 ms; NDom: 60.14 ± 8.57 ms), Kfl (Dom: 397.14 ± 156.61 ms; NDom: 414.28 ± 116.4 ms). AcT: Kex (Dom: 30.71 ± 13.28 ms; NDom: 24.28 ± 9.37 ms), Kfl (Dom: 34.28 ± 12.22 ms; NDom: 33.57 ± 10.08 ms): PT = Kex (Dom: 282.72 ± 51.35 ms; NDom: 283.36 ± 41.74 ms), Kfl (Dom: 160.59 ± 17.23 ms; NDom: 154.63 ± 25.24 ms) |
References
- AlTaweel, A.; Nuhmani, S.; Ahsan, M.; Al Muslem, W.H.; Abualait, T.; Muaidi, Q.I. Analysis of the Anaerobic Power Output, Dynamic Stability, Lower Limb Strength, and Power of Elite Soccer Players Based on Their Field Position. Healthcare 2022, 10, 2256. [Google Scholar] [CrossRef] [PubMed]
- Plakias, S.; Tsatalas, T.; Armatas, V.; Tsaopoulos, D.; Giakas, G. Tactical Situations and Playing Styles as Key Performance Indicators in Soccer. J. Funct. Morphol. Kinesiol. 2024, 9, 88. [Google Scholar] [CrossRef]
- Mernagh, D.; Weldon, A.; Wass, J.; Phillips, J.; Parmar, N.; Waldron, M.; Turner, A. A comparison of match demands using ball-in-play versus whole match data in professional soccer players of the english championship. Sports 2021, 9, 76. [Google Scholar] [CrossRef]
- Vigne, G.; Gaudino, C.; Rogowski, I.; Alloatti, G.; Hautier, C. Activity profile in elite Italian soccer team. Int. J. Sports Med. 2010, 31, 304–310. [Google Scholar] [CrossRef]
- González-Rodenas, J.; Villa, I.; Tudela-Desantes, A.; Aranda-Malavés, R.; Aranda, R. Design and Reliability of an Observational Framework to Evaluate the Individual Offensive Behavior in Youth Soccer—The INDISOC Tool. Children 2022, 9, 1311. [Google Scholar] [CrossRef]
- Barrera, J.; Sarmento, H.; Clemente, F.M.; Field, A.; Figueiredo, A.J. The effect of contextual variables on match performance across different playing positions in professional portuguese soccer players. Int. J. Environ. Res. Public Health 2021, 18, 5175. [Google Scholar] [PubMed]
- Longo, U.G.; Sofi, F.; Dinu, M.; Candela, V.; Salvatore, G.; Cimmino, M.; Jennings, J.M.; Denaro, V. Functional performance, anthropometric parameters and contribution to team success among Italian “Serie A” elite goalkeepers during season 2016–2017. J. Sports Med. Phys. Fit. 2019, 59, 969–974. [Google Scholar] [CrossRef]
- Panduro, J.; Ermidis, G.; Røddik, L.; Vigh-Larsen, J.F.; Madsen, E.E.; Larsen, M.N.; Pettersen, S.A.; Krustrup, P.; Randers, M.B. Physical performance and loading for six playing positions in elite female football: Full-game, end-game, and peak periods. Scand. J. Med. Sci. Sport. 2022, 32, 115–126. [Google Scholar] [CrossRef]
- Serrano, C.; Paredes-Hernández, V.; Sánchez-Sánchez, J.; Gallardo-Pérez, J.; Da Silva, R.; Porcel, D.; Colino, E.; García-Unanue, J.; Gallardo, L. The team’s influence on physical and technical demands of elite goalkeepers in LaLiga: A longitudinal study in professional soccer. Res. Sports Med. 2019, 27, 424–438. [Google Scholar] [CrossRef] [PubMed]
- Szwarc, A.; Jaszczur-Nowicki, J.; Aschenbrenner, P.; Zasada, M.; Padulo, J.; Lipinska, P. Motion analysis of elite Polish soccer goalkeepers throughout a season. Biol. Sport 2019, 36, 357–363. [Google Scholar] [CrossRef]
- White, A.; Hills, S.P.; Hobbs, M.; Cooke, C.B.; Kilduff, L.P.; Cook, C.; Roberts, C.; Russell, M. The physical demands of professional soccer goalkeepers throughout a week-long competitive microcycle and transiently throughout match-play. J. Sports Sci. 2020, 38, 848–854. [Google Scholar] [CrossRef]
- Di Salvo, V.; Benito, P.J.; Calderón, F.J.; Di Salvo, M.; Pigozzi, F. Activity profile of elite goalkeepers during football match-play. J. Sports Med. Phys. Fit. 2008, 48, 443–446. [Google Scholar]
- Kubayi, A. Analysis of Goal Scoring Patterns in the 2018 FIFA World Cup. J. Hum. Kinet. 2020, 71, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Padulo, J.; Haddad, M.; Ardigò, L.P.; Chamari, K.; Pizzolato, F. High frequency performance analysis of professional soccer goalkeepers: A pilot study Article. J. Sports Med. Phys. Fit. 2015, 55, 557–562. [Google Scholar]
- Obetko, M.; Peráček, P.; Mikulič, M.; Babic, M. Technical–tactical profile of an elite soccer goalkeeper. J. Phys. Educ. Sport. 2022, 22, 38–46. [Google Scholar]
- Patiño, B.A.B. Demanda física del portero de fútbol: Necesidades y diferencias en respuesta al género. Rev. Digit. Act. Física Deporte 2021, 7, 1–12. [Google Scholar]
- BoBoone, J.; Vaeyens, R.; Steyaert, A.; Bossche, L.V.; Bourgois, J. Physical fitness of elite Belgian soccer players by player position. J. Strength Cond. Res. 2012, 26, 2051–2057. [Google Scholar] [CrossRef]
- Ziv, G.; Lidor, R. Physical characteristics, physiological attributes, and on-field performances of soccer goalkeepers. Int. J. Sports Physiol. Perform. 2011, 6, 509–524. [Google Scholar] [CrossRef]
- West, J. A review of the key demands for a football goalkeeper. Int. J. Sports Sci. Coach. 2018, 13, 1215–1222. [Google Scholar] [CrossRef]
- White, A.; Hills, S.P.; Cooke, C.B.; Batten, T.; Kilduff, L.P.; Cook, C.J.; Roberts, C.; Russell, M. Match-Play and Performance Test Responses of Soccer Goalkeepers: A Review of Current Literature. Sport Med. 2018, 48, 2497–2516. [Google Scholar] [CrossRef]
- Rethlefsen, M.L.; Kirtley, S.; Waffenschmidt, S.; Ayala, A.P.; Moher, D.; Page, M.J.; Koffel, J.B.; PRISMA-S Group. PRISMA-S: An extension to the PRISMA Statement for Reporting Literature Searches in Systematic Reviews. Syst. Rev. 2021, 10, 39. [Google Scholar] [CrossRef] [PubMed]
- Perez-Arroniz, M.; Calleja-González, J.; Zabala-Lili, J.; Zubillaga, A. The soccer goalkeeper profile: Bibliographic review. Phys Sportsmed. 2022, 3, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; Prisma-P Group. Preferred reporting items for systematic review and meta-analysis protocols (prisma-p) 2015 statement. Syst. Rev. 2015, 4, 1177–1185. [Google Scholar] [CrossRef]
- Colak, R.; Agascioglu, E. An evaluation of professional regional soccer goalkeepers using three different choice reaction times and vertical jumps. Sport J. 2020, 24, 1–15. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef]
- Khan, K.; Cavanillas, A.B.; Zamora, J. Systematic reviews in five steps: I. Framing questions to obtain valid answers. Semergen 2022, 48, 356–361. [Google Scholar] [CrossRef]
- Reilly, T.; Gilbourne, D. Science and football: A review of applied research in the football codes. J. Sports Sci. 2003, 21, 693–705. [Google Scholar] [CrossRef] [PubMed]
- Zheng, R.; de Reus, C.; van der Kamp, J. Goalkeeping in the soccer penalty kick: The dive is coordinated to the kicker’s non-kicking leg placement, irrespective of time constraints. Hum. Mov. Sci. 2021, 76, 102763. [Google Scholar] [CrossRef]
- Grimes, D.A.; Schulz, K.F. Bias and causal associations in observational research. Lancet 2002, 359, 248–252. [Google Scholar] [CrossRef] [PubMed]
- Fédération Internationale de Football Association (FIFA). Laws of the Game 2013/2014; FIFA: Zurich, Switzerland, 2013; Available online: https://www.yumpu.com/es/document/view/23940041/reglas-de-juego-2013-2014-fifacom (accessed on 12 February 2025).
