Differences in Average Power Output Values from Computational Models of Repeated Vertical Jump Tests: A Single-Group Quasi Experimental Approach
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Research Design
2.3. Procedure
2.4. Worked Example
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Practical Implications
4.2. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MG | Miron Georgescu |
MGM-15 | Modified Miron Georgescu 15 s |
W/kg | Watts per kilogram |
PU | Average power |
Tf | Flight time |
Tc | Contact time |
g2 | Gravitational acceleration |
h | Jump height |
References
- Nishiumi, D.; Nishioka, T.; Saito, H.; Kurokawa, T.; Hirose, N. Associations of eccentric force variables during jumping and eccentric lower-limb strength with vertical jump performance: A systematic review. PLoS ONE 2023, 18, e0289631. [Google Scholar] [CrossRef]
- Nejić, K.; Stanković, M.; Rančić, D.; Jelaska, I.; Pezelj, L.; Katanić, B.; Badau, A.; Badau, D.; Masanovic, B. Associations Between Jump Performance, Speed, and COD Abilities in Young Elite Volleyball Players. Appl. Sci. 2025, 15, 9489. [Google Scholar] [CrossRef]
- Dobbs, W.C.; Tolusso, D.V.; Fedewa, M.V.; Esco, M.R. Effect of post activation potentiation on explosive vertical jump: A systematic review and meta-analysis. J. Strength Cond. Res. 2019, 33, 2009–2018. [Google Scholar] [CrossRef]
- Aksović, N.; Bjelica, B.; Milanović, F.; Cicović, B.; Bubanj, S.; Nikolić, D.; Skrypchenko, I.; Rozhechenko, V.; Zelenović, M. Evaluation and comparative analysis of the results of a vertical jump between young basketball and handball players. Pedagog. Phys. Cult. Sports 2022, 26, 126–133. [Google Scholar] [CrossRef]
- Grădinaru, L.; Mergheș, P.; Oravițan, M. The contribution of plyometric exercises assisted by sensory technology on vertical jump parameters in U15 female volleyball players. Pedagog. Phys. Cult. Sports 2024, 28, 156–167. [Google Scholar] [CrossRef]
- França, C.; Marques, A.; Ihle, A.; Nuno, J.; Campos, P.; Gonçalves, F.; Martins, J.; Gouveia, É. Associations between muscular strength and vertical jumping performance in adolescent male football players. Hum. Mov. 2023, 24, 94–100. [Google Scholar] [CrossRef]
- Leite, I.; Goethel, M.; Conceição, F.; Ávila-Carvalho, L. How does the jumping performance differ between acrobatic and rhythmic gymnasts? Biomechanics 2023, 3, 457–468. [Google Scholar] [CrossRef]
- Băltean, A.I.; De Hillerin, P.J.; Geantă, V.A. Effects of a short-term aquatic training program on in-water vertical jump performance and neuromuscular output in water polo players. Sport Mont 2025, 23, 101–107. [Google Scholar] [CrossRef]
- Xu, J.; Turner, A.; Comyns, T.M.; Chavda, S.; Bishop, C. The Association between Countermovement Rebound Jump Metrics and Independent Measures of Athletic Performance. Appl. Sci. 2024, 14, 3718. [Google Scholar] [CrossRef]
- Loturco, I.; Pereira, L.A.; Kobal, R.; Kitamura, K.; Abad, C.C.C.; Marques, G.; Guerriero, A.; Moraes, J.E.; Nakamura, F.Y. Validity and usability of a new system for measuring and monitoring variations in vertical jump performance. J. Strength Cond. Res. 2017, 31, 2579–2585. [Google Scholar] [CrossRef]
- Sanders, G.J.; Skodinski, S.; Peacock, C.A. Impact of early season jump loads on neuromuscular performance in Division I volleyball: Analyzing force, velocity, and power from countermovement jump tests. Transl. Sports Med. 2025, 2025, 7216781. [Google Scholar] [CrossRef] [PubMed]
