Personalized Physical Exercise Program Among Adolescent Girls: A Pilot Study
Abstract
1. Introduction
Research Objectives
2. Materials and Methods
2.1. Subjects
2.2. Measurements of Body Weight, Body Mass Index, and Body Fat Percentage
2.3. Measurement of Cardiorespiratory Performance
2.4. Measurement of Muscle Performance
2.5. Flexibility Measurement
2.6. Data Collection
2.7. Statistical Analysis
3. Results
Multiple Linear Regression Analysis
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- van Sluijs, E.M.F.; Ekelund, U.; Crochemore-Silva, I.; Guthold, R.; Ha, A.; Lubans, D.; Oyeyemi, A.L.; Ding, D.; Katzmarzyk, P.T. Physical activity behaviours in adolescence: Current evidence and opportunities for intervention. Lancet 2021, 398, 429–442. [Google Scholar] [CrossRef]
- Losada-Puente, L.; Araújo, A.M.; Muñoz-Cantero, J.M. A systematic review of the assessment of quality of life in adolescents. Soc. Indic. Res. 2020, 147, 1039–1057. [Google Scholar] [CrossRef]
- García-Hermoso, A.; Alonso-Martínez, A.M.; Ramírez-Vélez, R.; Pérez-Sousa, M.Á.; Ramírez-Campillo, R.; Izquierdo, M. Association of Physical Education with Improvement of Health-Related Physical Fitness Outcomes and Fundamental Motor Skills Among Youths: A Systematic Review and Meta-analysis. JAMA Pediatr. 2020, 174, e200223. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Guidelines on Physical Activity and Sedentary Behaviour; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar] [CrossRef]
- Janssen, I.; Leblanc, A. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 40. [Google Scholar] [CrossRef]
- Guthold, R.; Stevens, G.M.; Bull, F.C. Global trends in insufficient physical activity among adolescents: A pooled analysis of 298 population-based surveys with 1.6 million participants. Lancet Child Adolesc. Health 2020, 4, 23–35. [Google Scholar] [CrossRef]
- Hallal, P.B.; Bull, F.C.; Guthold, R.; Haskell, W.; Ekelund, U. Lancet Physical Activity Series Working Group. Global physical activity levels: Surveillance progress, pitfalls, and prospects. Lancet 2012, 380, 247–257. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Action Plan on Physical Activity 2018–2030: More Active People for a Healthier World; World Health Organization: Geneva, Switzerland, 2018; ISBN 978-92-4-151418-7. [Google Scholar]
- Meyer, U.; Schindler, C.; Zahner, L.; Ernst, D.; Hebestreit, H.; van Mechelen, W.; Brunner-La Rocca, H.P.; Probst-Hensch, N.; Puder, J.J.; Kriemler, S. Long-term effect of a school-based physical activity program (KISS) on fitness and adiposity in children: A cluster-randomized controlled trial. PLoS ONE 2014, 9, e87929. [Google Scholar] [CrossRef] [PubMed]
- Meyer, A.A.; Kundt, G.; Lenschow, U.; Schuff-Werner, P.; Kienast, W. Improvement of early vascular changes and cardiovascular risk factors in obese children after a six-month exercise program. J. Am. Coll. Cardiol. 2006, 48, 1865–1870. [Google Scholar] [CrossRef] [PubMed]
- Masurier, G.L.; Corbin, C.B. Top 10 reasons for quality physical education. J. Phys. Educ. Recreat. Danc. 2006, 77, 44–53. [Google Scholar] [CrossRef]
- American Heart Association; American Cancer Society Cancer Action Network; American Diabetes Association. Increasing and Improving Physical Education and Physical Activity in Schools: Benefits for Children’s Health and Educational Outcomes. 2015. Available online: https://www.heart.org (accessed on 29 May 2025).