- Rethlefsen, M.L.; Brigham, T.J.; Price, C.; Moher, D.; Bouter, L.M.; Kirkham, J.J.; Schroter, S.; Zeegers, M.P. Systematic review search strategies are poorly reported and not reproducible: A cross-sectional metaresearch study. J. Clin. Epidemiol. 2024, 166, 111229. [Google Scholar] [CrossRef]
- Clark, O.A.C.; Castro, A.A. Searching the Literatura Latino Americana e do Caribe em Ciências da Saúde (LILACS) database improves systematic reviews. Int. J. Epidemiol. 2002, 31, 112–114. [Google Scholar] [CrossRef]
- Golder, S.; Loke, Y.; McIntosh, H.M. Poor reporting and inadequate searches were apparent in systematic reviews of adverse effects. J. Clin. Epidemiol. 2008, 61, 440–448. [Google Scholar] [CrossRef]
- Wohlin, C. Guidelines for snowballing in systematic literature studies and a replication in software engineering. In Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering, London, UK, 13–14 May 2014. [Google Scholar]
- Ma, L.-L.; Wang, Y.-Y.; Yang, Z.-H.; Huang, D.; Weng, H.; Zeng, X.-T. Methodological quality (risk of bias) assessment tools for primary and secondary medical studies: What are they and which is better? Mil. Med Res. 2020, 7, 7. [Google Scholar] [CrossRef] [PubMed]
- Horsley, T.; Dingwall, O.; Sampson, M. Checking reference lists to find additional studies for systematic reviews. Cochrane Database Syst. Rev. 2011, 2011, MR000026. [Google Scholar] [CrossRef]
- Munn, Z.; Moola, S.; Riitano, D.; Lisy, K. The development of a critical appraisal tool for use in systematic reviews addressing questions of prevalence. Int. J. Health Policy Manag. 2014, 3, 123–128. [Google Scholar] [CrossRef]
- Rebelo-Gonçalves, R.; Figueiredo, A.J.; Coelho-E-Silva, M.J.; Tessitore, A. Assessment of technical skills in young soccer goalkeepers: Reliability and validity of two goalkeeper-specific tests. J. Sport Sci. Med. 2016, 15, 516–523. [Google Scholar]
- Taskin, H. Evaluating sprinting ability, density of acceleration, and speed dribbling ability of professional soccer players with respect to their positions. J. Strength Cond. Res. 2008, 22, 1481–1486. [Google Scholar] [CrossRef]
- Wik, E.H.; Mc Auliffe, S.; Read, P.J. Examination of physical characteristics and positional differences in professional soccer players in qatar. Sports 2019, 7, 6–9. [Google Scholar] [CrossRef] [PubMed]
- Coelho, W.T.; Veiga, R.; Ferreira, G.D. Perfil de Força Máxima de Jovens Atletas de Futebol. Rev. Bras. Futsal Futeb. 2021, 13, 493–499. [Google Scholar]
- Pivovarniček, P.; Pupiš, M.; Tonhauserová, Z.; Tokárová, M. Level of Sprint and Jump Abilities and Intermittent Endurance of Elite Young Soccer Players At Different Positions. Sportlogia 2013, 9, 109–117. [Google Scholar] [CrossRef]
- Knoop, M.; Fernandez-Fernandez, J.; Ferrauti, A. Evaluation of a specific reaction and action speed test for the soccer goalkeeper. J. Strength Cond. Res. 2013, 27, 2141–2148. [Google Scholar] [CrossRef] [PubMed]
- Zahálka, F.; Malý, T.; Malá, L.; Gryc, T.; Hráský, P. Power Assessment of Lower Limbs and Strength Asymmetry of Soccer Goalkeepers. Acta Gymnica 2013, 43, 31–38. [Google Scholar] [CrossRef]
- Nikolaidis, P.; Ziv, G.; Arnon, M.; Lidor, R. Physical and physiological attributes of soccer goalkeepers—Should we rely only on means and standard deviations? J. Hum. Sport Exerc. 2015, 10, 602–614. [Google Scholar] [CrossRef]
- Hervéou, T.; Rahmani, A.; Chorin, F.; Frère, J.; Ripamonti, M.; Durand, S. Force-velocity muscular profiles and jumping performances of soccer goalkeeper. Sci. Sport 2018, 33, 307–313. [Google Scholar] [CrossRef]
- Lockie, R.G.; Moreno, M.R.; Lazar, A.; Orjalo, A.J.; Giuliano, D.V.; Risso, F.G.; Davis, D.L.; Crelling, J.B.; Lockwood, J.R.; Jalilvand, F. The physical and athletic performance characteristics of division I collegiate female soccer players by position. J. Strength Cond. Res. 2018, 2, 334–343. [Google Scholar] [CrossRef]
- Jiménez, R.; Parra, G.; Pérez, D.; Grande Rodriguez, I. Valoración de la potencia de salto en jugadores semiprofesionales de fútbol y comparación de resultados por puestos. Cronos 2009, 8, 49–52. [Google Scholar] [CrossRef]
- Serrano Sanabria, M.E.; Mora Poveda, G.J.; Sanchez Urena, B.; Gutierrez Vargas, J.C.; Mendez Solano, M.E. Anthropometric characteristics and muscular strength in Costa Rican football players between 15 and 20 years. Mhsalud Rev. Cienc. Del Mov. Hum. Salud 2017, 14, 1–15. [Google Scholar] [CrossRef]
- Rebelo, A.; Brito, J.; Maia, J.; Coelho-E-Silva, M.J.; Figueiredo, A.J.; Bangsbo, J.; Malina, R.M.; Seabra, A. Anthropometric characteristics, physical fitness and technical performance of under-19 soccer players by competitive level and field position. Int. J. Sports Med. 2013, 34, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Deprez, D.; Fransen, J.; Boone, J.; Lenoir, M.; Philippaerts, R.; Vaeyens, R. Characteristics of high-level youth soccer players: Variation by playing position. J. Sports Sci. 2015, 33, 243–254. [Google Scholar] [CrossRef] [PubMed]