- Miranda-Oliveira, P.; Branco, M.; Fernandes, O. Accuracy of inertial measurement units when applied to the countermovement jump of track and field athletes. Sensors 2022, 22, 7186. [Google Scholar] [CrossRef] [PubMed]
- Lesinski, M.; Muehlbauer, T.; Granacher, U. Concurrent validity of the Gyko inertial sensor system for the assessment of vertical jump height in female sub-elite youth soccer players. BMC Sports Sci. Med. Rehabil. 2016, 8, 35. [Google Scholar] [CrossRef]
- Rico-Garcia, M.; Botero-Valencia, J.; Hernández-García, R. Vertical Jump Data from Inertial and Optical Motion Tracking Systems. Data 2022, 7, 116. [Google Scholar] [CrossRef]
- McNeal, J.R.; Sands, W.A.; Stone, M.H. Effects of fatigue on kinetic and kinematic variables during a 60-second repeated jumps test. Int. J. Sports Physiol. Perform. 2010, 5, 218–229. [Google Scholar] [CrossRef]
- Bagchi, A.; Raizada, S.; Thapa, R.K.; Stefanica, V.; Ceylan, H.İ. Reliability and accuracy of portable devices for measuring countermovement jump height in physically active adults: A comparison of force platforms, contact mats, and video-based software. Life 2024, 14, 1394. [Google Scholar] [CrossRef] [PubMed]
- Papadakis, Z.; Panoutsakopoulos, V.; Kollias, I.A. Predictive value of repeated jump testing on nomination status in professional and under-19 soccer players. Int. J. Environ. Res. Public Health 2022, 19, 13077. [Google Scholar] [CrossRef]
- Philipp, N.M.; Cabarkapa, D.; Nijem, R.M.; Blackburn, S.D.; Fry, A.C. Vertical jump neuromuscular performance characteristics determining on-court contribution in male and female NCAA Division 1 basketball players. Sports 2023, 11, 239. [Google Scholar] [CrossRef]
- Bosco, C.; Luhtanen, P.; Komi, P.V. A simple method for measurement of mechanical power in jumping. Eur. J. Appl. Physiol. Occup. Physiol. 1983, 50, 273–282. [Google Scholar] [CrossRef]
- Pazin, N.; Berjan, B.; Nedeljkovic, A.; Markovic, G.; Jaric, S. Power output in vertical jumps: Does optimum loading depend on activity profiles? Eur. J. Appl. Physiol. 2013, 113, 577–589. [Google Scholar] [CrossRef]
- Botezatu, C. Aspecte Neuromusculare ale Anticipării în Pregătirea Structurii Corporale Pentru Contact, în Performanţa Motrică [Neuromuscular Aspects of Anticipation in Preparing the Body Structure for Contact in Motor Performance]. Doctoral Dissertation, Universitatea din Pitești, Pitești, Romania, 2013. [Google Scholar]
- Botezatu, C.; Andrei, C.; Hillerin, P.J. Neuromuscular aspects of anticipation in preparing the body for the contact structure in motrice performance. Sport Sci. Rev. 2014, 23, 1–22. [Google Scholar] [CrossRef]
- Monteiro, L.; Massuça, L.M.; Ramos, S.; Garcia-Garcia, J. Neuromuscular performance of world-class judo athletes on bench press, prone row and repeated jump tests. Appl. Sci. 2024, 14, 2904. [Google Scholar] [CrossRef]
- Freitas-Junior, C.A.; Gantois, P.E.; Fortes, L.E.; Correia, G.; Paes, P.E. Effects of the improvement in vertical jump and repeated jumping ability on male volleyball athletes’ internal load during a season. J. Phys. Educ. Sport 2020, 20, 2924–2931. [Google Scholar] [CrossRef]
- Türkarslan, B.; Deliceoğlu, G. The Effects of the French Contrast Method on Soccer Players’ Jumping, Sprinting and Balance Performance. J. Musculoskelet. Neuronal Interact. 2024, 24, 209–215. [Google Scholar]