- Petrovics, P.; Sandor, B.; Palfi, A.; Szekeres, Z.; Atlasz, T.; Toth, K.; Szabados, E. Association between obesity and overweight and cardiorespiratory and muscle performance in adolescents. Int. J. Environ. Res. Public Health 2020, 18, 134. [Google Scholar] [CrossRef]
- Pampakas, P.; Mészáros, Z.; Király, T.; Szmodis, M.B.; Szakály, Z.; Zsidegh, M.; Mészáros, J. Longitudinal differences and trends in body fat and running endurance in Hungarian primary schoolboys. Anthropol. Anz. 2008, 66, 317–326. [Google Scholar] [CrossRef]
- Teixeira, D.S.; Bastos, V.; Andrade, A.J.; Palmeira, A.L.; Ekkekakis, P. Individualized pleasure-oriented exercise sessions, exercise frequency, and affective outcomes: A pragmatic randomized controlled trial. Int. J. Behav. Nutr. Phys. Act. 2024, 21, 85. [Google Scholar] [CrossRef]
- Weatherwax, R.M.; Harris, N.K.; Kilding, A.E.; Dalleck, L.C. Incidence of VO₂max responders to personalized versus standardized exercise prescription. Med. Sci. Sports Exerc. 2019, 51, 681–691. [Google Scholar] [CrossRef] [PubMed]
- Parfitt, G.; Alrumh, A.; Rowlands, A.V. Affect-regulated exercise intensity: Does training at an intensity that feels ‘good’ improve physical health? J. Sci. Med. Sport 2012, 15, 548–553. [Google Scholar] [CrossRef] [PubMed]
- Elsangedy, H.M.; Oliveira, G.T.A.; Machado, D.G.D.S.; Tavares, M.P.M.; Araújo, A.O.; Krinski, K.; Browne, R.A.V.; Gregório da Silva, S. Effects of self-selected resistance training on physical fitness and psychophysiological responses in physically inactive older women: A randomized controlled study. Percept. Mot. Skills 2021, 128, 467–491. [Google Scholar] [CrossRef]
- Wayment, H.A.; McDonald, R.L. Sharing a personal trainer: Personal and social benefits of individualized, small-group training. J. Strength Cond. Res. 2017, 31, 3137–3145. [Google Scholar] [CrossRef] [PubMed]
- Duffey, K.; Barbosa, A.; Whiting, S.; Mendes, R.; Yordi Aguirre, I.; Tcymbal, A.; Abu-Omar, K.; Gelius, P.; Breda, J. Barriers and facilitators of physical activity participation in adolescent girls: A systematic review of systematic reviews. Front. Public Health 2021, 9, 743935. [Google Scholar] [CrossRef]
- Tomkinson, G.R.; Carver, K.D.; Atkinson, F.; Daniell, N.D.; Lewis, L.K.; Fitzgerald, J.S.; Lang, J.J.; Ortega, F.B. European normative values for physical fitness in children and adolescents aged 9–17 years: Results from 2,779,165 Eurofit performances representing 30 countries. Br. J. Sports Med. 2018, 52, 1445–1463. [Google Scholar] [CrossRef]
- Petrovics, P.; Nagy, A.; Sandor, B.; Palfi, A.; Szekeres, Z.; Toth, K.; Szabados, E. Examination of Self-Esteem, Body Image, Eating Attitudes and Cardiorespiratory Performance in Adolescents. Int. J. Environ. Res. Public Health 2020, 18, 13172. [Google Scholar] [CrossRef]
- Corr, M.; McSharry, J.; Murtagh, E.M. Adolescent girls’ perceptions of physical activity: A systematic review of qualitative studies. Am. J. Health Promot. 2019, 33, 806–819. [Google Scholar] [CrossRef]
- Tomkinson, G.R.; Lang, J.J.; Tremblay, M.S.; Dale, M.; LeBlanc, A.G.; Belanger, K.; Ortega, F.B.; Léger, L. International normative 20 m shuttle run values from 1,142,026 children and youth representing 50 countries. Br. J. Sports Med. 2017, 51, 1545–1554. [Google Scholar] [CrossRef] [PubMed]
