Effectiveness of Proprioceptive Training on Postural Stability and Chronic Pain in Older Women with Osteoporosis: A Six-Month Prospective Pilot Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Participants
2.3. Research Methods
2.3.1. Balance Assessment
2.3.2. Pain Intensity Assessment
2.4. Proprioceptive Training Program
- ○
- All exercises must be performed slowly, with as much control as possible exerted in each movement—focus on the feeling, not the number of repetitions.
- ○
- In the event of pain, dizziness, or discomfort, the exercise should be discontinued immediately.
- ○
- A stable support (e.g., chair, table, cabinet, or wall) may be used if needed for balance assistance, to create a safer environment.
- •
- Warm-up (5 min)
- Light cardio (walking in place or in a straight line with a high knee)—1–2 min;
- Light joint mobility exercises (shoulder, neck and hip rotations)—3 min.
- •
- Stretching exercises (3–5 min) targeting shortened muscle groups, such as cervical extensors, m. pectoralis major, hip flexors and knee flexors;Static stretches held for 20–30 s, 2–3 repetitions per muscle group.
- •
- Exercises for coordination, balance, and mobility (25–30 min), including the following:
- •
- Muscle strengthening exercises (12–17 min) were aimed at enhancing muscle groups with observed weakness. These were low-intensity resistance exercises using elastic bands (TheraBand) intended to improve muscular strength. The program targeted the following:
- ○
- Lower and upper limb muscle groups—knee extensions; leg curls (knee flexion toward the glutes); arm raises with resistance bands; lateral arm stretches
- ○
- Core muscle groups including abdominal, dorsal, and paravertebral muscles—abdominal hollowing (drawing-in maneuver); heel slides; supine marching; glute bridges; modified superman (in prone position, with the alternate lifting of one arm and the opposite leg to enhance back extensor control); bird-dog (from a quadruped position, alternating the extension of opposite arm and leg while maintaining trunk alignment; wall angels; scapular squeezes
The exercises were performed for 3 sets of 10–15 repetitions per exercise, with 60 s of rest between sets. All exercises were low-impact, performed in a controlled manner, and adapted to individual ability, avoiding spinal flexion or high-torque rotational movements. - •
- Breathing exercises (static and dynamic) (3–5 min):
- A 5–7 min session included controlled breathing and relaxation.
2.5. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Analysis of Balance Test (OLS) Results
3.3. Analysis of Pain Intensity Results as Measured by the Visual Analog Scale (VAS)
3.4. Group Differences
4. Discussion
4.1. Effects on Balance and Fall Risk
4.2. Effects on Chronic Pain
4.3. Age-Related Differences
4.4. Comparison with Alternative Approaches and Controversies in the Literature
4.5. Clinical and Practical Implications
4.6. Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BMD | Bone Mineral Density |
VAS | Visual Analog Scale |
OLS | One Leg Stance |
CoP | Centre of Pressure |
References
- Šromová, V.; Sobola, D.; Kaspar, P. A Brief Review of Bone Cell Function and Importance. Cells 2023, 12, 2576. [Google Scholar] [CrossRef]
- Theintz, G.; Buchs, B.; Rizzoli, R.; Slosman, D.; Clavien, H.; Sizonenko, P.C.; Bonjour, J.P. Longitudinal monitoring of bone mass accumulation in healthy adolescents: Evidence for a marked reduction after 16 years of age at the levels of lumbar spine and femoral neck in female subjects. J. Clin. Endocrinol. Metab. 1992, 75, 1060–1065. [Google Scholar] [CrossRef]
- Rizzoli, R. Atlas of Postmenopausal Osteoporosis, 2nd ed.; Curr. Med. Group: Geneva, Switzerland, 2005; p. 127. [Google Scholar]
- Stefanova, I.; Andreev, A.; Zheleva, D.; Peev, M. Contemporary Aspects in Osteoporosis and Osteopenia. Varna Med. Forum 2023, 12 (Suppl. S1), 74–78. [Google Scholar] [CrossRef]
- Sharir, A.; Barak, M.M.; Shahar, R. Whole bone mechanics and mechanical testing. Vet. J. 2008, 177, 8–17. [Google Scholar] [CrossRef]
- Brooke-Wavell, K.; A Skelton, D.; Barker, K.L.; Clark, E.M.; De Biase, S.; Arnold, S.; Paskins, Z.; Robinson, K.R.; Lewis, R.M.; Tobias, J.H.; et al. Strong, steady and straight: UK consensus statement on physical activity and exercise for osteoporosis. Br. J. Sports Med. 2022, 56, 837–846. [Google Scholar] [CrossRef]
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS). Exercise for Your Bone Health. National Institutes of Health. Updated May 2020. Available online: https://www.niams.nih.gov/health-topics/exercise-your-bone-health (accessed on 30 March 2025).