- López-Valenciano, A.; Ayala, F.; Vera-García, F.J.; De Ste Croix, M.; Hernández-Sánchez, S.; Ruiz-Pérez, I.; Cejudo, A.; Santonja, F. Comprehensive profile of hip, knee and ankle ranges of motion in professional football players. J. Sports Med. Phys. Fit 2019, 59, 102–109. [Google Scholar] [CrossRef] [PubMed]
- AlTaweel, A.; Nuhmani, S.; Ahsan, M.; Abualait, T.; Muaidi, Q. Determining the hip joint isokinetic muscle strength and range of motion of professional soccer players based on their field position. PeerJ 2022, 10, e14000. [Google Scholar] [CrossRef]
- Soyler, M.; Kayantas, I. Examination of Seasonal Changes of Some Physical and TechnicalParameters According to the Positions of Professional League Players. Int. J. Appl. Exerc. Physiol. 2020, 9, 99–108. [Google Scholar]
- Sporis, G.; Jukic, I.; Ostojic, S.M.; Milanovic, D. Fitness profiling in soccer: Physical and physiologic characteristics of elite players. J. Strength Cond. Res. 2009, 23, 1947–1953. [Google Scholar] [CrossRef]
- Kovačević, Ž.; Štefan, L.; Sporiš, G.; Poljak, D.; Kreivytė, R. Motor and Functional Abilities of U-19 Elite Croatian Soccer Players. Balt. J. Sport. Health Sci. 2016, 1, 17–21. [Google Scholar] [CrossRef]
- Carpes, L.d.O.; Geremia, J.M.; Ferrari, R. Níveis De Aptidão Física De Jogadores Profissionais De Futebol Que Atuam Em Diferentes Posições No Jogo. In Educ Física e Ciências do Esporte Uma Abordagem Interdiscip; Editora Científica Digital Ltda: Guarujá, Brazil, 2019; Volume 2, pp. 354–366. [Google Scholar]
- Loureiro, K.C.; Ferrari, R. Níveis De Aptidão Física E Perfil Antropométrico De Atletas Profissionais De Futebol Feminino Que Atuam Em Diferentes Posições. Rev. Bras. Futsal Futeb. 2020, 12, 665–670. [Google Scholar]
- de Paula Ravagnani, F.C.; Paz, W.B.; Costa, C.F.; Brandão, C.M.; dos reis Reis Filho, A.D.; Fett, C.A.; Ravagnani, C.D.F.C. Perfil Físico das Diferentes Posições de Jogadores de Futebol. Rev. Bras. Ciência Mov. 2013, 21, 11–18. [Google Scholar]
- Bizati, O. Physical and physiological characteristics of an Elite soccer team’s players according to playing positions. Anthropologist 2016, 26, 175–180. [Google Scholar] [CrossRef]
- Bujnovsky, D.; Maly, T.; Ford, K.R.; Sugimoto, D.; Kunzmann, E.; Hank, M.; Zahalka, F. Physical fitness characteristics of high-level youth football players: Influence of playing position. Sports 2019, 7, 46. [Google Scholar] [CrossRef]
- Sousa, S.; Rodrigues, S.S.E.Q. Diferenças de desempenho nos saltos verticais entre os atletas de diferentes posições no futebol. Rev. Bras. Futsal Futeb. 2015, 4, 187–198. [Google Scholar]
- Nikolaidis, P.; Ziv, G.; Lidor, R.; Arnon, M. Inter-individual variability in soccer players of different age groups playing different positions. J. Hum. Kinet. 2014, 40, 213–225. [Google Scholar] [CrossRef] [PubMed]
- Ateş, B. Dynamic balance performance of professional turkish soccer players by playing position. Phys. Educ. Stud. 2019, 23, 223–228. [Google Scholar] [CrossRef]
- Pérez-Contreras, J.; Merino-Muñoz, P.; Aedo-Muñoz, E. Link between body composition, sprint and vertical jump in young elite soccer players from Chile. MHSalud 2021, 18, 60–76. [Google Scholar]
- Vargas, J.M.G.; Perez, J.M.G. Análisis descriptivo de variables de rendimiento físico en un equipo de fútbol de primera división chilena femenina. Retos 2023, 48, 657–666. [Google Scholar] [CrossRef]
- Mahmoudi, F.; Rahnama, N.; Daneshjoo, A.; Behm, D.G. Comparison of dynamic and static balance among professional male soccer players by position. J. Bodyw. Mov. Ther. 2023, 36, 307–312. [Google Scholar] [CrossRef]
- Ben Hassen, D.; Zghal, F.; Peyrot, N.; Samozino, P.; Rebai, H.; Rahmani, A. Jump and sprint force velocity profile of young soccer players differ according to playing position. J. Sports Sci. 2024, 41, 1915–1926. [Google Scholar] [CrossRef]
- Vagle, M.; Dalen-Lorentsen, T.; Moksnes, H.; Harøy, J.; Bjørneboe, J.; Andersen, T.E. Physical Performance Profiles in Norwegian Premier League Female Football: A Descriptive Study. Int. J. Sports Physiol. Perform. 2023, 18, 695–703. [Google Scholar] [CrossRef] [PubMed]
- Baroni, B.M.; Junior, E.C.P.L. Capacidade anaeróbia de atletas adolescentes de futebol em exercício máximo intermitente. Rev. Bras. Ciência Mov. 2009, 17, 76–82. [Google Scholar]
- Jadczak, Ł.; Grygorowicz, M.; Wieczorek, A.; Śliwowski, R. Analysis of static balance performance and dynamic postural priority according to playing position in elite soccer players. Gait Posture 2019, 74, 148–153. [Google Scholar] [CrossRef]
- Ruas, C.V.; Brown, L.E.; Pinto, R.S. Lower-extremity side-to-side strength asymmetry of professional soccer players according to playing position. Kinesiology 2015, 47, 188–192. [Google Scholar]
- Tsiokanos, A.; Paschalis, V.; Valasotiris, K. Knee extension strength profile of elite Greek soccer players. Isokinet. Exerc. Sci. 2016, 24, 79–82. [Google Scholar] [CrossRef]