- Burns, R.C.; Brusseau, T.A.; Eisenman, P.A.; Saint-Maurice, P.F.; Welk, G.J.; Mahar, M.T. Cross-validation of aerobic capacity prediction models in adolescents. Pediatr. Exerc. Sci. 2015, 27, 404–411. [Google Scholar] [CrossRef] [PubMed]
- Bueno-Antequera, J.; Munguía-Izquierdo, D. Physical Inactivity, Sedentarism, and Low Fitness: A Worldwide Pandemic for Public Health. In Integrated Science of Global Epidemics; Springer: Berlin/Heidelberg, Germany, 2023; pp. 429–447. [Google Scholar] [CrossRef]
- Corder, K.; Winpenny, E.; Love, R.; Brown, H.E.; White, M.; van Sluijs, E. Change in physical activity from adolescence to early adulthood: A systematic review and meta-analysis of longitudinal cohort studies. Br. J. Sports Med. 2019, 53, 496–503. [Google Scholar] [CrossRef]
- Song, P.; Zhang, Y.; Yu, J.; Zha, M.; Zhu, Y.; Rahimi, K.; Rudan, I. Global prevalence of hypertension in children: A systematic review and meta-analysis. JAMA Pediatr. 2019, 173, 1154–1163. [Google Scholar] [CrossRef]
- Reilly, J.J.; Kelly, J. Long-term impact of overweight and obesity in childhood and adolescence on morbidity and premature mortality in adulthood: Systematic review. Int. J. Obes. 2011, 35, 891–898. [Google Scholar] [CrossRef]
- Weatherwax, R.C.; Dalleck, L.C. The impact of personalized versus standardized cardiorespiratory and muscular training on health-related outcomes and rate of responders. J. Sports Sci. Med. 2024, 23, 209–218. [Google Scholar] [CrossRef]
- García-Hermoso, A.; Ramírez-Vélez, R.; García-Alonso, Y.; Alonso-Martínez, A. Association of cardiorespiratory fitness levels during youth with health risk later in life: A systematic review and meta-analysis. JAMA Pediatr. 2020, 174, 952–960. [Google Scholar] [CrossRef]
- Ortega, F.R.; Castillo, M.J.; Sjöström, M. Physical fitness in childhood and adolescence: A powerful marker of health. Int. J. Obes. 2008, 32, 1–11. [Google Scholar] [CrossRef]
- Grøntved, A.; Ried-Larsen, M.; Møller, N.C.; Kristensen, P.L.; Froberg, K.; Brage, S.; Andersen, L.B. Muscle strength in youth and cardiovascular risk in young adulthood (The European Youth Heart Study). Br. J. Sports Med. 2015, 49, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Eisenmann, J.C.; Wickel, E.E.; Welk, G.J.; Blair, S.N. Relationship between adolescent fitness and fatness and cardiovascular disease risk factors in adulthood: The Aerobics Center Longitudinal Study (ACLS). Am. Heart J. 2005, 149, 46–53. [Google Scholar] [CrossRef]
- Laitinen, T.T.; Pahkala, K.; Magnussen, C.G.; Viikari, J.S.; Oikonen, M.; Taittonen, L.; Mikkilä, V.; Jokinen, E.; Hutri-Kähönen, N.; Laitinen, T.; et al. Ideal cardiovascular health in childhood and cardiometabolic outcomes in adulthood: The Cardiovascular Risk in Young Finns Study. Circulation 2012, 125, 1971–1978. [Google Scholar] [CrossRef]
- Schmidt, M.G.; Rees, E.; Dwyer, T.; Venn, A.J. Childhood fitness reduces the long-term cardiometabolic risks associated with childhood obesity. Int. J. Obes. 2016, 40, 1134–1140. [Google Scholar] [CrossRef] [PubMed]