- Sambrook, P.; Cooper, C. Osteoporosis. Lancet 2006, 367, 2010–2018. [Google Scholar] [CrossRef]
- Yang, Z.; Griffith, J.F.; Leung, P.C.; Lee, R. Effect of osteoporosis on morphology and mobility of the lumbar spine. Spine 2009, 34, E115–E121. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, M.B.; Oliveira, J.; Bauman, A.; Fairhall, N.; Kwok, W.; Sherrington, C. Evidence on physical activity and osteoporosis prevention for people aged 65+ years: A systematic review to inform the WHO guidelines on physical activity and sedentary behaviour. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 150. [Google Scholar] [CrossRef] [PubMed]
- LeBoff, M.S.; Greenspan, S.L.; Insogna, K.L.; Lewiecki, E.M.; Saag, K.G.; Singer, A.J.; Siris, E.S. The clinician’s guide to prevention and treatment of osteoporosis. Osteoporos. Int. 2022, 33, 2049–2102. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.; Reddy, R.S.; Alqhtani, R.S.; Tedla, J.S.; Dixit, S.; Ghulam, H.S.H.; Alyami, A.M.; Al Adal, S.; Jarrar, M.A. Exploring the nexus of lower extremity proprioception and postural stability in individuals with osteoporosis. Front. Public Health 2023, 11, 1287223. [Google Scholar] [CrossRef]
- Cortet, B.; Roches, E.; Logier, R.; Houvenagel, E.; Gaydier-Souquières, G.; Puisieux, F.; Delcambre, B. Evaluation of spinal curvatures after a recent osteoporotic vertebral fracture. Jt. Bone Spine 2002, 69, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Katzman, W.B.; Vittinghoff, E.; Ensrud, K.; Black, D.M.; Kado, D.M. Increasing kyphosis predicts worsening mobility in older community-dwelling women: A prospective cohort study. J. Am. Geriatr. Soc. 2011, 59, 96–100. [Google Scholar] [CrossRef]
- Bruno, A.G.; Anderson, D.E.; D’Agostino, J.; Bouxsein, M.L. The effect of thoracic kyphosis and sagittal plane alignment on vertebral compressive loading. J. Bone Miner. Res. 2012, 27, 2144–2151. [Google Scholar] [CrossRef]
- Niibo, C.; Matsuda, T.; Fukuda, H.; Katoh, H. Influence of kyphosis posture on postural control and lower limb mechanical load immediately after stopping walking. J. Phys. Ther. Sci. 2022, 34, 193–198. [Google Scholar] [CrossRef]
- Howe, T.E.; Shea, B.; Dawson, L.J.; Downie, F.; Murray, A.; Ross, C.; Harbour, R.T.; Caldwell, L.M.; Creed, G. Exercise for preventing and treating osteoporosis in postmenopausal women. Cochrane Database Syst. Rev. 2011, 7, CD000333. [Google Scholar] [CrossRef]