- Salguero, G.C.; José, F.G.-M.S.; Gosalvez, A.P.; Rebollo, J.M.C.; Fernández, I.B.; Rosa, L.F. Isokinetic profiles and reference values of professional soccer players. Rev. Bras. Med. Esporte 2021, 27, 610–615. [Google Scholar] [CrossRef]
- Maciel, D.G.; Dantas, G.A.F.; Cerqueira, M.S.; Barboza, J.A.M.; Caldas, V.V.D.A.; de Barros, A.C.M.; Varela, R.R.; Magalhães, D.H.; de Brito Vieira, W.H. Peak torque angle, acceleration time and time to peak torque as additional parameters extracted from isokinetic test in professional soccer players: A cross-sectional study. Sport Biomech. 2020, 22, 1108–1119. [Google Scholar] [CrossRef]
- Inarejos, C.; Gómez, F. La Periodización Táctica de la Realidad Teórica Hacia Una Visión Práctica; Instituto Monsa de Ediciones: Barcelona, Spain, 2014. [Google Scholar]
- Izaguirre-Sotomayor, M. Neuroproceso de la enseñanza y del aprendizaje. In Metodología de la Aplicación de la Neurociencia en la Educación; Alpha Editorial: Bogota, Colombia, 2017; 265p. [Google Scholar]
- Abe, Y.; Ambe, H.; Okuda, T.; Nakayama, M.; Morita, N. Reliability and Validity of a Novel Reactive Agility Test with Soccer Goalkeeper-Specific Movements. Sports 2022, 10, 169. [Google Scholar] [CrossRef] [PubMed]
- Abe, Y.; Nakayama, M.; Morita, N. Reliability and Validity of a Reactive Agility Test With Soccer Goalkeeper-Specific Movements for Adolescents. J. Sports Med. Phys. Fit. 2024, 64, 265–271. [Google Scholar] [CrossRef]
- Bloomfield, J.; Polman, R.; O’Donoghue, P. Physical demands of different positions in FA Premier League soccer. J. Sport. Sci. Med. 2007, 6, 63–70. [Google Scholar]
- Marshall, P.W.M.; Finn, H.T.; Siegler, J.C. The magnitude of peripheral muscle fatigue induced by high and low intensity single-joint exercise does not lead to central motor output reductions in resistance trained men. PLoS ONE 2015, 10, e0140108. [Google Scholar] [CrossRef]
- Bergmann, F.; Schultz, F.; Fransen, J.; Höner, O. Evaluation of a goalkeeper-specific motor coordination assessment in youth football. Sci. Med. Footb. 2024, 54, 1–16. [Google Scholar] [CrossRef]
- Kubayi, A. Analysis of goalkeepers game performances at the 2016 European Football Championships. S. Afr. J. Sport Med. 2020, 32, 7–10. [Google Scholar] [CrossRef] [PubMed]
- Lisenchuk, G.; Leleka, V.; Bogatyrev, K.; Adamenko, O.; Bairachny, O.; Balan, B. Relationships between technical-tactical and physical preparedness of 13–14-year-old skilled football goalkeepers. J. Phys. Educ. Sport. 2021, 21, 3439–3444. [Google Scholar]
- Radnor, J.M.; Oliver, J.L.; Waugh, C.M.; Myer, G.D.; Moore, I.S.; Lloyd, R.S. The Influence of Growth and Maturation on Stretch-Shortening Cycle Function in Youth. Sport. Med. 2018, 48, 57–71. [Google Scholar] [CrossRef] [PubMed]
- De Baranda, P.S.; Ortega, E.; Palao, J.M. Analysis of goalkeepers’ defence in the World Cup in Korea and Japan in 2002. Eur. J. Sport Sci. 2008, 8, 127–134. [Google Scholar] [CrossRef]
- Floría, P.; Harrison, A.J. The effect of arm action on the vertical jump performance in children and adult females. J. Appl. Biomech. 2013, 29, 655–661. [Google Scholar] [CrossRef]
- Walsh, M.S.; Bohm, H.; Butterfield, M.M.; Santhosam, J.S. Sex Bias in the Effects of Arms and Countermovement on Jumping Performance. J. Strength Cond. Res. 2007, 21, 362–366. [Google Scholar] [PubMed]
- Dolenc, P. Physical Self-Concept in Adolescent Athletes: Relation to sex, age, type of sport and Training Frequency. In Proceedings of the 7th International Scientific Conference on Kinesiology, Opatija, Croatia, 18–20 July 2014; 507p. [Google Scholar]
- Taube, W.; Leukel, C.; Gollhofer, A. How neurons make us jump: The neural control of stretch-shortening cycle movements. Exerc. Sport Sci. Rev. 2012, 40, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Freitas, T.T.; Alcaraz, P.E.; Calleja-González, J.; Arruda, A.F.; Guerriero, A.; Kobal, R.; Reis, V.P.; Pereira, L.A.; Loturco, I. Differences in Change of Direction Speed and Deficit Between Male and Female National Rugby Sevens Players. J. Strength Cond. Res. 2019, 35, 3170–3176. [Google Scholar] [CrossRef] [PubMed]
- Loturco, I.; Pereira, L.A.; Freitas, T.T.; Alcaraz, P.E.; Zanetti, V.; Bishop, C.; Jeffreys, I. Maximum acceleration performance of professional soccer players in linear sprints: Is there a direct connection with change-of-direction ability? PLoS ONE 2019, 14, e0216806. [Google Scholar] [CrossRef]
Study | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | RESULT |
---|---|---|---|---|---|---|---|---|---|
Knoop et al. [43] | + | + | + | + | - | - | + | + | INCLUDE |
Zahálka et al. [44] | + | ? | - | + | - | - | + | + | INCLUDE |
Nikolaidis et al. [45] | + | + | + | + | + | - | ? | + | INCLUDE |
Herveou et al. [46] | + | + | + | + | - | - | + | - | INCLUDE |
Study | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | RESULT |
---|---|---|---|---|---|---|---|---|---|---|
Lockie et al. [47] | + | + | - | + | + | + | + | + | + | INCLUDE |