- Acar, N.E.; Umutlu, G.; Ersöz, Y.; Akarsu Taşman, G.; Güven, E.; Sınar Ulutaş, D.S.; Kamiş, O.; Erdoğan, M.; Aslan, Y.E. Continuous vertical jump test is a reliable alternative to Wingate anaerobic test and isokinetic fatigue tests in evaluation of muscular fatigue resistance in endurance runners. BMC Sports Sci. Med. Rehabil. 2025, 17, 88. [Google Scholar] [CrossRef]
- McCaulley, G.O.; Cormie, P.; Cavill, M.J.; Nuzzo, J.L.; Urbiztondo, Z.G.; McBride, J.M. Mechanical efficiency during repetitive vertical jumping. Eur. J. Appl. Physiol. 2007, 101, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Georgescu, M. Contribuții la studiul calităților fizice [Contributions to the study of physical qualities]. Cult. Fiz. și Sport 1953, 2, 39–60. [Google Scholar]
- Hillerin, P.J. Despre Proba Miron Georgescu Modificată [About the Modified Miron Georgescu Drill]; Republished Internal Use Material; Institute for Sport Research in Bucharest: București, Romanian, 1997. [Google Scholar]
- Geantă, V.A.; de Hillerin, P.J. Balas, E., Roman, A., Rad, D., Eds.; Assessment of motor skills by jump tests—Comparative analysis. In Student’s Well-Being and Teaching-Learning Efficiency During Post-Pandemic Period; Peter Lang: Berlin, Germany, 2023; Volume IV, pp. 249–271. [Google Scholar]
- Hillerin, P.J. Propunere de interpretare a variabilității timpilor de contact cu solul și de zbor în proba “MGM-15”, cu indicatori ai calității controlului neuromuscular al fazelor interacțiunii de tip motric [Proposal of interpretation of the ground contact and flight time variability for the “MGM-15” drill, using indicators of the neuromuscular control quality for the motor interaction phases]. In Proceedings of the National Psychology Conference, Bucharest, Romania, 1997. [Google Scholar]
- Marin, C.; de Hillerin, P.J.; Marin, M.; Vizitiu, C.; Nistorescu, A.; Vizitiu, A. Arguments for a Unified Psycho-Neuro-Motor Approach in Human Performance Training. Palestrica Third Millenn. Civiliz. Sport 2015, 16, 107–112. Available online: https://www.pm3.ro/pdf/60/ro/08%20-%20marin%20%20%20107-112.pdf (accessed on 10 September 2025).
- Geantă, V.A.; De Hillerin, P.J. Methodological discrepancies in lower limb average power calculation in a repeated vertical jump test: A preliminary study. Montenegrin J. Sports Sci. Med. 2025, 14, 89–96. [Google Scholar] [CrossRef]
- Ozemek, C.; Bonikowske, A.; Christle, J.; Gallo, P. ACSM’s Guidelines for Exercise Testing and Prescription, 12th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2025; pp. 131–134, 332–336. [Google Scholar]
- Marković, G. Does plyometric training improve vertical jump height? A meta-analytical review. Br. J. Sports Med. 2007, 41, 349–355. [Google Scholar] [CrossRef]
- Caseiro-Filho, L.C.; Girasol, C.E.; Rinaldi, M.L.; Lemos, T.W.; Guirro, R.R. Analysis of the accuracy and reliability of vertical jump evaluation using a low-cost acquisition system. BMC Sports Sci. Med. Rehabil. 2023, 15, 107. [Google Scholar] [CrossRef]
- American College of Sports Medicine. Sanders, M.E., Ed.; ACSM’s Health/Fitness Facility Standards and Guidelines; Human Kinetics: Champaign, IL, USA, 2019; p. 86. [Google Scholar]
- Microgate. Home Page: Microgate [Internet]. Available online: https://www.microgate.it (accessed on 7 June 2025).
- Laerd Statistics. One-Way Repeated Measures ANOVA Using SPSS Statistics [Internet]. 2025. Available online: https://statistics.laerd.com/spss-tutorials/one-way-anova-repeated-measures-using-spss-statistics.php (accessed on 1 August 2025).