- Musumeci, G.; Castrogiovanni, P.; Loreto, C.; Castorina, S.; Pichler, K.; Weinberg, A.M. Post-traumatic caspase-3 expression in the adjacent areas of growth plate injury site: A morphological study. Int. J. Mol. Sci. 2013, 14, 15767–15784. [Google Scholar] [CrossRef]
- Ivanenko, Y.P.; Gurfinkel, V.S. Human Postural Control. Front. Neurosci. 2018, 12, 171. [Google Scholar] [CrossRef] [PubMed]
- Castrogiovanni, P.; Trovato, F.M.; Szychlinska, M.A.; Nsir, H.; Imbesi, R.; Musumeci, G. The importance of physical activity in osteoporosis. From the molecular pathways to the clinical evidence. Histol. Histopathol. 2016, 31, 1183–1194. [Google Scholar] [CrossRef] [PubMed]
- Giangregorio, L.M.; Papaioannou, A.; MacIntyre, N.J.; Ashe, M.C.; Heinonen, A.; Shipp, K.; Wark, J.; McGill, S.; Keller, H.; Jain, R.; et al. Too Fit To Fracture: Exercise recommendations for individuals with osteoporosis or osteoporotic vertebral fracture. Osteoporos. Int. 2014, 25, 821–835. [Google Scholar] [CrossRef]
- Sinaki, M.; Brey, R.H.; Hughes, C.A.; Larson, D.R.; Kaufman, K.R. Significant reduction in risk of falls and back pain in osteoporotic-kyphotic women through a Spinal Proprioceptive Extension Exercise Dynamic (SPEED) program. Mayo Clin. Proc. 2005, 80, 849–855. [Google Scholar] [CrossRef] [PubMed]
- Sakai, Y.; Morita, Y.; Kawai, K.; Fukuhara, J.; Ito, T.; Yamazaki, K.; Watanabe, T.; Wakao, N.; Matsui, H.; Blasco, J.M. A new treatment strategy for chronic low back pain with targeted vibratory stimulation in the sacral region. PLoS ONE 2024, 19, e0306898. [Google Scholar] [CrossRef] [PubMed]
- Le Ge, L.; Zhao, Z.; Wei, D.; Xu, Y.; Wang, F. Core stability training improves postural control and quality of life in older adults with chronic low back pain: A randomized controlled trial. Eur. Rev. Aging Phys. Act. 2022, 19, 10. [Google Scholar] [CrossRef]
- Granata, K.P.; Marras, W.S. Influence of fatigue on neuromuscular control of spinal stability. Hum. Factors 2005, 47, 4–18. [Google Scholar] [CrossRef]
- Zemková, E.; Zapletalová, L. The Role of Neuromuscular Control of Postural and Core Stability in Functional Movement and Athlete Performance. Front. Physiol. 2022, 13, 796097. [Google Scholar] [CrossRef] [PubMed]
- Clinic Staff. Osteoporosis: Can Exercise Help? Mayo Clinic. Updated October 2022. Available online: https://www.mayoclinic.org/diseases-conditions/osteoporosis/in-depth/osteoporosis/art-20044989 (accessed on 2 April 2025).