Jiménez et al. [48] | + | + | - | - | + | + | + | + | + | INCLUDE |
AlTaweel et al. [1] | + | + | - | + | + | + | + | + | + | INCLUDE |
Serrano-Sanabria et al. [49] | + | + | - | + | + | - | + | + | + | INCLUDE |
Rebelo et al. [50] | + | + | - | + | + | + | + | + | + | INCLUDE |
Deprez et al. [51] | + | + | + | + | + | + | + | + | + | INCLUDE |
Lopez-Valenciano et al. [52] | + | + | - | + | + | + | + | - | + | INCLUDE |
AlTaweel et al. [53] | + | + | - | - | + | + | + | + | + | INCLUDE |
Soyler and Kayantas [54] | + | + | - | + | + | - | - | + | + | INCLUDE |
Sporis et al. [55] | + | + | - | + | + | ? | + | + | + | INCLUDE |
Pivovarniček et al. [42] | - | + | - | ? | + | + | - | - | + | EXCLUDE |
Kovačević et al. [56] | + | + | - | + | + | ? | + | + | + | INCLUDE |
Carpes et al. [57] | + | + | - | + | + | + | + | - | + | INCLUDE |
Loureiro and Ferrari [58] | + | + | - | + | + | - | + | - | + | INCLUDE |
Ravagnani et al. [59] | + | + | - | + | + | ? | + | + | - | INCLUDE |
Bizati [60] | + | + | - | + | + | + | + | + | + | INCLUDE |
Bujnovky et al. [61] | + | + | - | - | + | + | + | + | + | INCLUDE |
Boone et al. [17] | + | + | - | + | + | ? | + | + | + | INCLUDE |
Sousa and Rodrigues [62] | + | + | - | - | + | - | + | + | + | INCLUDE |
Nikolaidis et al. [63] | + | + | + | + | + | + | + | + | + | INCLUDE |
Ates [64] | + | + | - | + | + | + | + | + | + | INCLUDE |
Perez-Contreras et al. [65] | + | + | - | + | + | ? | + | + | + | INCLUDE |
González-Vargas and Gallardo-Pérez [66] | + | + | - | + | + | + | + | + | + | INCLUDE |
Mahmoudi et al. [67] | + | + | - | + | + | + | + | + | + | INCLUDE |
Ben Hassen et al. [68] | + | + | - | ? | + | + | + | + | + | INCLUDE |
Vagle et al. [69] | ? | + | - | + | + | + | + | + | + | INCLUDE |
Baroni and Leal Junior [70] | + | + | - | + | - | + | + | ? | + | INCLUDE |
Jadczak et al. [71] | + | + | - | + | - | + | + | ? | + | INCLUDE |
Ruas et al. [72] | + | + | - | + | + | + | + | ? | + | INCLUDE |
Tsiokanos et al. [73] | + | + | - | + | - | + | + | ? | + | INCLUDE |
Charneco et al. [74] | + | + | - | + | + | + | + | ? | + | INCLUDE |
Maciel Germano et al. [75] | + | + | - | + | - | + | + | ? | + | INCLUDE |
RAS (Reaction and Action Speed) (s) | ||||||||
---|---|---|---|---|---|---|---|---|
Sex/Category | Age (Years) | No. GK | Bottom Left | Bottom Right | Top Left | Top Right | Top Left- Bottom Right | Top Right- Bottom Left |
MALE: U14 | 14.1 ± 0.3 | 13 | 1.40 ± 0.10 | 1.39 ± 0.12 | 1.59 ± 0.13 | 1.58 ± 0.12 | 5.20 ± 0.41 | 5.09 ± 0.59 |
MALE: U16 | There is no specific agility test focused on this sample | |||||||
MALE: U19 | 18.4 ± 0.8 | 10 (1stgk) | 1.25 ± 0.07 | 1.21 ± 0.06 | 1.38 ± 0.06 | 1.38 ± 0.04 | 4.28 ± 0.23 | 4.20 ± 0.20 |
17.7 ± 0.7 | 11 (2stgk) | 1.31 ± 0.05 | 1.24 ± 0.06 | 1.44 ± 0.08 | 1.41 ± 0.08 | 4.51 ± 0.24 | 4.43 ± 0.20 | |
MALE and WOMEN: Over 19 | There is no specific agility test focused on this sample |
Sex/Category/Selected Studies | Level | Surface | Testing Instruments | No. GK | Sprint (s) | ||||
---|---|---|---|---|---|---|---|---|---|
5 m | 10 m | 20 m | 30 m | ||||||
MALE U14: U14 | Knoop et al. [43] | Elite lower categories in Germany | Artificial grass | Photocell gates (Sportronic GmbH, Schopfheim, Germany) | 13 | NS | 1.98 ± 0.08 | NS | NS |
Deprez et al. [51] | Elite lower categories in Belgium | Running track | Witty gate (Microgate Srl, Bolzano, Italy) | 37 | 1.18 ± 0.09 | NS | NS | 4.96 ± 0.31 | |
MALE: U16 | Deprez et al. [51] | Elite lower categories in Belgium | Running track | Witty gate (Microgate Srl, Bolzano, Italy) | 25 | 1.12 ± 0.08 | NS | NS | 4.57 ± 0.27 |
Bujnovky et al. [61] | Top division of the Czech league | Artificial grass | Photocells Speed Trap II (Brower Timing System, Draper, UT, USA). | 9 | 1.13 ± 0.07 | 1.9 ± 0.1 | 2.55 ± 0.11 | NS | |
Perez-Contreras et al. [65] | U15 Chilean national team | NS | Witty gate (Microgate Srl, Bolzano, Italy) | ND | NS | 1.9 ± 0.1 | NS | 4.4 ± 0.1 | |
MALE: U19 | Knoop et al. [43] | Elite lower categories in Germany | Artificial grass | Photocell gates placed (Sportronic, Germany) | 10 | NS | 1.83 ± 0.03 | NS | NS |
11 | NS | 1.89 ± 0.05 | NS | NS | |||||
Serrano Sanabria et al. [49] | Elite lower categories in Costa Rica | NS | Newtest photocell (Newtest Oy, Oulu, Finland) | 9 | NS | 1.89 ± 0.07 | NS | NS | |
Rebelo et al. [50] | Portugal U19 National League | Artificial grass | Photoelectric cells, Speed Trap II (Brower Timing Systems, Draper, UT, USA) | 9 | 1.03 ± 0.06 | NS | NS | 4.31 ± 0.18 | |
Deprez et al. [51] | Elite lower categories in Belgium | Running track | Witty gate (Microgate Srl, Bolzano, Italy) | 20 | 1.08 ± 0.05 | NS | NS | NS | |
Kovačević et al. [56] | Elite lower categories in Croatia | NS | Infrared photocells (NS) | 7 | NS | NS | NS | 4.24 ± 0.11 | |
Perez-Contreras et al. [65] | U17 Chilean national team | NS | Photocells (Witty gate, Microgate Srl, Bolzano, Italy) | ND | NS | 1.9 ± 0 | NS | NS | |