- Lubans, D.R.; Lonsdale, C.; Cohen, K.; Eather, N.; Beauchamp, M.R.; Morgan, P.J.; Sylvester, B.D.; Smith, J.J. Framework for the Design and Delivery of Organized Physical Activity Sessions for Children and Adolescents: Rationale and Description of the ‘SAAFE’ Teaching Principles. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 24. [Google Scholar] [CrossRef] [PubMed]
- Goyibova, N.; Muslimov, N.; Sabirova, G.; Kadirova, N.; Samatova, B. Differentiation Approach in Education: Tailoring Instruction for Diverse Learner Needs. MethodsX 2025, 14, 103163. [Google Scholar] [CrossRef] [PubMed]
- Ekkekakis, P.; Hall, E.J. Some Like It Vigorous: Measuring Individual Differences in the Preference for and Tolerance of Exercise Intensity. J. Sport Exerc. Psychol. 2005, 27, 350–374. [Google Scholar] [CrossRef]
- Taylor, I.M.; Ntoumanis, N. Teacher Motivational Strategies and Student Self-Determination in Physical Education. J. Educ. Psychol. 2007, 99, 747–760. [Google Scholar] [CrossRef]
- Sparks, C.; Dimmock, J.; Lonsdale, C.; Jackson, B. Modeling Indicators and Outcomes of Students’ Perceived Teacher Relatedness Support in High School Physical Education. Psychol. Sport Exerc. 2016, 26, 71–82. [Google Scholar] [CrossRef]
Control Group | Intervention Group | |||
---|---|---|---|---|
Pre-test | Post-test | Pre-test | Post-test | |
Body height (cm) | 166.1 ± 5.67 | 167.2 ± 5.88 * | 165.7 ± 5.88 | 166.2 ± 5.48 * |
Body weight (kg) | 57.8 ± 8.70 | 60.2 ± 9.60 * | 59.5 ± 10.88 | 58.4 ± 10.21 * |
BMI (kg/m2) | 20.9 ± 2.67 | 21.5 ± 2.97 * | 21.6 ± 3.73 | 21.1 ± 3.52 * |
Body fat (%) | 25.8 ± 6.61 | 26.5 ± 6.21 *# | 26.4 ± 6.57 | 25.4 ± 6.31 *# |
20 m shuttles (n) | 34.6 ± 15.87 | 35.9 ± 16.13 *# | 36.3 ± 13.86 | 46.4 ± 14.94 *# |
VO2max (mL·kg−1·min−1) | 40.7 ± 5.49 | 38.9 ± 5.59 * | 41.3 ± 4.84 | 42.6 ± 5.21 *# |
Curl-ups (n) | 71.3 ± 19.08 | 78.1 ± 19.06 * | 71.3 ± 19.06 | 87.2 ± 18.94 *# |
Trunk lifts (cm) | 22.3 ± 5.70 | 20.3 ± 6.60 * | 22.3 ± 5.43 | 25.6 ± 6.22 *# |
Push-ups (n) | 10.8 ± 5.72 | 12.7 ± 4.51 * | 10.8 ± 5.77 | 14.8 ± 4.39 *# |
Standing long jumps (cm) | 168.2 ± 27.19 | 187.8 ± 26.40 * | 168.2 ± 27.26 | 195.9 ± 25.63 *# |
Handgrip strength (kg) | 29.2 ± 4.31 | 30.9 ± 4.82 *# | 28.6 ± 4.19 | 32.9 ± 4.82 *# |
Flexibility (cm) | 30.6 ± 7.17 | 32.1 ± 8.24 *# | 31.4 ± 7.16 | 36.1 ± 8.24 *# |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrovics, P.; Sebesi, B.; Szekeres, Z.; Szabados, E.; Pálfi, A. Personalized Physical Exercise Program Among Adolescent Girls: A Pilot Study. J. Funct. Morphol. Kinesiol. 2025, 10, 341. https://doi.org/10.3390/jfmk10030341
Petrovics P, Sebesi B, Szekeres Z, Szabados E, Pálfi A. Personalized Physical Exercise Program Among Adolescent Girls: A Pilot Study. Journal of Functional Morphology and Kinesiology. 2025; 10(3):341. https://doi.org/10.3390/jfmk10030341
Chicago/Turabian StylePetrovics, Peter, Balazs Sebesi, Zsolt Szekeres, Eszter Szabados, and Anita Pálfi. 2025. "Personalized Physical Exercise Program Among Adolescent Girls: A Pilot Study" Journal of Functional Morphology and Kinesiology 10, no. 3: 341. https://doi.org/10.3390/jfmk10030341
APA StylePetrovics, P., Sebesi, B., Szekeres, Z., Szabados, E., & Pálfi, A. (2025). Personalized Physical Exercise Program Among Adolescent Girls: A Pilot Study. Journal of Functional Morphology and Kinesiology, 10(3), 341. https://doi.org/10.3390/jfmk10030341