- Rogers, M.E.; Page, P.; Takeshima, N. Balance training for the older athlete. Int. J. Sports Phys. Ther. 2013, 8, 517–530. [Google Scholar] [PubMed]
- Ribeiro, F.; Oliveira, J. Aging effects on joint proprioception: The role of physical activity in proprioception preservation. Eur. Rev. Aging Phys. Act. 2007, 4, 71–76. [Google Scholar] [CrossRef]
- Aleixo, P.; Abrantes, J. Proprioceptive and Strength Exercise Guidelines to Prevent Falls in the Elderly Related to Biomechanical Movement Characteristics. Healthcare 2024, 12, 186. [Google Scholar] [CrossRef]
- Valdes, K.; Manalang, K.C.; Leach, C. Proprioception: An evidence-based review. J. Hand Ther. 2023, 37, 269–272. [Google Scholar] [CrossRef]
- Villarón-Casales, C.; Aladro-Gonzalvo, A.R.; Gámez-Payá, J.; Pardo-Ibáñez, A.; Domínguez-Navarro, F.; Gallego, D.; Alarcón-Jimenez, J. Static Postural Control during Single-Leg Stance in Endurance, Team and Combat Athletes from the Spanish National Sport Technification Program. Int. J. Environ. Res. Public Health 2023, 20, 4292. [Google Scholar] [CrossRef]
- Araujo, C.G.; de Souza E Silva, C.G.; Laukkanen, J.A.; Fiatarone Singh, M.; Kunutsor, S.K.; Myers, J.; Franca, J.F.; Castro, C.L. Successful 10-second one-legged stance performance predicts survival in middle-aged and older individuals. Br. J. Sports Med. 2022, 56, 975–980. [Google Scholar] [CrossRef]
- Lui, L.Y.; So, W.K.; Fong, D.Y. Knowledge and attitudes regarding pain management among nurses in Hong Kong medical units. J. Clin. Nurs. 2008, 17, 2014–2021. [Google Scholar] [CrossRef] [PubMed]
- Hawker, G.A.; Mian, S.; Kendzerska, T.; French, M. Measures of adult pain: Visual Analog Scale for Pain (VAS Pain), Numeric Rating Scale for Pain (NRS Pain), McGill Pain Questionnaire (MPQ), Short-Form McGill Pain Questionnaire (SF-MPQ), Chronic Pain Grade Scale (CPGS), Short Form-36 Bodily Pain Scale (SF-36 BPS), and Measure of Intermittent and Constant Osteoarthritis Pain (ICOAP). Arthritis Care Res. 2011, 63 (Suppl. S11), S240–S252. [Google Scholar] [CrossRef]
- Boonstra, A.M.; Schiphorst Preuper, H.R.; Reneman, M.F.; Posthumus, J.B.; Stewart, R.E. Cut-off points for mild, moderate, and severe pain on the visual analogue scale for pain in patients with chronic musculoskeletal pain. Pain 2014, 155, 2545–2550. [Google Scholar] [CrossRef]
- Özler, K. Does Bone Mineral Density Have an Affect on the Visual Analogue Scale Pain Score? Turk. J. Osteoporos. 2020, 26, 75–80. [Google Scholar] [CrossRef]
- Nam, H.C.; Cha, H.G.; Kim, M.K. The effects of exercising on an unstable surface on the gait and balance ability of normal adults. J. Phys. Ther. Sci. 2016, 28, 2102–2104. [Google Scholar] [CrossRef]
- Harry-Leite, P.; Paquete, M.; Teixeira, J.; Santos, M.; Sousa, J.; Fraiz-Brea, J.A.; Ribeiro, F. Acute Impact of Proprioceptive Exercise on Proprioception and Balance in Athletes. Appl. Sci. 2022, 12, 830. [Google Scholar] [CrossRef]