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Kaufmann, S.; Hoos, O.; Beck, A.; Fueller, F.; Latzel, R.; Beneke, R. The metabolic relevance of type of locomotion in anaerobic testing: Bosco continuous jumping test versus Wingate anaerobic test of the same duration. Int. J. Sports Physiol. Perform. 2021, 16, 1663–1669. [Google Scholar] [CrossRef]
- Schleip, R.; Wilke, J.; Baker, A. Fascia in Sport and Movement; Jessica Kingsley Publishers: London, UK, 2021; pp. 97–105. [Google Scholar]
- Lamontagne, M.; Kennedy, M.J. The biomechanics of vertical hopping: A review. Res. Sports Med. 2013, 21, 380–394. [Google Scholar] [CrossRef]
- Knihs, D.A.; Ache-Dias, J.; Dal Pupo, J. Effects of different levels of fatigue on vertical jump performance, vertical stiffness, and intralimb coordination. Monten. J. Sports Sci. Med. 2021, 11, 9–14. [Google Scholar] [CrossRef]
- Bojsen-Møller, J.; Magnusson, S.P. Mechanical properties, physiological behavior, and function of aponeurosis and tendon. J. Appl. Physiol. 2019, 126, 1800–1807. [Google Scholar] [CrossRef]
- Geantă, V.A.; De Hillerin, P.J. The Potential of the MGM-15 Test as a Method for Evaluating Sports Performance. Monten. J. Sports Sci. Med. 2025, 14, 5–20. [Google Scholar] [CrossRef]
- Mureşan, A.; Bulduş, C.F.; Grosu, V. The control of explosive force training in volleyball using MGM 15 jumping mat. In Proceedings of the WLC 2016 World LUMEN Congress, Logos Universality Mentality Education, Iasi, Romania, 12–17 April 2016. [Google Scholar] [CrossRef]
- Ciobotaru, O.; Voinescu, D.; Ciobotaru, O.; Ciocan, N.; Savu, C. The optimization of the football players’ agility using the data provided by the study of the control parameters by means of the Modified Miron Georgescu Method. Ann. “Dunarea De Jos” Univ. Galati Fasc. XV Phys. Educ. Sport Manag. 2014, 1, 29–33. [Google Scholar]
- Sava, M.A. A study regarding the manifestation of the explosive force to judoka aged 14–16 years. Gymnasium 2015, 16, 149–160. [Google Scholar]
- Gherțoiu, D.M.; Moca, C.M. Jumping reaction time and power output of young female basketball players. Studia UBB Educ. Artis. Gymn. 2018, 63, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Rață, G.; Grapa, F.; Rață, B.; Manole, L.; Ciocan, D. Study on the Correlations between the Flight Height and the Two-Legged and One-Legged Take-Off Power in the “Division A” Female Volleyball Players. Sport Sci. Rev. 2010, 19, 117. [Google Scholar] [CrossRef]
- Macovei, S.; de Hillerin, P.J. Orientation de la préparation physique et technique au moyen d’un test du train inférieur [Orientation of Physical and Technical Preparation Using a Lower-Limb Test]. Cah. De L’insep 1997, 18, 267–271. Available online: https://www.persee.fr/doc/insep_1241-0691_1997_num_18_1_1274 (accessed on 3 October 2025).
- Rață, G.; Rață, B.C.; Manole, L. Study Regarding the Dynamics of the Explosive Force Manifestation in the Lower Limbs in 8-8 Years Old Boys. J. Phys. Educ. Sport 2010, 26. Available online: http://www.efsupit.ro/images/stories/imgs/JPES/2010/4%20RATA.pdf (accessed on 3 October 2025).
- Stroescu, S.A. Using Motor Skills Tests in the Selection of Women Gymnasts for Learning the “Forward Danilova” on Beam. In Proceedings of the 5th International Congress on Physical Education, Sport and Kinetotherapy (ICPESK 2015), Bucharest, Romania, 10–13 June 2015; p. 65. [Google Scholar] [CrossRef]
- Popa, D.; Neamțu, M. The Modern Equipment in Training Performance Dancers. Procedia Soc. Behav. Sci. 2013, 76, 665–669. [Google Scholar] [CrossRef]
- Rață, G.; Dobrescu, T.; Marza-Danila, D.N.; Grapa, F.; Rață, B.C.; Rață, M. Longitudinal Study Regarding the Evolution of the “Știința” Bacău Female Volleyball Players. Procedia Soc. Behav. Sci. 2012, 46, 3959–3966. [Google Scholar] [CrossRef]
- Rață, G.; de Hillerin, P.J.; Rață, B.C.; Rață, M.; Andrei, C.; Botezatu, C. Bio-Motor Assessment, Interpretations and Suggestions of the Results Recorded by the Știința Bacău Female Handball Players. In Proceedings of the 4th Annual International Conference: Physical Education, Sport and Health, Pitești, Romania, 18–19 November 2011; University of Pitești: Pitești, Romania, 2011; Volume 15, pp. 538–542, Part II. [Google Scholar]
- Mihăilescu, L.; Vâlcu, B.; Mihăilescu, N. Possibilities for Identifying the Contribution of Strength and Muscle Power of Track and Field Sprint Events. Procedia Soc. Behav. Sci. 2012, 46, 3722–3726. [Google Scholar] [CrossRef]
- Ababei, C.; Pavel, S.; Ababei, R. Study regarding the fitness of the students enrolled in the physical and sportive education and physical therapy and special motor skills academic programs, in the context of future professions. Rom. J. Multidim. Educ. 2024, 16, 233–244. [Google Scholar] [CrossRef]
- Gherman, A.A.; Gomboș, L.; Pătrașcu, A. Developed Jumping Power Relation with Other Neuromuscular Coefficients from the MGM-15 Jump Carpet. pp. 103–107. Available online: https://www.researchgate.net/publication/366634386 (accessed on 5 October 2025).