Ben Hassen et al. [68] | First Division in Tunisia | Artificial grass | Ipad 11 Pro (Apple Inc., Cupertino, CA, USA) (240 fps; 1080p; App “My sprint”) | 12 | NS | 2.14 ± 0.08 | 3.55 ± 0.12 | 4.86 ± 0.18 | |
MALE: OV | Soyler and Kayantas [54] | Second League in Ankara | NS | Photocell doors SMARTSPEED timing gates (Fusion Sport, Brisbane, QLD, Australia) | 3 | NS | 1.48 ± 0.29 | NS | NS |
Sporis et al. [55] | First National League Croatia | NS | Telematic photocell system (RS sport, Zagreb, Croatia) | 30 | 1.45 ± 0.7 | 2.35 ± 0.8 | 3.51 ± 0.9 | NS | |
Ravagnani et al. [59] | Brazil First Division | Running track | Unmarked stopwatch (NS) | 2 | NS | NS | NS | 4.3 ± 0.2 | |
Bizati [60] | Turkish Super League | Natural grass | Powertimer (Newtest Oy, Oulu, Finland) | 3 | 0.94 ± 0.01 | 1.74 ± 0.05 | 2.94 ± 0.08 | NS | |
Boone et al. [17] | Belgian First Division | Field | Fotocell (Ergo Tester, Pisa, Italy) | 17 | 1.46 ± 0.07 | NS | NS | NS | |
WOMEN: OVER 19 | Lockie et al. [47] | American Women’s First Division | NS | One timing gate (TC Timing System; Brower Timing, Draper, UT, USA) | 3 | 1.188 ± 0.0 | 2.041 ± 0.0 | NS | 4.864 ± 0.0 |
Loureiro and Ferrari [58] | Female players in Brazil | NS | Handheld chronometer (NS) | 3 | NS | NS | 3.01± 0.03 | NS | |
González Vargas and Gallardo Pérez [66] | Primera división chilena | Natural grass | Chronojump Boscosystem photocells, version 1.7.0 (Chronojump, Barcelona, Spain) | 3 | NS | NS | NS | 4.94 ± 0.3 | |
Vagle et al. [69] | Norwegian Premier League Female | Artificial grass | MuscleLab photocells (Ergotest Innovation AS, Porsgrunn, Norway). | 14 | NS | NS | 3.21 ± 0.14 | 4.57 ± 0.20 |
T TEST (s) | ||||||||
---|---|---|---|---|---|---|---|---|
Sex/Category/Selected Studies | Level | Surface | Testing Instruments | No. GK | T TEST | Left | Right | |
MALE: U14 | Deprez et al. [51] | Elite categories in Belgium | NS | Witty gate (Microgate Srl, Bolzano, Italy) | 37 | NS | 8.95 ± 0.34 | 8.99 ± 0.34 |
MALE: U16 | Deprez et al. [51] | Elite categories in Belgium | NS | Witty gate (Microgate Srl, Bolzano, Italy) | 25 | NS | 8.69 ± 0.32 | 8.66 ± 0.31 |
MALE: U19 | Rebelo et al. [50] | First division in Portugal. | Artificial grass | Photoelectric cells, Speed Trap II (Brower Timing Systems, Draper, UT, USA) | 9 elite | 9.02 ± 0.33 | NS | NS |
Deprez et al. [51] | Elite categories in Belgium | NS | Witty gate (Microgate Srl, Bolzano, Italy) | 20 | NS | 8.52 ± 0.29 | 8.61 ± 0.32 | |
MALE and WOMEN: Over 19 | There is no t-test focused on this sample. |
Sex/Categories | Selected Studies | Level | No. GK | Wingate (WAnT): Cycle Ergometer (Monark Exercise AB, Vansbro, Sweden) | |||
---|---|---|---|---|---|---|---|
PP (W) | AP (W) | RPP (W/kg) | RAP (W/kg) | ||||
MALE: U14 | Nikolaidis et al. [63] | Elite categories in Greece | 3 | 576.13 ± 89.19 | 444.77 ± 75.10 | 9.95 ± 0.88 | 7.68 ± 0.91 |
MALE: U16 | Nikolaidis et al. [45] | Elite categories in Greece | 31 | 629.9 ± 157.2 | 470.1 ± 121.4 | NS | NS |
Baroni and Leal Junior [70] | National level of Brazil. | 3 | 737.57 ± 59.77 | 580.17 ± 52.61 | NS | 8.21 ± 0.49 | |
Nikolaidis et al. [63] | Elite categories in Greece | 8 | 772.55 ± 140.38 | 569.04 ± 104.16 | 10.47 ± 1.78 | 7.72 ± 1.40 | |
MALE: U19 | Nikolaidis et al. [45] | Elite categories in Greece | 11 | 847.1 ± 122.8 | 612.6 ± 57.7 | NS | NS |
MALE: Over 19 | Nikolaidis et al. [45] | Elite categories in Greece | 24 | 904.0 ± 93.2 | 659.4 ± 66.6 | NS | NS |
Nikolaidis et al. [63] | Elite categories in Greece | 15 | 888.53 ± 108.09 | 656.68 ± 71.95 | 11.0 ± 0.62 | 8.16 ± 0.71 | |
WOMEN: Over 19 | There are no force velocity test values centred on this sample. |
Sex/ Categories | Selected Studies | Level | Testing Instruments | No. GK | Force Velocity | Hand Grip (kg) | IT (kg) | Trunk/Legs (kg) | ||
---|---|---|---|---|---|---|---|---|---|---|
AP (W) | RP (W/kg) | Right | Left | |||||||
MALE: U14 | Nikolaidis et al. [63] | Elite categories in Greece | Cycle ergometer (Monark Ergomedics, Sweden) and handgrip dynamometre (Takei, Japan) | 3 | 645.89 ± 112.41 | 11.30 ± 2.48 | 35.37 ± 7.70 | 33.73 ± 6.34 | 74.67 ± 9.25 | 102.67 ±17.11 |
MALE: U16 | Nikolaidis et al. [45] | 31 | 702.0 ± 260.8 | 11.4 ± 3.2 | 33.2 ± 11.1 | 31.1 ± 10.3 | 88.3 ± 22.1 | 112.2 ± 24.9 | ||
Nikolaidis et al. [63] | 8 | 952.26 ± 133.84 | 13.12 ± 3.12 | 41.35 ± 9.00 | 38.06 ± 9.20 | 98.63 ± 17.38 | 120.38 ±23.21 | |||
MALE: U19 | Nikolaidis et al. [45] | 11 | 1190.6 ± 298.3 | 14.9 ± 3.7 | 45.6 ± 9.0 | 40.8 ± 7.2 | 122.7 ± 25.7 | 132.4 ± 36.7 | ||
MALE: Over 19 | Nikolaidis et al. [45] | 31 | 1165.8 ± 235.0 | 14.2 ± 2.8 | 51.9 ± 6.2 | 49.6 ± 5.5 | 148.5 ± 19.0 | 181.4 ± 27.2 | ||
Nikolaidis et al. [63] | 15 | 1135.71 ± 209.24 | 14.09 ± 2.3 | 50.75 ± 5.28 | 48.31 ± 6.47 | 146.09 ± 16.39 | 174 ± 26.56 | |||
WOMEN: Over 19 | There are no force velocity test values centred on this sample. |
Selected Studies/Male Over19 | No. GK and Level | Laterality | Peak Torque (Nm); Isokinetic Dynamometer (Cybex 340, Rosemont, IL, USA) | ||||