- Muir, S.W.; Speechley, M.; Wells, J.; Borrie, M.; Gopaul, K.; Montero-Odasso, M. Gait assessment in mild cognitive impairment and Alzheimer’s disease: The effect of dual-task challenges across the cognitive spectrum. Gait Posture 2012, 35, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Madureira, M.M.; Takayama, L.; Gallinaro, A.L.; Caparbo, V.F.; Costa, R.A.; Pereira, R.M.R. Balance training program is highly effective in improving functional status and reducing the risk of falls in elderly women with osteoporosis: A randomized controlled trial. Osteoporos. Int. 2007, 18, 419–425. [Google Scholar] [CrossRef]
- Wei, F.; Hu, Z.; He, R.; Wang, Y. Effects of balance training on balance and fall efficacy in patients with Osteoporosis: A systematic review and meta-analysis with trial sequential analysis. J. Rehabil. Med. 2023, 55, jrm00390. [Google Scholar] [CrossRef] [PubMed]
- Lesinski, M.; Hortobágyi, T.; Muehlbauer, T.; Gollhofer, A.; Granacher, U. Effects of Balance Training on Balance Performance in Healthy Older Adults: A Systematic Review and Meta-analysis. Sports Med. 2015, 45, 1721–1738. [Google Scholar] [CrossRef]
- Aman, J.E.; Elangovan, N.; Yeh, I.L.; Konczak, J. The effectiveness of proprioceptive training for improving motor function: A systematic review. Front. Hum. Neurosci. 2015, 8, 1075, Erratum in 2016, 46, 457. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Deng, H.; Shen, X.; Lei, Q. Effect of balance training on falls in patients with osteoporosis: A systematic review and meta-analysis. J. Rehabil. Med. 2018, 50, 577–581. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Fu, H. Relationship between proprioception and balance control among Chinese senior older adults. Front. Physiol. 2022, 13, 1078087. [Google Scholar] [CrossRef] [PubMed]
- Sherrington, C.; Fairhall, N.; Wallbank, G.; Tiedemann, A.; Michaleff, Z.A.; Howard, K.; Clemson, L.; Hopewell, S.; Lamb, S. Exercise for preventing falls in older people living in the community: An abridged Cochrane systematic review. Br. J. Sports Med. 2020, 54, 885–891. [Google Scholar] [CrossRef]
- Sherrington, C.; Fairhall, N.J.; Wallbank, G.K.; Tiedemann, A.; A Michaleff, Z.; Howard, K.; Clemson, L.; Hopewell, S.; E Lamb, S. Exercise for preventing falls in older people living in the community. Cochrane Database Syst. Rev. 2019, 1, CD012424. [Google Scholar] [CrossRef]
- Mikó, I.; Szerb, I.; Szerb, A.; Poor, G. Effectiveness of balance training programme in reducing the frequency of falling in established osteoporotic women: A randomized controlled trial. Clin. Rehabil. 2017, 31, 217–224. [Google Scholar] [CrossRef]
- Esposito, G.; Altavilla, G.; Di Domenico, F.; Aliberti, S.; D’Isanto, T.; D’Elia, F. Proprioceptive training to improve static and dynamic balance in elderly. Int. J. Stat. Med. Res. 2021, 10, 194–199. [Google Scholar] [CrossRef]
- Koevska, V.; Nikolikj-Dimitrova, E.; Mitrevska, B.; Gjeracaroska-Savevska, C.; Gocevska, M.; Kalcovska, B. Effect of Exercises on Quality of Life in Patients with Postmenopausal Osteoporosis—Randomized Trial. Open Access Maced. J. Med. Sci. 2019, 7, 1160–1165. [Google Scholar] [CrossRef]