- Achinstein, P. Crucial experiments. In The Routledge Encyclopedia of Philosophy [Internet]; Taylor and Francis: London, UK, 1998; Available online: https://www.rep.routledge.com/articles/thematic/crucial-experiments/v-1 (accessed on 28 June 2023).
- Popper, K. The Logic of Scientific Discovery; Hutchinson: London, UK, 1959; pp. 66–67. [Google Scholar]
- Wilson, J.M.; Flanagan, E.P. The role of elastic energy in activities with high force and power requirements: A brief review. J. Strength Cond. Res. 2008, 22, 1705–1715. [Google Scholar] [CrossRef]
- Roberts, T.J. Contribution of elastic tissues to the mechanics and energetics of muscle function during movement. J. Exp. Biol. 2016, 219, 266–275. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho, A.R.; Debastiani, J.C.; Peyré-Tartaruga, L.A.; Bertolini, G.R.F. Estimated lower limb mechanical muscular power during vertical jumps by contact mat and Bosco’s equation: A correlation and agreement cross-sectional study. Contrib. Cienc. Soc. 2024, 17, 5222–5234. [Google Scholar] [CrossRef]
- Čular, D.; Ivančev, V.; Zagatto, A.M.; Milić, M.; Beslija, T.; Sellami, M.; Padulo, J. Validity and reliability of the 30-s continuous jump for anaerobic power and capacity assessment in combat sport. Front. Physiol. 2018, 9, 543. [Google Scholar] [CrossRef]
- Xu, J.; Turner, A.; Jordan, M.J.; Comyns, T.M.; Chavda, S.; Bishop, C. A narrative review of rebound jumping and fast stretch-shortening cycle mechanics. Strength Cond. J. 2025, 47, 302–316. [Google Scholar] [CrossRef]
- Gross, M.; Lüthy, F. Anaerobic Power Assessment in Athletes: Are Cycling and Vertical Jump Tests Interchangeable? Sports 2020, 8, 60. [Google Scholar] [CrossRef]
- de Hillerin, P.J.; Ionescu, A.; Iacobini, A.; Stavre, A.; Anghelache, C. Erori și Realitate în Evaluarea Capacității de Efort Anaerob Prin Teste ce Folosesc Săriturile pe Verticală [Errors and Reality in the Assessment of Anaerobic Capacity Through Tests Using Vertical Jumps]. In Proceedings of the Conference Presentation, 29th National Conference of Sports Medicine, Romanian Society of Sports Medicine, Online, 29 March 2021; Available online: https://www.medicinasportiva.ro/SRoMS/2021/program.html (accessed on 3 October 2025).