---|---|---|---|---|---|---|---|
(30°/s) | (60°/s) | (180°/s) | (240°/s) | ||||
Flexion | Tsiokanos et al. [73] | 24GK First division in Greece | Dom | 355 ± 45 | 312 ± 44 | 198 ± 30 | NS |
Charneco Salguero et al. [74] | 32GK Spanish first and second division | Right leg | NS | 143.66 ± 20.30 | 119.33 ± 19.04 | 107.13 ± 19.93 | |
Left leg | NS | 129.13 ± 27.71 | 106.23 ± 22.70 | 95.37 ± 20.02 | |||
Maciel Germano et al. [75] | 16GK Third and fourth division of Brazil | Dom | NS | 160.59 ±17.23 | NS | NS | |
NDom | NS | 154.63 ± 25.24 | NS | NS | |||
Extension | Charneco Salguero et al. [74] | 32GK Spanish first and second division | Right leg | NS | 245.47 ± 46.15 | 195.07 ± 23.56 | 162.47 ± 20.32 |
Left leg | NS | 246.25 ± 38.32 | 192.73 ± 27.88 | 160.60 ± 23.25 | |||
Maciel Germano et al. [75] | 16GK Third and fourth division of Brazil | Dom | NS | 282.72 ± 51.35 | NS | NS | |
NDom | NS | 283.36 ± 41.74 | NS | NS |
Sex/Category/Selected Studies | Level | Testing Instruments (JUMP) | No. GK | CMJ (cm) | SJ (cm) | CMJ HF (cm) | HJ (cm) | |
---|---|---|---|---|---|---|---|---|
MALE U14 | Deprez et al. [51] | Elite categories in Belgium | Optojump (Microgate Srl, Bolzano, Italy). | 37 | 30.4 ± 5.8 | NS | NS | 200 ± 22 |
Nikolaidis et al. [63] | Elite categories in Greece | Optojump (Microgate Srl, Bolzano, Italy). | 3 | 26.71 ± 7.84 | NS | NS | NS | |
MALE: U16 | Knoop et al. [43] | Elite categories in Germany | Contact platform (Haynl-Elektronik GmbH, Schönebeck (Elbe), Germany). | 13 | NS | NS | 36.0 ± 4.3 | NS |
Nikolaidis et al. [45] | Elite categories in Greece | Optojump (Microgate Srl, Bolzano, Italy). | 31 | 31.3 ± 8.9 | NS | NS | NS | |
Deprez et al. [51] | Elite categories in Belgium | Optojump (Microgate Srl, Bolzano, Italy). | 25 | 35.5 ± 5.9 | NS | NS | 221 ± 20 | |
Nikolaidis et al. [63] | Elite categories in Greece | Optojump (Microgate Srl, Bolzano, Italy). | 8 | 35.81 ± 7.52 | NS | NS | NS | |
Perez-Contreras et al. [65] | U15 Chilean national team | DmJump® contact platform (DMJUMP, Santiago, Chile). | NS | 39.3 ± 4.9 | 35.4 ± 4.8 | NS | NS | |
MALE: U19 | Knoop et al. [43] | Elite categories in Germany | Contact platform (Haynl-Elektronik GmbH, Schönebeck (Elbe), Germany). | 10 (1stgk) | NS | NS | 54.7 ± 5.8 | NS |
11 (2stgk) | NS | NS | 50.4 ± 4.2 | NS | ||||
Nikolaidis et al. [45] | Elite categories in Greece | Optojump (Microgate Srl, Bolzano, Italy). | 11 | 32.8 ± 8.7 | NS | NS | NS | |
Serrano Sanabria et al. [49] | Elite lower categories in Costa Rica | Force platform “Newtest”(Newtest Oy, Oulu, Finland). | 9 | 39 ± 5.59 | 31.4 ± 3.5 | NS | NS | |
Rebelo et al. [50] | First division U19 in Portugal | Special mat (Digitime 1000, NS, Finland) | 9 | 41.9 ± 6.0 | 40.9 ± 5.0 | NS | NS | |
Deprez et al. [51] | Elite categories in Belgium | Optojump (Microgate Srl, Bolzano, Italy). | 20 | 38.4 ± 4.4 | NS | NS | 230 ± 16 | |
Kovačević et al. [56] | Elite categories in Croatia | Quattro jump (Kistler Instrumente AG, Winterthur, Swizerland, 2008) | 7 | NS | NS | NS | 272 ± 11 | |
Perez-Contreras et al. [65] | U17 Chilean national team | DmJump® contact platform (DMJUMP, Santiago, Chile). | NS | 37.8 ± 5.7 | 35.9 ± 2.9 | NS | NS | |
Ben Hassen et al. [68] | First division in Tunisia | My-Jump 2 app (v. 5.0.5) (Madrid, Spain) | 12 | NS | 29.2 ± 5.0 | NS | NS | |
MALE: Over 19 | Zahálka et al. [44] | First division Czech | Kistler B8611A (Instrumente AG, Winterthur, Switzerland) | 25 | 40.06 ± 3.48 | 36.1 ± 3.4 | 45.07 ± 3.22 | NS |
Nikolaidis et al. [45] | Elite categories in Greece | Optojump (Microgate Srl, Bolzano, Italy). | 31 | 37.7 ± 7.2 | NS | NS | NS | |
Herveou et al. [46] | French forth division | Optojump (Microgate Srl, Bolzano, Italy). | 11 | 41.6 ± 5.5 | 38.5 ± 4.5 | NS | NS | |
Jiménez et al. [48] | Spanish Second Division B | kistler Quatro Jump (Force Platform) (Kistler Instrumente AG, Winterthur, Switzerland). | 2 | 38.76 ± 1.67 | 36.9 ± 3.1 | NS | NS | |
Sporis et al. [55] | First National League Croatia | Quattro jump (Kistler Instrumente AG, Winterthur, Switzerland; 2008). | 30 | 48.5 ± 1.5 | 46.8 ± 1.4 | NS | NS | |
Carpes et al. [57] | First division Brazil | Jumping platform (JUMP SYSTEM PRO, 1.0, NS, Chile) | 9 | 50.0 ± 3.0 | 47.6 ± 4.5 | NS | NS | |
Bizati [60] | Turkish Super League | Powertimer (Newtest Oy, Oulu, Finland) | 3 | 44.0 ± 5.07 | 41.2 ± 6.6 | NS | NS | |
Boone et al. [17] | Belgian first division | Jumping mat Ergo Tester (Globus Italia Srl, Codognè (TV), Italy). | 17 | 45.6 ± 2.6 | 42.2 ± 2.9 | NS | NS | |
Nikolaidis et al. [63] | Elite categories in Greece | Optojump (Microgate Srl, Bolzano, Italy). | 15 | 37.4 ± 6.87 | NS | NS | NS | |
Sousa and Rodrigues [62] | Forth division of Brazil | NS | 4 | 37.2 ± 2.9 | 34.4 ± 5.0 | NS | NS | |
WOMEN: Over 19 | Lockie et al. [47] | American Women’s First Division | Force platform (Just Jump System) (Probotics, Huntsville, AL, USA). | 3 | NS | NS | 54 ± 0.0 | 207 ± 0.0 |