- Todd, K.H.; Funk, J.P.; Funk, K.G.; Bonacci, R. Clinical significance of reported changes in pain severity. Ann. Emerg. Med. 1996, 27, 485–489. [Google Scholar] [CrossRef]
- Ostelo, R.W.J.G.; Deyo, R.A.; Stratford, P.; Waddell, G.; Croft, P.; Von Korff, M.; Bouter, L.M.; de Vet, H.C. Interpreting change scores for pain and functional status in low back pain. Spine 2008, 33, 90–94. [Google Scholar] [CrossRef]
- Paolucci, T.; Morone, G.; Iosa, M.; Grasso, M.R.; Buzi, E.; Zangrando, F.; Paolucci, S.; Saraceni, V.M.; Fusco, A. Efficacy of group-adapted physical exercises in reducing back pain in women with postmenopausal osteoporosis. Aging Clin. Exp. Res. 2014, 26, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Paolucci, T.; Saraceni, V.M.; Piccinini, G. Management of chronic pain in osteoporosis: Challenges and solutions. J. Pain Res. 2016, 9, 177–186. [Google Scholar] [CrossRef]
- Catalano, A.; Martino, G.; Morabito, N.; Scarcella, C.; Gaudio, A.; Basile, G.; Lasco, A. Pain in Osteoporosis: From Pathophysiology to Therapeutic Approach. Drugs Aging 2017, 34, 755–765. [Google Scholar] [CrossRef]
- Kuzmanova, V.; Kuzmanov, A.; Todorov, S.; Marchev, S.; Valcheva-Kuzmanova, S. Pain in osteoporosis—Causes and pathogenesis. Varna Med. Forum 2020, 9, 89–93. [Google Scholar] [CrossRef]
- Alshahrani, A.; Reddy, R.S.; Ravi, S.K. Chronic low back pain and postural instability: Interaction effects of pain severity, age, BMI, and disability. Front. Public Health 2025, 13, 1497079. [Google Scholar] [CrossRef]
- Khorramroo, F.; Mousavi, S.H.; Rajabi, R. Effects of spinal deformities on lower limb kinematics during walking: A systematic review and meta-analysis. Sci. Rep. 2025, 15, 4608. [Google Scholar] [CrossRef]
- Sarvari, M.; Shanbehzadeh, S.; Shavehei, Y.; ShahAli, S. Postural control among older adults with fear of falling and chronic low back pain. BMC Geriatr. 2024, 24, 862. [Google Scholar] [CrossRef]
- Mollova, K.; Valeva, S.; Bekir, N. Effects of aging on joint proprioception. Proc. Univ. Ruse 2025, 62, 53–57. [Google Scholar]
- Vahlberg, B.; Bring, A.; Hellström, K.; Zetterberg, L. Level of physical activity in men and women with chronic stroke. Physiother. Theory Pract. 2019, 35, 947–955. [Google Scholar] [CrossRef] [PubMed]
- Campbell, A.J.; Robertson, M.C.; Gardner, M.M.; Norton, R.N.; Tilyard, M.W.; Buchner, D.M. Randomised controlled trial of a general practice programme of home based exercise to prevent falls in elderly women. BMJ 1997, 315, 1065–1069. [Google Scholar] [CrossRef]
- Robertson, M.C.; Devlin, N.; Gardner, M.M.; Campbell, A.J. Effectiveness and economic evaluation of a nurse delivered home exercise programme to prevent falls. 1: Randomised controlled trial. BMJ 2001, 322, 697–701. [Google Scholar] [CrossRef] [PubMed]
- Yardley, L.; Donovan-Hall, M.; Smith, H.E.; Walsh, B.M.; Mullee, M.; Bronstein, A.M. Effectiveness of primary care-based vestibular rehabilitation for chronic dizziness. Ann. Intern. Med. 2004, 141, 598–605. [Google Scholar] [CrossRef]