- Iacobini, A.; de Hillerin, P.J.; Iacobini, A. Case Study on Reducing Lower Limb Asymmetry through Psycho-Neuro-Motor Control Training. Marathon 2024, 16, 75–81. [Google Scholar] [CrossRef]
- Glatthorn, J.F.; Gouge, S.; Nussbaumer, S.; Stauffacher, S.; Impellizzeri, F.M.; Maffiuletti, N.A. Validity and reliability of Optojump photoelectric cells for estimating vertical jump height. J. Strength Cond. Res. 2011, 25, 556–560. [Google Scholar] [CrossRef]
- Condello, G.; Khemtong, C.; Lee, Y.-H.; Chen, C.-H.; Mandorino, M.; Santoro, E.; Liu, C.; Tessitore, A. Validity and Reliability of a Photoelectric Cells System for the Evaluation of Change of Direction and Lateral Jumping Abilities in Collegiate Basketball Athletes. J. Funct. Morphol. Kinesiol. 2020, 5, 55. [Google Scholar] [CrossRef]
- Słomka, K.J.; Sobota, G.; Skowronek, T.; Rzepko, M.; Czarny, W.; Juras, G. Evaluation of Reliability and Concurrent Validity of Two Optoelectric Systems Used for Recording Maximum Vertical Jumping Performance versus the Gold Standard. Acta Bioeng. Biomech. 2017, 19, 141–147. Available online: https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-dde7b09b-74fc-4481-9413-4f5ff33d6fea (accessed on 1 October 2025). [PubMed]
- Khemiri, A.; Negra, Y.; Ceylan, H.İ.; Hajri, M.; Njah, A.; Hachana, Y.; Yıldız, M.; Bayrakdaroğlu, S.; Muntean, R.I.; Attia, A. Concurrent Validity of the Optojump Infrared Photocell System in Lower Limb Peak Power Assessment: Comparative Analysis with the Wingate Anaerobic Test and Sprint Performance. Appl. Sci. 2025, 15, 10741. [Google Scholar] [CrossRef]
- Attia, A.; Dhahbi, W.; Chaouachi, A.; Padulo, J.; Wong, D.P.; Chamari, K. Measurement Errors When Estimating the Vertical Jump Height with Flight Time Using Photocell Devices: The Example of Optojump. Biol. Sport 2017, 34, 63–70. [Google Scholar] [CrossRef]
Variable | M | SD |
---|---|---|
PU Bosco (W/kg) | 40.13 | 8.56 |
PU MG (W/kg) | 21.07 | 5.92 |
PU MGM-15 (W/kg) | 4.08 | 0.61 |
Effect | W | χ2 | df | p | ε (G-G) |
---|---|---|---|---|---|
Average Power | 0.116 | 49.56 | 2 | 0.001 | 0.531 |
Source | df | F | p | η2p |
---|---|---|---|---|
Calculation Model | 1.06, 25.47 | 479.89 | <0.001 | 0.952 |
Comparisons | Mean Difference | SE | p | CI 95% |
Bosco vs. MG | 19.05 * | 0.61 | 0.001 | [17.47, 20.63] |
Bosco vs. MGM-15 | 36.04 * | 1.59 | 0.001 | [31.93, 40.15] |
MG vs. MGM-15 | 16.99 * | 1.06 | 0.001 | [14.24, 19.73] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geantă, V.A.; de Hillerin, P.J.; Iacobini, A.R.; Camenidis, C.M.; Ionescu, A. Differences in Average Power Output Values from Computational Models of Repeated Vertical Jump Tests: A Single-Group Quasi Experimental Approach. J. Funct. Morphol. Kinesiol. 2025, 10, 397. https://doi.org/10.3390/jfmk10040397
Geantă VA, de Hillerin PJ, Iacobini AR, Camenidis CM, Ionescu A. Differences in Average Power Output Values from Computational Models of Repeated Vertical Jump Tests: A Single-Group Quasi Experimental Approach. Journal of Functional Morphology and Kinesiology. 2025; 10(4):397. https://doi.org/10.3390/jfmk10040397
Chicago/Turabian StyleGeantă, Vlad Adrian, Pierre Joseph de Hillerin, Alexandra Reta Iacobini, Carmen Magdalena Camenidis, and Anca Ionescu. 2025. "Differences in Average Power Output Values from Computational Models of Repeated Vertical Jump Tests: A Single-Group Quasi Experimental Approach" Journal of Functional Morphology and Kinesiology 10, no. 4: 397. https://doi.org/10.3390/jfmk10040397
APA StyleGeantă, V. A., de Hillerin, P. J., Iacobini, A. R., Camenidis, C. M., & Ionescu, A. (2025). Differences in Average Power Output Values from Computational Models of Repeated Vertical Jump Tests: A Single-Group Quasi Experimental Approach. Journal of Functional Morphology and Kinesiology, 10(4), 397. https://doi.org/10.3390/jfmk10040397