Loureiro and Ferrari [58] | Elite categories in Brazil | My Jump 2 app (v. 5.0.5) (Madrid, Spain) | 3 | 37 ± 1.50 | NS | NS | NS | |
González Vargas and Gallardo Pérez [66] | Chilean First Division | Jumping platform (DMJump®2.0, NS, Chile) | 3 | 28.0 ± 3.0 | NS | NS | NS | |
Vagle et al. [69] | Norwegian Premier League Female | Force platform (MuscleLab) (Ergotest Innovation AS, Stathelle, Norway). | 14 | 32.6 ± 4.5 | NS | NS | NS |
Sex/Category/Selected Studies | Level | No. GK | Sit and Reach (cm) | Modified Sit and Reach (cm) | |
---|---|---|---|---|---|
MALE: U14 | Deprez et al. [51] | Elite lower categories in Belgium | 37 | 24.6 ± 6.1 | NS |
Nikolaidis et al. [63] | Elite lower categories in Greece | 3 | 19.75 ± 6.63 | NS | |
MALE: U16 | Nikolaidis et al. [45] | Elite lower categories in Greece | 31 | NS | 19.4 ± 6.5 |
Deprez et al. [51] | Elite lower categories in Belgium | 25 | 29.1 ± 8.9 | NS | |
Nikolaidis et al. [63] | Elite lower categories in Greece | 8 | 23.81 ± 5.90 | NS | |
MALE: U19 | Nikolaidis et al. [45] | Elite categories in Greece | 11 | NS | 26.9 ± 6.8 |
Serrano Sanabria et al. [49] | Elite categories in Costa Rican | 9 | 43.11 ± 9.63 | NS | |
Deprez et al. [51] | Elite categories in Belgium | 20 | 27.4 ± 4.3 | NS | |
MALE: Over 19 | Nikolaidis et al. [45] | Elite categories in Greece | 31 | NS | 24.1 ± 6.8 |
Carpes et al. [57] | First division Brazil | 9 | 22.26 ± 4.14 | NS | |
Nikolaidis et al. [63] | Elite categories in Greece | 15 | 25.65 ± 7.61 | NS | |
WOMEN: Over 19 | There are no sit-and-reach values centred on this sample. |
MALE: OVER 19 | No. GK | Test | Dominant Leg | Non-Dominant Leg | |
---|---|---|---|---|---|
López Valenciano et al. [52] | Spanish Football Federation | 14 | Passive hip flexion with knee flexed | 150.9 ± 9.4° | 151.8 ± 7.2° |
Passive hip flexion with knee extended | 80.3 ± 10.1° | 79.5 ± 10.7° | |||
Passive hip abduction | 67.9 ± 7.6° | 66.6 ± 9.8° | |||
Passive hip internal rotation | 49.4 ± 10.5° | 47.9 ± 6.3° | |||
Passive hip external rotation | 50.8 ± 7.6° | 48.5 ± 8.3° | |||
Ankle dorsiflexion with knee extended | 36.6 ± 5.1° | 37.0 ± 5.1° | |||
Passive hip extension | 12.2 ± 7.4° | 12.7 ± 7.8° | |||
Passive knee flexion | 131.7 ± 10.9° | 131.4 ± 13.2° | |||
Wik et al. [40] | Qatar Stars League | 19 | Bent knee fall out | 13.2 ± 4.7° | 13.0 ± 3.7° |
Passive knee extension | 87.9 ± 11.7° | 86.4 ± 10.8° | |||
Hip internal Rotation | 33.5 ± 5.8° | 34.2 ± 6.3° | |||
Ankle dorsiflexion with knee extended | 11.1 ± 3.7° | 10.9 ± 3.2° | |||
González Vargas and Gallardo Perez [66] | Chilean First Division | 3 | The straight leg raises | 107 ± 15.0° | 106 ± 7.5° |
AlTaweel et al. [53] | Saudi Arabian First Division | 24 | Hip ROM | 19.79 ± 1.82° |
Sex/Category/Selected Studies | No. GK | Test | Phase of the Test | Dominant Leg (cm) | Non-Dominant Leg (cm) | ||
---|---|---|---|---|---|---|---|
MALE: U19 | Mahmoudi et al. [67] | 10 | Iranian Professional League | Y-balance | Anterior | 88.6 ± 7.2 | 94.1 ± 9.5 |
Posterolateral | 92.6 ± 8.3 | 95.6 ± 9.2 | |||||
Posteromedial | 99.7 ± 8.3 | 103.8 ± 5.5 | |||||
MALE: OVER 19 | Ateş [64] | 3 | Turkish Second League | Y-balance | Anterior | 69.6 ± 0.0 | 69.7 ± 0.0 |
Posterolateral | 118.2 ± 0.0 | 118.2 ± 0.0 | |||||
Posteromedial | 117.7 ± 0.0 | 113.6 ± 0.0 | |||||
MALE: OVER 19 | AlTaweel et al. [1] | 21 | Saudi League | SEBT (Star Excursion Balance Test) | Anterior | 48.23 ± 5.42 | |
Anteromedial | 50.95 ± 5.31 | ||||||
Medial | 51.44 ± 5.66 | ||||||
Posteromedial | 51.18 ± 5.89 | ||||||
Posterior | 49.88 ± 6.79 | ||||||
Posterolateral | 47.76 ± 5.92 | ||||||
Lateral | 42.69 ± 5.72 | ||||||
Anterolateral | 45.59 ± 5.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Jarrín, P.; Fernández-Fernández, J.; García-Tormo, J.V.; Gutiérrez García, C. Neuromuscular Performance of High-Level Football Goalkeepers by Age Category and Sex: A Systematic Review. J. Funct. Morphol. Kinesiol. 2025, 10, 398. https://doi.org/10.3390/jfmk10040398
González-Jarrín P, Fernández-Fernández J, García-Tormo JV, Gutiérrez García C. Neuromuscular Performance of High-Level Football Goalkeepers by Age Category and Sex: A Systematic Review. Journal of Functional Morphology and Kinesiology. 2025; 10(4):398. https://doi.org/10.3390/jfmk10040398
Chicago/Turabian StyleGonzález-Jarrín, Pablo, Jaime Fernández-Fernández, José Vicente García-Tormo, and Carlos Gutiérrez García. 2025. "Neuromuscular Performance of High-Level Football Goalkeepers by Age Category and Sex: A Systematic Review" Journal of Functional Morphology and Kinesiology 10, no. 4: 398. https://doi.org/10.3390/jfmk10040398
APA StyleGonzález-Jarrín, P., Fernández-Fernández, J., García-Tormo, J. V., & Gutiérrez García, C. (2025). Neuromuscular Performance of High-Level Football Goalkeepers by Age Category and Sex: A Systematic Review. Journal of Functional Morphology and Kinesiology, 10(4), 398. https://doi.org/10.3390/jfmk10040398