- Kistler-Fischbacher, M.; Weeks, B.K.; Beck, B.R. The effect of exercise intensity on bone in postmenopausal women (part 2): A meta-analysis. Bone 2021, 143, 115697. [Google Scholar] [CrossRef]
- Fu, X.; Wang, C.; Wang, Y.; Gong, L.; Liu, H.; Shen, Z.; Zhu, D.; Zhang, J.; Bai, J.; Ren, R.; et al. The association between physical activity and the prevalence of comorbidity: A cross-sectional survey. Sci. Rep. 2025, 15, 21040. [Google Scholar] [CrossRef]
- Teixeira, L.E.P.P.; Silva, K.N.G.; Imoto, A.M.; Teixeira, T.J.P.; Kayo, A.H.; Montenegro-Rodrigues, R.; Peccin, M.S.; Trevisani, V.F.M. Progressive load training for the quadriceps muscle associated with proprioception exercises for the prevention of falls in postmenopausal women with osteoporosis: A randomized controlled trial. Osteoporos. Int. 2010, 21, 589–596. [Google Scholar] [CrossRef]
- Kunutsor, S.K.; Leyland, S.; Skelton, D.A.; James, L.; Cox, M.; Gibbons, N.; Whitney, J.; Clark, E.M. Adverse events and safety issues associated with physical activity and exercise for adults with osteoporosis and osteopenia: A systematic review of observational studies and an updated review of interventional studies. J. Frailty Sarcopenia Falls 2018, 3, 155–178. [Google Scholar] [CrossRef] [PubMed]
Age Group | Participants (n) | Percentage of Total (%) |
---|---|---|
60–65 years | 73 | 50.69% |
66–70 years | 63 | 43.75% |
>70 years | 8 | 5.56% |
Total | 144 | 100% |
Assessment Period | Mean ± SD (s) | Minimum (s) | Maximum (s) | p-Value * |
---|---|---|---|---|
Baseline (n = 144) | 2.49 ± 2.082 | 0 | 9 | 0.001 |
Post-Intervention (n = 144) | 7.31 ± 1.973 | 3 | 12 |
OLS Duration (s) | Baseline (n) % | Post-Intervention (n) % | Total (n) % |
---|---|---|---|
0 | (42) 29.2 | (0) 0.0 | (42) 14.6 |
1 | (12) 8.3 | (0) 0.0 | (12) 4.2 |
2 | (10) 6.9 | (0) 0.0 | (10) 3.5 |
3 | (38) 26.4 | (4) 2.8 | (42) 14.6 |
4 | (9) 6.3 | (9) 6.3 | (18) 6.3 |
5 | (29) 20.1 | (14) 9.7 | (43) 14.9 |
6 | (1) 0.7 | (21) 14.6 | (22) 7.6 |
7 | (1) 0.7 | (28) 19.4 | (29) 10.1 |
8 | (0) 0.0 | (24) 16.7 | (24) 8.3 |
9 | (2) 1.4 | (30) 20.8 | (32) 11.1 |
10 | (0) 0.0 | (8) 5.6 | (8) 2.8 |
11 | (0) 0.0 | (2) 1.4 | (2) 0.7 |
12 | (0) 0.0 | (4) 2.8 | (4) 1.4 |
Total | (144) 100 | (144) 100 | (288) 100 |
Pain Level (VAS) | Baseline (n) % | Post-Intervention (n) % | Total— (n) % |
---|---|---|---|
0 | (0) 0.0 | (11) 7.6 | (11) 3.8 |
1 | (2) 1.4 | (26) 18.1 | (28) 9.7 |
2 | (19) 13.2 | (42) 29.2 | (61) 21.2 |
3 | (41) 28.5 | (30) 20.8 | (71) 24.7 |
4 | (40) 27.8 | (25) 17.4 | (65) 22.6 |
5 | (27) 18.8 | (9) 6.3 | (36) 12.5 |
6 | (15) 10.4 | (1) 0.7 | (16) 5.6 |
Total | (144) 100 | (144) 100 | (288) 100 |
Assessment Period | 60–65 Years (n = 73) | 66–70 Years (n = 63) | >70 Years (n = 8) | p-Value |
---|---|---|---|---|
Mean ± SD | ||||
Baseline | 2.42 ± 2.020 a | 2.73 ± 2.164 b | 1.13 ± 1.553 c | 0.001 |
Post-Intervention | 7.16 ± 2.055 a | 7.52 ± 1.900 b | 6.88 ± 1.808 c |
OLS (s) | Baseline | Post-Intervention | ||||
---|---|---|---|---|---|---|
60–65 Years (n) % | 66–70 Years (n) % | >70 Years (n) % | 60–65 Years (n) % | 66–70 Years (n) % | >70 Years (n) % | |
0 | (23) 31.5 | (14) 22.2 | (5) 62.5 | (0) 0.0 | (0) 0.0 | (0) 0.0 |
1 | (5) 6.8 | (7) 11.1 | (0) 0.0 | (0) 0.0 | (0) 0.0 | (0) 0.0 |
2 | (4) 5.5 | (6) 9.5 | (0) 0.0 | (0) 0.0 | (0) 0.0 | (0) 0.0 |
3 | (20) 27.4 | (15) 23.8 | (3) 37.5 | (3) 4.1 | (1) 1.6 | (0) 0.0 |
4 | (3) 4.1 | (6) 9.5 | (0) 0.0 | (5) 6.8 | (4) 6.3 | (0) 0.0 |
5 | (17) 23.3 | (12) 19.0 | (0) 0.0 | (9) 12.3 | (2) 3.2 | (3) 37.5 |
6 | (0) 0.0 | (1) 1.6 | (0) 0.0 | (10) 13.7 | (11) 17.5 | (0) 0.0 |
7 | (1) 1.4 | (0) 0.0 | (0) 0.0 | (13) 17.8 | (13) 20.6 | (2) 25.0 |
8 | (0) 0.0 | (0) 0.0 | (0) 0.0 | (8) 11.0 | (14) 22.2 | (2) 25.0 |
9 | (0) 0.0 | (2) 3.2 | (0) 0.0 | (21) 28.8 | (9) 14.3 | (0) 0.0 |
10 | (0) 0.0 | (0) 0.0 | (0) 0.0 | (1) 1.4 | (6) 9.5 | (1) 12.5 |
11 | (0) 0.0 | (0) 0.0 | (0) 0.0 | (1) 1.4 | (1) 1.6 | (0) 0.0 |
12 | (0) 0.0 | (0) 0.0 | (0) 0.0 | (2) 2.7 | (2) 3.2 | (0) 0.0 |
Total | (73) 100 | (63) 100 | (8)/100 | (73) 100 | (63) 100 | (8) 100 |
VAS | Baseline | Post-Intervention | ||||
---|---|---|---|---|---|---|
60–65 Years (n) % | 66–70 Years (n) % | >70 Years (n) % | 60–65 Years (n) % | 66–70 Years (n) % | >70 Years (n) % | |
0 | (0) 0.0 | (0) 0.0 | (0) 0.0 | (6) 7.6 | (5) 7.9 | (0) 0.0 |
1 | (2) 2.7 | (0) 0.0 | (0) 0.0 | (15) 20.5 | (9) 14.3 | (2) 25.0 |
2 | (9) 12.3 | (9) 14.3 | (1) 12.5 | (21) 28.8 | (18) 28.6 | (3) 37.5 |
3 | (22) 30.1 | (16) 25.4 | (3) 37.5 | (13) 17.8 | (15) 23.8 | (2) 25.0 |
4 | (20) 27.4 | (16) 25.4 | (4) 50.0 | (11) 15.1 | (13) 20.6 | (1) 12.5 |
5 | (9) 12.3 | (18) 28.6 | (0) 0.0 | (6) 8.2 | (3) 4.8 | (0) 0.0 |
6 | (11) 15.1 | (4) 6.3 | (0) 0.0 | (1) 1.4 | (0) 0.0 | (0) 0.0 |
Total | (73)/100 | (63) 100 | (8) 100 | (73) 100 | (63) 100 | (8) 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mollova, K.; Valeva, S.; Bekir, N.; Teneva, P.; Varlyakov, K. Effectiveness of Proprioceptive Training on Postural Stability and Chronic Pain in Older Women with Osteoporosis: A Six-Month Prospective Pilot Study. J. Funct. Morphol. Kinesiol. 2025, 10, 316. https://doi.org/10.3390/jfmk10030316
Mollova K, Valeva S, Bekir N, Teneva P, Varlyakov K. Effectiveness of Proprioceptive Training on Postural Stability and Chronic Pain in Older Women with Osteoporosis: A Six-Month Prospective Pilot Study. Journal of Functional Morphology and Kinesiology. 2025; 10(3):316. https://doi.org/10.3390/jfmk10030316
Chicago/Turabian StyleMollova, Katya, Steliyana Valeva, Nazife Bekir, Pavlina Teneva, and Kaloyan Varlyakov. 2025. "Effectiveness of Proprioceptive Training on Postural Stability and Chronic Pain in Older Women with Osteoporosis: A Six-Month Prospective Pilot Study" Journal of Functional Morphology and Kinesiology 10, no. 3: 316. https://doi.org/10.3390/jfmk10030316
APA StyleMollova, K., Valeva, S., Bekir, N., Teneva, P., & Varlyakov, K. (2025). Effectiveness of Proprioceptive Training on Postural Stability and Chronic Pain in Older Women with Osteoporosis: A Six-Month Prospective Pilot Study. Journal of Functional Morphology and Kinesiology, 10(3), 316. https://doi.org/10.3390/jfmk10030316